
                         Finite element method example, elastostatics

 We consider the domain D⊂ℝ3 as a homogeneous elastic isotropic body with density 
ρ and Lame coefficients λ  , μ (in terms of Young modulus E and shear modulus

μ  we have λ=
μE−2μ2

3μ−E
 ) 

The Lame coefficients, as known , must be positive.
As external forces, on the body acts the gravitational volumic force, as a vector field on D,
b :D→ℝ3  , b=b (x1 , x2 , x3) and on the boundary surface St⊂∂D acts the superficial force 

field t̂ :St→ℝ
3

On the boundary surface domain Su  with Su∪St=∂D we suppose that the displacements field 

under deformation at equilibrium is given as u| Su=û :Su→ℝ
3  

The Cauchy stress tensor T=T (x)  , x=(x1 ,x 2, x 3) satisfies as we know ( see [1] ) :
T i j=λδ i juk ,k+μ(ui , j+u j , i)  or T i j=C i j k lEk l  with the Einstein summation convention, where 

Ek l=
1
2
(uk ,l+ul ,k)  and C i j k l=λδ i j δk l+2μ δi k δ j l

 We suppose also that the deformations are infinitesimal : u∈O(ε)
In this case, the displacements field ( if it is of class C1 on the closure of the domain) satisfies at 
equilibrium :

T i j , j+bi=0     ( or ∇⋅T+b=0     )        (1)

t=T i jn j=t̂    on  St   where   n  is the outside normal on S=∂D         (2)
u i=ûi  on   Su        (3)  for i=1 , 2, 3

Consider  u ′∈{v∈C1
(D̄ ,ℝ3

)|   v|Su=0}=F 0   and corresponding tensor fields T ′  and E ′

 Because the symmetry of (C i j k l)  we have T ′⋅E=T⋅E ′
For  ū=u+ϵu ′  , ϵ∈ℝ  we define the potential energy 

Π(ū)=1
2
∫
D

T̄⋅Ē dV−∫
D

b⋅ūdV−∫
St

t̂⋅ūd A

with dV , dA the volume element in D , respective the surface element on S.
According to Gauss-Ostrogradski formula we have :

∫
D

T⋅E ′dV=∫
D

T ′⋅EdV=∫
D

T i ju ′i , jdV=∫
∂D

T i jn ju ′id A−∫
D

T i j , ju ′idV=

=∫
S t

t̂⋅u ′d A+∫
D

b⋅u ′dV

and therefore it is easy to see that we have :
Π(ū)−Π(u)=ϵ2

∫
D

T ′⋅E ′dV

Because C is obviously positive definite as a bilinear form on symmetric tensors it follows
Π(ū)≥Π(u)  for any ū∈{v∈C1

(D ,ℝ3
)|    v|Su=û    }=F

which is the well known minimum potential energy theorem : the equilibrium displacements field 
minimizes the potential energy on the set of boundary restricted displacements.

Suppose now that one u∈F  satisfies  Π(u)=min
v∈F

Π(v )
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It follows ∂
∂ϵ
Π(u+ϵu ′)|ϵ=0=0   for any u ′∈F 0

∫
D

T⋅E ′dV=∫
D

b⋅u ′dV +∫
St

t̂⋅u ′d A

−∫
D

(∇⋅T+b)⋅u ′dV +∫
St

(t−t̂ )⋅u ′d A=0        (4 )

We can take in (4) u’ arbitrary with compact support in D and so we have :
∇⋅T +b=0   on D  if u∈C2

(D ,ℝ3
)

Taking now , again in (4), u’ arbitrary in F0 it follows t=t̂  on St
Hence if Π  has a minimum on F  at u  , then u  satisfies 

the equilibrium conditions (1), (2), (3)
This provides the basis for a finite element variational approach of the elastostatic problem.
We consider that D is a ball of radius R=re  , D={x∈ℝ3|‖x‖<R}  
which is fixed on its lower half : Su={x∈∂D|x3≤0} , û=0
endures the gravitational force field : b=(0 , 0 ,−ρg)  , ρg=vo
a normal pressure pp on the region St={x∈S|h1≤x 3≤h2} which produces also by rotating the
sphere around the vertical axis a tangential horizontal friction force ( friction coefficient 1 ) on the 
same region St and a concentrated force (fc1, fc2, fc3) with application (pa1, pa2, pa3) on S.
The input variables lm and my are related to the Lame coefficients as λ /2  and μ/2
The sphere is represented in the Python program algorithm by a sphere with centre at (me, me, me) 
and radius me (me input variable) as a reunion of finite elements (generated by the procedure 
nelem() ), each element a 3-simplex with one first corner point at points with coordinates odd 
numbers between 0 and 2 x me and the other 3 corner points next laticial integer coordinates points 
from the same face of the cube surrounding the first point 
                                                      V1

                                                           V0

                                                                                                V3

                                                       V2

V0(2i+1 ,2 j+1 , 2k+1)  , V1(2 i+1±1 ,2 j+2 , 2k+2)  , V2(2 i+1±1,2 j , 2k )
V3(2i+1±1 ,2 j+2,2k )  and V 3(2 i+1±1 , 2 j ,2k+2)  with i , j ,k=0 ,me−1

The list te of simplexes which are in the interior of the ball will be selected such that 
te[m ] is an array of shape (4,3) of vertexes te[m] = [v[0], v[1], v[2], v[3], v[4]].

For each simplex te[m] = v , class elem computes the transformation elements for mapping the 
simplex on the unit simplex [(0,0,0), (1,0,0), (0,1,0), (0,0,1)] such that self.mat represents the linear 
transformation matrix coefficients, self.det represents the volume element determinant.
The nodes in the unit simplex are indexed by (k,l,s) with k,l,s in {0,1,2} such that k + l + s <= 2
with ind(m, k, l, s) the procedure what assigns to each node from the element m in element list te, 
at coordinates (k/2, l/2, s/2) in the unit simplex a calculated index n. Also, the procedure lst() returns
the list c of tuples such that c[n] = (m, k, l,s).
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When numbering the nodes in the m-th simplex as it is shown in the figure below the expression for
ind(m, k,  l, s) is given by

10m+ ∑
i=0

2−k−1

∑
j=1

i+1

j+ ∑
i=0

2−k−l−1

(i+1)+2−k−l−s

                                   s

                            7  V3

                     8                                          5
                                    2

                9                                     6                                         4           l
              V0                                                                                 V2

                           3                                             1

                                            0
                                           V1

                                                                     k      
The displacements field on the simplex te[m] = v will be approximated  by degree 2 polynomials in 
the variables (ξ ,η ,ζ)  = (xi, et, ze) , which are the corresponding coordinates in the unit simplex
of the current point x from v : [xi, et, ze] = elem(v).itr(x) with self.itr(x) being the class elem 
procedure which computes the point corresponding to x in the unit simplex. We will have :

u i(x)=∑ χmαmp
i fmp , where χm  is the characteristic function of te[m] , αmp

i

are variational parameters of the problem and f mp  are the respective polynomials such that

if for the simplex te[m] we have the 10 nodes Pp
m  , p=0 ,9   then f mi(P j

m
)=δi j

 

Therefore ui(Pp
m
)=αmp

i   and

fmp(x)=∑
q=0

9

Ap q
m
ξ
k
η
l
ζ
s  where in the sum we have the correspondent indexing

 

(0, k, l, s) = c[q]
The coefficients Apq

m are computed as elem(v).cf[p, q]
The class elem procedure self.fc(n, x) computes the value of fmn(x)   when te[m] = v  
The procedure ing(k, l, s) computes the required values of

∫
T

ξ
k
η
l
ζ
sd ξd ηd ζ  where T  is the unit simplex 

T={(ξ ,η ,ζ)∈[0 , 1]3|ξ+η+ζ≤1}
 

The procedure lpc(n) computes the node Pp
m  which corresponds to index n :

(m, k, l, s) = c[n] and p = ind(0, k, l, s)
The procedure ta(n) computes the list of indexes m for which the corresponding element te[m] 
contains the node n.
The procedure lsf() computes psf, the set of indexes of the nodes which correspond to the boundary 
of the domain.
To determine the coefficients of variational parameters which appear in the external superficial 
forces in the potential energy expression we consider a triangulation of St  . The procedure
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coeftri(vf) computes the respective coefficient associated with triangle vf.
To determine the variational parameters we must seek for minimization of the potential energy in 
terms of (αmp

i
)  so that  the restraints given by the boundary conditions for u  on Su  

and by the coincidence of nodes at the adjacency of elements are satisfied.
For this purpose we add Lagrange multipliers for each independent coincidence relation
λmpi
m ′ p ′  for the relation αmp

i
=αm ′ p ′

i  and μm ″p″ i  for αm″p ″
i

=0 as additional variational parameters 
and to the potential energy expression we add the Lagrange multipliers terms 
λmpi
m′ p ′
(αmp
i
−αm ′p ′

i
)  and respective μm″p ″ iαm ″p″

i

Differentiating the obtained extended expression of potential energy we obtain the respective 
coefficients of the  matrix of the system to solve in variational parameters. To set these coefficients 
and expand the system matrix, procedure lag() is defined.
The system of linear equations to solve in variational parameters will be K̄ x̄=b̄  where K̄
is the basic matrix K expanded with the Lagrange multipliers coefficients computed by lag().
With be, the length of list te, the matrix K is a shape (30be, 30be) matrix which contains the 
Kmph   mqk  coefficients of αmq

k obtained by differentiating the approximated deformation energy 

expression
1
2∫D
T⋅EdV with respect to variational parameter αmp

h ( we have the integral on D 

as a sum of integrals on each simplex element) the other coefficients of K being obviously zero.
The expression of Kmph  mqk  comes from the deformation energy expression for the m-th 

element :

Wm=
1
2∫Tm
C i j k luh , juk , ldV=

1
2∫Tm
C i j k lαmp

i
αmq
k fmp , j f mq , ldV

(with the Einstein summation convention)
Differentiating with respect to αmp

h and considering the symmetry of C we obtain :

Kmph  mqk=∫
Tm

(λ fmp ,hf mq ,k+2μ δhk f mp , jf mq , j)dV

For (ξi)=(ξ ,η ,ζ)  we can express fmr ,s=
∂f mr
∂ξi

∂ ξ
i

∂x s
 where the coefficients 

∂ξ
i

∂ x s
are determined by the class elem attribute el.mat[i, s] with el = elem(te[m]) the corresponding
m-th element linear mapping to the unit simplex.
Now, procedure cemat(m, p, q, h, k) computes integrals of products fmp ,hf mq ,k integrating on 
the unit simplex using the volume element transformation el.det and procedure kat() completes the 
computing of the matrix K̄ stored as ka.
The procedure col() computes the dependent variables column b̄ of the system storing it as br by 
using the external forces inputs and the coeftri() calculations.
Also, the procedure col() returns xs, ys, zs the arrays of coordinates of vertices of elements which 
are in the superficial external forces application area (h1≤x 3≤h2)
That area will be plotted in the finite elements figure as triangulated surface in light color.
The “Import pdf” file contains the Python code “atest” with the above mentioned procedures and 
the read data command lines and the “Finite element pdf” file contains the main program Python 
code for computing the variational parameters array and plotting the chosen displaced oblique 
surface after computing the corresponding displacements.
Note that if we take the domain B(me)={x∈ℝ3|‖x−me‖≤me} with me=(me ,me ,me)
we measure the distances in the unit re/me and so we must write the potential energy expression in 
the form

1
2
∫
B(me)

T⋅E dV (re
me
)

3

− ∫
B(me)

b⋅udV (re
me
)

3

− ∫
St(me )

t̂⋅ud A(re
me
)

2

−fc⋅u(pa)(
re
me
)

and we must take into consideration the factors in re/me when computing the coefficients.
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For the examples we took 
λ=2000N /cm2  , μ=2000N /cm2  , ρg=0.023N /cm3       (silicone rubber)

what gives the proportional parameters my = 1 , lm = 1 , vo = 0.000023
Also we took me = 3 , re = 10 cm , h1 = 11.5 cm , h2 = 17 cm , pa = ( 5.75, 5.75, 18) cm
For the first example : pp = 0.06 (corresponding to 60 N/cm2) , fc = (0.02, 0.02, -0.02) with 0.02 
corresponding to 20 N
For the second example pp = 0.1 (corresponding to 100 N/cm2) , fc = (0, 0, 0).
For each example we have the respective first and second “Displacements in oblique plane ” 
figures.
For determining the variational parameters array extended with the Lagrange multipliers we used 
the conjugate residual gradient method to solve the system of equations represented by ka x = br ,
where x , br are taken as column vectors , br computed by procedure col() and ka is the matrix 
computed by procedure kat() . (Note that ka is symmetric. )

                  Conjugate residual gradient method

Consider first a symmetric positive definite non-singular matrix A of shape (n, n) and a 
n-dimensional column vector b.
It is clear that solving for column n-dimensional vector x the system Ax = b is the same as 

minimizing for x∈ℝn  the convex functional f (x)=1
2
xT A x−xTb

where exponential  T denotes the transposed matrix.
Taking the recurring sequences :
(pk)  , (xk)  , (αk)  , (rk)k=0 , 1 ,2 , 3 ,...

r 0=b−Ax 0        (1)
p0=r0         (2)

pk=rk−∑
i<k

pi
T Ark
pi
T Api

pi        (3)

αk=
rk
T rk

pk
T A pk

     (4)

xk+1=xk+αk pk       (5)
rk+1=rk−αk Apk        (6)

From (1), (5) and (6) follows by induction  rk=b−Axk

From (3) follows pk
T Ap i=0    for i<k

From (6) we have :
rk+1=r l− ∑

l≤i≤k

αi Api   for l≤k

From (3) and (7) follows that for j> l   we have  r l
T Ap j=0  

Therefore from (8), (3), (7) and (4) follows :
r l
T rk+1=r l

T r l−αl r l
T Apl=r l

T r l−α lpl
T Apl=0

and so we have proven that r i
T r j=0   for i≠ j
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From (6) we have now, as long as pi≠0  and α i≠0

pi
T Ark+1=r k+1

T Api=−
1
αi
(r k+1
T r i+1−rk+1

T r i)  and so 

pi
T Ark+1=−

r k+1
T r i+1
αi

  for  i≤k

Considering (3) for k+1 , because we have already proven that (r i) is an orthogonal 
sequence, we will have :

pk+1=r k+1+βk pk    with  βk=
rk+1
T rk+1

rk
T rk

      (9)

Taking (9), which involves only the most recent values of the recurring sequences ,instead of (3) in 
the recurrence relations list (1) – (6) we can define the algorithm to determine the values of
xk  until pk=0  or αk=0

From (9) we have also :

pk+1=r k+1+r k+1
T r k+1∑

i=0

k
1

r i
T r i
r i    (10)    and so 

pk+1
T r k+1=rk+1

T rk+1

Hence as long as rk≠0  we have also pk≠0   and  αk≠0

and the recurrence relations (1)-(6), (9) are valid until rk+1      becomes 0.

If  r k=0   we have  Axk=b  and so the algorithm has led to the solution of the system 

Relation (5) leads to xl+1=x0+α0p0+…+α lp l for l increasing from 0 to k until rk+1=0

It is easy to see that 

∂ f
∂α i

(xl+1)=p i
T
(Ax l+1−b)=pi

T r l+1=0

(because of  (10) and  i < l + 1 )

Therefore , if r l  has not become 0 for l=0 ,n−1

{p0 ,p1 ,…pn−1}  is an A-orthogonal set of non-zero vectors and form a basis in ℝn  .

Then from (11) follows 
∂f
∂αi

(xn)=0  for i=0 ,n−1   and because f  is convex and differentiable

xn minimizes the functional f  and is the solution of the system A x=b   and rn=0
If A is not symmetric and positive definite (but is non-singular) we consider the conjugate gradient 

algorithm defined by the recurrence (1) – (6), (9) for the system AT Ax=ATb    AT A  

being symmetric and positive definite and so we have for determining x the so called conjugate 
residual gradient method.
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The conjugate gradient method (respective the conjugate residual gradient method), viewed as a 
direct method, in the absence of round-off error produces the exact solution after a finite number of 
iterations, which is not larger than the size of the matrix. However the method is unstable with 
respect to even small perturbations, but as an iterative method improves approximations to the exact
solution, and may reach the required tolerance after a relatively small (compared to the problem 
size) number of iterations. The improvements speed is determined by a condition number of the 
system matrix.

After computing the variational parameters, calling procedure che(x) for determining the finite 
element which a point x belongs to, the main program computes the displacements arrays in an 
oblique 30° inclined diametrical plane and plots the displaced surface.
The plots for the first and second example are respective the “Displacements in oblique plane” 
figures at the end of the file.
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