
     Analytical solutions for the Kelvin-Helmholtz instability problem for a semi-infinite heterogeneous inviscid
incompressible fluid with exponentially decreasing with the height density and a continuously variable as a linear
function of height streaming velocity. Whittaker function zeros and other Whittaker function operator solutions. 

Consider a semi-infinite layer of a heterogeneous inviscid incompressible fluid with exponentially decreasing density

 
ρ= ρ0 e

− β z

(z >=0 is the height in the layer), so that in the unperturbed state the fluid has a horizontal streaming 

velocity 
U=U

0
z /d

continuously variable as a linear function of the height (z>=0) where
ρ

0
, β ,d ,U

0 are constants, the first three being positive.
 We consider small perturbations of the initial state given by actual density, velocity components and pressure at any 

point (x,y,z)  in 
ℝ

2
×ℝ

+ and any moment of time t  in 
ℝ
+ , respective ( ρ+δρ ) (x , y , z ,t ) ,

(U+u , v ,w )( x , y , z , t ) and ( p+δp ) (x , y , z , t ) where δρ ,u ,v ,w,δp are the small perturbations.
  Then at first order (according [1])  the equations governing the perturbation are :

     

ρ
∂u
∂ t

+ρU
∂u
∂x

+ρw dU
dz

=−∂
∂x

δp        ( 1)

ρ
∂v
∂t

+ρU
∂v
∂ x

=−∂

∂ y
δp       (2 )

ρ
∂w
∂t

+ρU
∂w
∂x

=−∂

∂z
δp−gδρδρ          (3 )

   
(where g is the gravitational acceleration), derived from the motions equations,

     

∂
∂ t

δρ+U ∂
∂ x

δρ=−w
∂ ρ
∂ z

        ( 4 )

, derived from the continuity  equation and

     

∂u
∂ x

+
∂v
∂ y

+
∂w
∂ z

=0        (5 )

, the incompressibility condition.
Analysing the disturbance into normal modes we seek solutions of  eq. (1)-(5) whose dependence on x,y,t is given by

    
exp ( i ( k x x + k y y +n t ) )      (6 )

  

where 
k x  , k y∈ℝ

are the wave numbers and n∈ℂ denotes the angular frequency.

It is obvious that if  n∈ℝ  or ℑn≥0 the corresponding modes are stable,  remaining small as t increases to infinity.
For such solutions, equations (1)-(5) become

  
iρ (n+k x U)u+ρ(D U )w=− i k x δ p        ( 7)

iρ (n+ k x U ) v=− i k y δ p        (8 )

  iρ (n+k x U)w=−D δ p−g δ ρ       (9)

  i (n+k xU )δ ρ=−wD ρ        ( 10 )

 i (k xu +k yv )=−D w        (11 )

where D denotes d/dz.
   Multiplying eq. (7) and (8) by -ikx and -iky respectively, adding and using eq. (11) we obtain

   
iρ (n+k x U )D w− i ρk x (D U )w=−k 2δ ρ      (12 )

where k
2
=kx

2
+ky

2

  Combining eq. (9) and (1 0) we have

  

iρ (n+k xU)w=−D δ p−i g(D ρ)
w

n+k xU
       (13)

  Eliminating δp between (12) and (13) we obtain

  

D {ρ(n+k xU )Dw−ρk x(D U)w}−k 2ρ(n+k xU )w=

=gk 2
(D ρ)

w
n+k xU

     (14 )

  The solution must satisfy the boundary conditions
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w=0  at  z=0   and  z→∞
  Equation (14) can be written as

 

(n+kxU )(D
2

−k2)w−k x(D
2

U)w−gk 2D ρ
ρ

w
n+kxU

+

+D ρ
ρ [(n+k xU)Dw−kx (D U)w ]=0     (15)

  Without loss of generality we can assume that 
k x= k (U 0  app ears in  (15) on ly  as k x U 0 ) and so,

measuring z in the unit d and taking
n=U 0 ν /d  , k = κ / d  , β= λ /d  a n d  J= g β d 2

/U 0
2

, J being the non-dimensional Richardson number, equation 
(15) can be rewritten as

  

( ν+κ z )2 {D
2

w−λD w+[− κ
2
+ λ κ

ν+κ z
+

κ
2 J

( ν+κ z )
2 ]w }=0          (16 )

with the boundary conditions w=0  for  z=0   and  z→∞

By change of variables

w=eλ z /2W  and ζ=(z+ν/ κ)√4κ2
+λ

2
equation  (16)  becomes

 

ζ
2
(
d2W
d ζ

2 +(
−1
4
+
j
ζ
+

1
4
−m2

ζ
2 )W )=0       (17)

 
or ζ 2

ℒ W =0

where j= λ

√4 κ2+λ2
∈(0  , 1)  and m2

=
1
4
− J<

1
4

Note that 
ℒ=

d 2

d ζ
2−

1
4
+
j
ζ
+

1
4
−m2

ζ
2

is the Whittaker function operator.
The solution for W requires therefore (17)  to be satisfied with boundary conditions

W (( νκ )√4 κ2
+λ

2
)=0       (17 *)

w=exp (
1
2
λ (

1

√4 κ2+λ2
ζ− ν

κ ))W=0        (17 **)

for 

1

√4 κ2+λ2
ζ− ν

κ=z→∞

According [2], solutions of equation ℒW=0 are linear combinations of Whittaker functions

W j  , m (z )  and W− j  , m (−z )  where for j  , m∈ℂ  with j+
1
2
−m∉{0  , −1  , −2  , …}

W j  , m=
−1
2 π i

Γ ( j+
1
2
−m)e

−1
2
z
z j∫

∞

(0+ )

(−t )
− j−

1
2
+m
(1+

t
z
)
j−

1
2
+m
e−tdt    (18 )

where arg z has it’s principal value and the contour from ∞ en-cycling 0+ directly and back to ∞ is chosen so that

t=−z is outside of it and let be taken |arg (−t )|≤π and also the value of 

arg (1+
t
z
)

which tends to zero as t 
tends to zero by a path lying inside the contour.

If 
j+

1
2
−m∈{0  , −1  , −2  , …} because ℜ( j−

1
2
−m )≤0

we can take
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W j  , m=
e

−1
2
z
z j

Γ(
1
2
− j+m)

∫
0

∞

t
− j−

1
2
+m

(1+
t
z
)
j−1

2
+m
e− td t       (19)

and so 
W j  , m (z )  is defined  fo r all z ∈ℂ ∖ℝ −

For 

Ml  , m (z ) =z
1
2

+m

e
−1
2
z {1+∑p= 1

∞

( 1
2

+m−l )…( 1
2

+m−l+p−1 )
p! (2 m+1 )… (2m+p )

z p}      (20 )

according  [2] , it can be shown that if   

m∈ℂ  and 2m∉ℤ  and |arg z|< 3 π
2

then

W l  , m(z )=
Γ(−2m)

Γ(
1
2
−m−l )

M l  , m(z)+
Γ(2m)

Γ (
1
2
+m−l )

M l  , −m (z )

(21)

and therefore 
W l  ,m=W l  , −m         ( 22 )

if  m=s i  with s∈ℝ*  and l∈ℝ  we have 

Γ(−2m)

Γ (
1
2
−m−l)

=(
Γ(2m)

Γ(
1
2
+m−l) )

*

and so if we take 
  arg z *

=−  arg z   ,for 2m∉ℤ  , l∈ℝ  we have (W l  , m(z ))
*
=W l  , m(z

*
)        (23)

It follows that for real z , if  m
2
∈ℝ

*  , 2m∉ℤ  and l∈ℝ   also  W l  , m(z )   is real

M j  , m also satisfies equation ℒW=0 and we have, according [2]  ,the Kummer  second formula :

M0  , m (z)=z
1
2
+m
(1+

∑
p=1

∞

z 2p

24 pp!(m+1)…(m+p)
)  for 2m∈ℂ∖ℤ        (24)

 
M j  , m  and  W j  , m  fo rm a fu ndamental sy stem o f so lu tio ns fo r eq . ℒ W = 0

            Asymptotic expansions for 
W l  , m ( z )  and  W ′l  , m (z )   wh en  |arg  z|< π−α  ,with  α> 0

 

 From relation (18) , because obviously we can derivate under the integral sign, it is easy to obtain a relation for the 

derivative 
W ′ j  , m (z )

and how is shown in [2] we can prove (by induction method) that

(1+
t
z
)
λ

=1+ λ
1!
t
z
+…+

λ (λ−1)…(λ−n+1 )

n!
t n

z n
+Rn (t  , z )

where

Rn(t  , z)=
λ(λ−1)…(λ−n)

n!
(1+

t
z
)
λ

∫
0

t /z

un
(1+u)−λ−1du
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If | arg z|<π−α  , α>0 and |z|>1  it is easy to prove that 

1≤|1+ tz|≤1+|t|

|1+ tz|≥sin (α)  and therefore 

Rn(t  , z)≤|λ(λ−1)…(λ−n)
n! |(1+|t|)|λ|(cosec)

|λ|
(α)∫

0

|t /z|

un(1+u)
|λ|
d u≤

≤|λ(λ−1)…(λ−n)
n! |(1+|t|)2

|λ|

(cosecα)
|λ||tz|

n+1
1

n+1
=O(z−n−1

)|t|
n+1

Integrating term by term in the expressions for

W l  , m  and W ′l  , m  with the expansion of (1+ tz )
λ

 because 

∫
∞

(0+ )

(−t )
−l−1

2
+m

( t )
n+1O (z−n−1)e−tdt=−2 i sin (π(−l+

1
2

+m+n+1)) (−1 )
n+1∫

0

∞

t
−l−1

2
+m+n+ 1

e−tO (z−n−1)dt=

=O (z−n−1)  and 

∫
0

∞

t
−l−1

2
+m+n+1

e−t dt=Γ (−l+
1
2

+m+n+ 1)  when n  is sufficiently large for that 

ℜ(−l+
1
2

+m+n+ 1)>0

follows the asymptotic  behaviour for
W l  , m ( z )  an d  W ′l  , m (z )  wh en  |z|→∞  , | arg  z|≤π−α  with  α >0

 :a

W l  , m (z )=e
−1
2
z
z l (1+O(z−1

))  and 

W ′l  , m(z )=
−1
2
e

−1
2
z
z l (1+O(z−1

))

 where we have considered that 

−1
2 π i ∫∞

(0+)

(−t )
− l− 1

2
+m
e−tdt= 1

Γ(l+ 1
2
−m)

 
Some solutions are given by functions which satisfy the Whittaker equation ℒW=0  , the boundary condition at 
infinity (17**) and the dispersion relation between the wave number and the angular velocity is given by (17*).
Considering the asymptotic behaviour , such solutions are given by multiples of the Whittaker function 
w j  , m and the dispersion relation comes from the zeros of the Whittaker function.

We will show that in the considered situation, namely 
j  and 

1
4
−m2  being real 

the Whittaker function has only 
real zeros and therefore the corresponding modes of perturbation, if exist, are stable modes.
  Let W =W j  , m . Suppose that W ( z 0 )= 0  , z 0= x 0+ i y 0  , y 0≠ 0

Because the zeros of W are isolated points in 
ℂ ∖ ℝ −  ( W  i s h o l o m o rp h ic  o n   ℂ ∖ ℝ −  )

we can chose

x0=  max {x∈ℝ|W (x  , y 0)=0}
Let

  

W=p+ iq

Q(z )=
−1
4

+
j
z
+

1
4
−m2

z 2
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p  , q   satisfy Cauchy-Riemann 
∂p
∂x

=
∂q
∂ y

 , 
∂p
∂ y

=
−∂q
∂x

 and W″=−QW  , the Whittaker equation which leads to: 

∂
2

∂ x ∂ y
(p2

+q 2
)(x  , y )=ℑQ (p2

+q 2
)( x  , y )

Let

  

h̄=p2
+q2  , u=x+y  , v=x−y

h(u  , v )=h̄( u+v2
 , 
u−v

2 )  and we have 

∂

∂ x
= ∂

∂u
+ ∂

∂v
∂
∂ y

= ∂
∂u

− ∂
∂v

∂
2

∂ x ∂y
= ∂

2

∂u2−
∂

2

∂v 2

We have

∂
2h

∂u2−
∂

2h
∂ v2=ℑQh

Consider a cone with top at arbitrary

 

(u0  , v0)∈ℝ
2
∖D  and height ϵ  where 

D={(u  , v )∈ℝ 2
|
u+v

2
+ i
u−v

2
∈ℂ ∖ℝ−}

B= B (u0  , v0  , ϵ )={(u  , v )∈D|u>u0−ϵ  , u+v<u0+v 0  , v−u>v 0−u0 }

Therefore

∬
B

∂h
∂u

ℑQhdvdu=∬
B

1
2

∂

∂u [( ∂h∂u )
2

]+ 1
2

∂

∂u [( ∂h∂v )
2

]− ∂

∂v (
∂h
∂u

∂h
∂v )dvdu=

=∮
∂B

1
2 (

∂h
∂u )

2

νu+
1
2 (

∂h
∂v )

2

νu−
∂h
∂u

∂h
∂v

νvd σ=

=
1
2 ∫

v0−ϵ

v 0+ ϵ

(( ∂h∂u )
2

+(
∂h
∂v )

2

)(u0−ϵ  , v )dv+
1

2√2
∫
v 0

v0+ϵ

(
∂h
∂u

−
∂h
∂v )

2

(v0+u0−v  , v)dv +

+
1

2√2 ∫
v0−ϵ

v0

( ∂h∂u +
∂h
∂v )

2

(v+u0−v 0  , v)d v≥0

and we conclude , because B is an arbitrary chosen cone in the domain and h is positive, that

ℑQ
∂h
∂u

(u  , v )≥0  for any (u  , v )∈D      (25)

which is equivalent to

ℑQ(
∂ h̄
∂ x

+
∂ h̄
∂ y )( x  , y )≥0  for any x+ i y ∈ℂ ∖ℝ−        (26 )
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It is easy to see that 
ℑQ (x  , y )=ℑQ (x  , −y )  and that according ( 23 ) 
h̄(x  , y )=h̄(x  , −y )  so that from ( 26 ) follows 

ℑQ( ∂ h̄∂ y−
∂ h̄
∂x )(x  , y )≥0  for any x+ i y∈ℂ ∖ℝ−     (27)

(26) and (27) lead to

ℑQ
∂ h̄
∂ y

(x  , y )≥0 for any x+iy∈ℂ∖ℝ
−

     (28 )

From

∂
2p

∂ x2=−ℜQp+ℑQq

∂
2q

∂ x2=−ℑQp−ℜQq

which follows from the Whittaker equation, taking

p̄ (s )=p(x0 +s  , y 0)   and     q̄ (s )=q(x0+s  , y0)

multiplying the first and second equation by q respectively by -p and adding them, we obtain

( p̄ ′ q̄− q̄ ′ p̄ ) ′ ( s )= ( p̄ 2
+ q̄ 2

) ( s ) ℑ Q ( x 0+ s  , y 0)     (2 9 )

Integrating (29) after s from 0 to infinity, considering the asymptotic  behaviour of W and W’, we have

∫
0

∞

(p̄ 2
+q̄ 2

)(s )ℑQ (x 0+s  , y 0 )d s=0       (30)

Because the equation in x variable
ℑ Q ( x  , y 0 )=0

 is polynomial of second degree, from (30) follows that we can consider

x1=  max {x∈ℝ|x >x 0  , ℑQ (x  , y 0)=0}       (31 )

 so that ℑQ (  . , y 0)  changes sign at x= x 1

From ( 28 ) follows now that 
∂ h̄
∂y

(  . , y 0)  changes sign at x=x 1  and so 

∂ h̄
∂ y

(x 1  , y 0 )=0       (32)
 

Taking now

p̄ (s )=p(x1+s  , y0 )   and     q̄(s )=q(x1+s  , y 0) , 

from (32) , considering the Cauchy-Riemann equations satisfied by p and q we obtain
( p̄ ′ q̄−q̄ ′ p̄)(0 )=0 and so , as above we have existing

x 2=  max {x∈ℝ|x > x 1  , ℑQ (x  , y 0)} , but this contradicts the choosing of 
x1 according (31)

Therefore 
y 0=0

and the zeros of the Whittaker function must be real.

Note that the condition 
y 0≠0

plays a role in placing 
z 0  in ℂ∖ℝ− and making

ℑQ (  . , y 0 ) a second degree polynomial.
  For the following we mention
1. Sturm separation theorem
     Suppose that y1 and y2 are a fundamental pair of solutions (and hence are linearly independent) of the equation
    y’’ +  qy = 0 where q is a continuous function , on a interval I. Then :
           i) The zeros of non-trivial solutions of equation y’’ +  qy  = 0 are isolated
           ii) If x1  < x2 are two consecutive zeros of y1  then y2 has exactly one zero in ( x1 , x2 )
2. Sturm comparison theorem
      Let y1 and y2 be non-trivial solutions of equations
       y’’ + q1 y = 0  and  y’’ + q2 y = 0 where  q1 and q2 are continuous on a interval I , such that q1 <= q2                            
       Then between two consecutive zeros  x1  and  x2  of y1 , there exists at least one zero of y2  unless                              
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           q1 = q2  on ( x1 , x2 ) .

       The zeros of W I.

  Zeros of W - the case m2
>0

Because W j  , m=W j  , −m  we can take m>0  and because m2
=

1
4
− J  , J>0

 we have m<
1
2

W j  , m  and M j  , m  are real functions , solutions on ℝ+

 of the equation W ″+QW =0

Also we have

M j  , m( x)=e
−1
2
x
x j
(1+(

1
2
+m− j)g( x))  where for j∈(0 , 1)  , m>0

g  is a power series with positive coefficients , with 
g (0)=0  and so g  is a strictly increasing function on ℝ+

Therefore 

 

M j  , m  has at most one zero on ℝ+  ;it has one zero if 
1
2
+m− j<0 and none if 

1
2
+m− j≥0

According to Sturm separation theorem W has at most one zero if
1
2
+m− j≥0

 and at most two zeros if 

1
2
+m− j<0

The zeros of W II.

 Zeros of W - the case m2
<0  , m=i s  , s∈ℝ

 Again, because W j  , m=W j  , −m  we can take s>0
Consider the Sturm comparison theorem for

q1=
−1

4
+(

1
4
−m 2

)
1

x2 q2=
−1
4
+
j
x
+(

1
4
−m2)

1

x2

y 1=ℜ M 0  , m ( x )  , y 2=W j  , m ( x )  o n  x > 0

We observe that according Kummer’s second formula ( see [2])  we have for x>0

2ℜM0  , m(x)=x
1
2 (ei s ln(x )

+e− is ln (x )
)+

+ x
1
2∑
p=1

∞

x2pei s ln (x )(
1

24pp!(m+1)…(m+p )
+e−2 is ln (x ) 1

24 pp!((m+1 )…(m+p))* )

 we take xn↓0  with s ln(x n)=−(n+
1
2
) π

and  it follows for n→∞ that we have

2ℜM0  , m≃(−1)n+1xn

5
2 s

8(1+s2
) and therefore

ℜ M 0  , m ( x 2 n )< 0  an d  ℜ M 0  , m ( x 2 n+ 1)> 0  fo r n  su fficien tly  larg e 

Thus, when 
x n↓ 0

between 
x 2 n  and  x 2 n+1 exists at least one zero of 

ℜ M0  , m and concluding with the 
comparison theorem, W has an at least countable infinite decreasing sequence of zeros.
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      From these results it follows that, when 
J>

1
4

 , m2
<0

there exists for each  wave number k an infinite 

countable set of distinct real characteristic values for the angular velocity n corresponding to stable oscillatory modes, 

and when 
J<

1
4

 , m2
>0

 for each wave number one or two real characteristic values corresponding to stable 
oscillatory modes  may exist. Therefore the solution for the characteristic value problem does not lead to a complete set 

of proper values and proper functions derived from the equation 
ℒW=0   if  J<

1
4 .

To get a complete set of proper functions we must consider other solutions of equation ζ
2
ℒ W=0 which must also 

satisfy w (z )=0   for  z=0   and  w (z )=0   for  z→∞ .

   Therefore we will seek for solutions W which satisfy ζ
2
ℒ W=0 in the sense of distributions.

When 
| arg ζ|<

3π
2

  and  2m∉ℤ    ,   W± j  , m (ζ )
can be defined by (21) where 

M
± j  , m( ζ ) is defined by 

(20).
Let

~
W (ζ )={

M j  , m (ζ )  for ζ<0

W j  , m (ζ )  for ζ>0

For any arbitrary test function 
ϕ∈C 0

∞ (ℝ )
we have, with 

~
W as distribution :

(ζ
2
ℒ

~
W  , ϕ)=∫

ℝ

( ζ
2
ϕ) ″

~
Wd ζ+∫

ℝ

ζ
2QW ϕdζ      (33)

 

For 
m2

<
1
4 it is easy to verify that

lim
ζ→0

(ζ
2
ϕ) ′

~
W=0

lim
ζ→0

(ζ
2
ϕ)

~
W ′=0

and that for ζ≠0   we have  
~
W ″+Q

~
W=0

Hence integrating by parts in (33) it follows that 
(ζ

2
ℒ

~
W  , ϕ )= 0   fo r any  test fu nction   ϕ

.

For the same reason ζ
2
ℒ(

~
W+AW j  , m)=0   

as a distributions equality.

Thus for any non-zero 
ζ 0< 0  o f W j  , mM j  , m

(note that the zeros of W j  , mM j  , m  are isolated points in ℝ−
*

being zeros of a holomorphic function ) we can take A∈ℝ*    such that (
~
W+AW j  , m)(ζ0)=0

   Moreover, if m is real (i.e. m2 > 0 , and we can take m >0) we have that 
~
W+AW j  , m  

is not identical zero for real non-zero A, because from the definitions follows :
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lim
z ↑0

|z
−1

2
+m

AW j  , m (z )|=|A
Γ (2m )

Γ(
1
2
+m− j )|≠0

and 
lim
z ↑0

z
−1

2
+m ~
W (z )=0

and we have the non-trivial solution 
W=

~
W + AW j , m

which for the wave number 

k= κ
d

and

arbitrary angular velocity 

n=U 0
ν
d

  with  ν=ζ0
κ

√4 κ2+λ2
  ,  ζ0<0

gives the stable oscillatory mode

w=e
λ z

2 W (ζ 0 +z √4κ2 +λ2)ei (kx+nt )

which satisfies obviously the required boundary conditions at
zero and infinity (because of the choice of A and the asymptotic behaviour of the Whittaker function).

We observe that 
ζ 0

passes all the strictly negative numbers without several isolated zeros how we noticed above
and therefore the characteristic values to the corresponding modes form reunions of real continua and the conclusion
is that for all Richardson numbers J an initial small perturbation becomes  becomes a sum of oscillatory terms (derived 

from the solutions of ℒW=0 ) which necessarily exists if J>1/4 and a term corresponding to the real continua,
which is necessarily non-trivial if  J<1/4 and these perturbations remain small as time increases to infinity.
That was also the conclusion in [1] 
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