
                   Early Earth simple model

Consider a sphere of incompressible homogeneous fluid, subject to a spherically symmetric radial 
gravitational field g(r ) xi  , r=‖x‖ , x=( xi )i=1  , 2  , 3  , 

At the initial state (with no motions) the fluid has a temperature radial distribution
  T 0=T 0(x)  and pressure p0=p0(x )  and constant density ρ0

By considering the stability of this initial state we will have small perturbations of velocity
u=(ui)i=1  , 2  , 3  ,  , temperature θ  , pressure δ p  and density δρ , so that in the perturbed state
we have p=p0+δp  , T=T0+θ  , ρ=ρ0+δρ

We note that in the following we use the Einstein summation convention, so that if an index 
variable repeats itself in a term, then instead of that term we take the sum of all terms corresponding
to the index variable, as the respective index passes all its values.
We have the Navier – Stokes equations of the fluid :
∂ui
∂ t

+u j
∂ui
∂ x j

=−
1
ρ
∂p
∂x i

+
μ
ρ ∇

2ui−g (r )xi          (1)

where μ  is the coefficient of viscosity,
the caloric internal energy relation :  ė=cv Ṫ        (2) , 
where cv is the specific heat at constant volume and the dot on variables means that their total 

derivatives with respect to time variable  t      or the operator we denote 
d
d t

are taken,

the heat conduction equation : qi=−k
∂T
∂ xi

           (3)  where q=(q i)i=1  , 2  , 3 is the heat flux 

vector and k is the Fourier heat conduction coefficient,
the energy equation :

ρ
de
d t

=T i j

∂ui
∂ x j

−
∂qi
∂x i

+ε       (4) , with 
d
d t

= ∂
∂ t

+ui
∂
∂x i

the total derivative operator and

ε a constant uniform distribution of heat sources which at initial state maintains a radial 
temperature gradient and with T the Cauchy tensor of surface tensions in the fluid.
For an incompressible fluid we have

T i j=−pδi j+
1
2
μ (

∂ui
∂x j

+
∂u j
∂x i )      (5)

We suppose also ρ=ρ0(1−αθ)       (6)  where α is the coefficient of volume expansion and 
according to Boussinesq approximation we treat ρ  as a constant ρ=ρ0 in all terms of the 
equations of motion, except the ones in which the gravitational external force is present, when (6) is
considered to be valid.
Further we consider that the perturbations and whose derivatives are small first order approximation
and we will ignore higher order approximation terms.
Hence from (2) , (3)  and (4) we have :
∂θ
∂t

=κ∇
2T+ϵ−ui

∂T
∂x i

         (7)  , where κ=
k

ρ0cv
      and   ϵ= ε

ρ0cv
In the unperturbed initial state we have : κ ∇

2T0+ϵ=0         (8)
and so, since T 0    is radial we have  T 0=β0−βr

2

with β0    ,  β   constants  β= ϵ
6κ

From (7) and (8) follows now at first order approximation
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∂θ
∂t

=κ∇
2
θ+2βui x i      (9)

Since in the initial state ρ0g (r )xi+
∂p0

∂x i
=0      (10) , multiplying (1) with ρ and subtracting 

(10) , under the considered approximations we have
∂ui
∂ t

=−
1
ρ0

∂ δp
∂x i

−
δρ
ρ0
g (r )xi+ν∇

2ui or with (6) :

∂ui
∂ t

=−
1
ρ
∂ δp
∂x i

+αθg(r)x i+ν∇
2u i        (11)  where ν=

μ
ρ0

 is the kinematic viscosity.

Also we have, from the continuity equation, for the incompressible fluid :
∂ui
∂x i

=0      (12)

Let γ(r)=αg (r )
Taking the curl of equation (11) we obtain
∂ωi

∂t
=γ ϵi j k

∂θ
∂x j

xk+ν∇
2
ω i       (13) , where ω=∇×u is the vorticity field.

Taking the curl of this equation once again we have :
∂
∂t

∇
2ui=−Oiθ+ν∇

4u i        (14) where  Oi stands for the differential operator

Oi=−ϵi j k
∂

∂x j
ϵk lmγ xl

∂
∂xm

= ∂
∂ x j

γ(x j
∂
∂ xi

−x i
∂

∂ x j )=

=γ(
∂

∂ xi
+ ∂
∂x i

x j
∂

∂x j
−x i∇

2

)+
1
r
∂γ

∂ r (r
2 ∂
∂ xi

−xi x j
∂

∂ x j )
Now we can  directly verify that 

xi∇
2 f i=∇

2
(x if i)   if  

∂f i
∂x i

=0    (  f   is solenoidal ) and since u   ,  ω are both solenoidal, 

from (13) , (14) follows
∂
∂t

(x iωi)=ν∇
2
(x iωi)        (15)

∇
2

(ν∇
2
− ∂
∂t )(ui xi)=γ L2

θ       (16)   where  γL2
=xiOi

It is easy to verify that 
−L2

=(x×∇)⋅(x×∇)   ,  −L2 is the square of angular momentum operator and in spherical 
polar coordinates  r  , ϑ  , ϕ we have 

L2
=r 2( ∂

2

∂ r 2+
2
r

∂
∂r

−∇
2)=−

1
sin(ϑ)

∂
∂ϑ

sin(ϑ) ∂
∂ϑ

−
1

sin2
(ϑ)

∂
2

∂ϕ
2

L2 is the spherical harmonics operator and his eigenvalues are the spherical harmonics
Y l
m
(ϑ  , ϕ)=P l

m
(cos(ϑ))e imϕ      (17)  

L2Y l
m
=l( l+1)Y l

m         (18)   for  l∈ℕ  , m∈ℤ  , |m|≤l   where Pl
m are the associated Legendre 

polynomials and 

∫
0

π

∫
0

2π

(Y l
m
(ϑ  , ϕ))2sin (ϑ)d ϕd θ=N l

m
=

4 π
2 l+1

( l+m)!

(l−m)!
         (19) is the normalization integral.

We can eliminate θ   from the eq. ( 16 ) observing that  ∇2L2
=L2

∇
2 using eq. (9) and we 

obtain :

(κ ∇
2
− ∂
∂t )γ

−1
∇

2

(ν∇
2
− ∂
∂ t )(u i xi)=−2βL2

(u i xi)          (20)

Page 2 of 11



We analyse the disturbance into normal modes, in terms of spherical harmonics.
Accordingly we will have :
xiω i=r ωr=Z (r )Y l

m
(ϑ  , ϕ)ent

xiu i=r ur=W (r )Y l
m
(ϑ  , ϕ)ent

θ=Θ(r)Y l
m
(ϑ  , ϕ)ent

where n is a constant pulsation number which can be complex.

We define the operator ℒ l=
d2

d r 2+
2
r
d
d r

−
l(l+1)

r 2

Since  ∇
2Y l

m
(ϑ  , ϕ)f (r)=Y l

m
(ϑ  , ϕ)ℒ l f (r)   for any function f  of r , the equations (9), (15),

(16) lead to :

(ℒ l−pσ )Θ=
−2β
κ R2W     (21)

(ℒ l−σ)Z=0      (22)

ℒ l(ℒ l−σ)W=
γ
ν R

4 l (l+1)Θ       (23)

where we have measured r  in units of sphere radius  R  and σ=nR2
/ ν   ,  p=ν/ κ .

At the boundary of the sphere  the perturbations of radial velocity and temperature must vanish and 
so we must require 
W=0   and  Θ=0   for r=1

Also, when the surface of the sphere is free , and this is the case of our model, we must require that 
the tangential viscous stresses T r ϑ   and  T r ϕ   vanish at  r=1 .
The expressions for these stress tensor components are according to (5) in spherical polar 
coordinates :

T r ϑ=ρ ν( 1
r

∂ur
∂ϑ

−
uϑ

r
+
∂uϑ

∂ r )
T r ϕ=ρν( 1

r sin(ϑ)

∂ur
∂ ϕ

−
uϕ

r
+
∂uϕ

∂ r )
 Since  ur=0   on  r=1   it follows that on r=1   we have  

r ∂
∂ r (

uϑ

r )=0     (24)

r ∂
∂r (

uϕ

r )=0      (25)

Also we have the equation of continuity in spherical polar coordinates :
∂ur
∂ r

+2
ur
r
+

1
r
∂uϑ

∂ϑ
+
uϑ

r
cot(ϑ)+

1
r sin(ϑ)

∂uϕ

∂ϕ
=0       (26)

Applying r ∂
∂r

on  (26), from (25) and (26) follows

∂
2

∂r2
(r ur )−

2
r
ur   at  r=1  and since ur  vanishes at r=1  we have 

d 2W
dr2 =0    at  r=1       (27)

According to toroidal-poloidal decomposition , any solenoidal field U can be written as the sum 
of a  toroidal field T   and a polodal field  S  with existing scalar fields Ψ  and Φ  such that 
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U=T+S
T=∇×( Ψ

r
x)  which is the same as T=(∇ Ψ

r
)×x

S=∇×(∇×(Φ
r
x))  which is the same as S=∇×((∇ Φ

r
)×x )

In spherical polar coordinates we have :

T r=0   ,  T ϑ=
1

r sin(ϑ)
∂ Ψ
∂ϕ

  ,  Tϕ=−
1
r
∂Ψ
∂ϑ

       (28)

Sr=
1

r2
L2
Φ   ,  Sϑ=

1
r

∂
2
Φ

∂r ∂ϑ
  ,  Sϕ=

1
r sin(ϑ)

∂
2
Φ

∂r ∂ϕ
       (29)

Since the velocity field is solenoidal, for the normal modes we have :

r ur=
l ( l+1)
r

S̄ (r )Y l
m

r ωr=
1
r
l( l+1) T̄ (r )Y l

m

where T̄ Y l
m   ,  S̄Y l

m are the defining scalar fields of the toroidal 

respective poloidal fields from the decomposition of the velocity field.

Hence S̄=
r W
l( l+1)

  ,  T̄= r Z
l(l+1)

        (30)

    The gravitational field

Since the fluid sphere is homogeneous, the gravitational mass force force field is given by

F (x )=−∫
B

Gρ x−ξ
‖x−ξ‖

3 dV (ξ)

 where G  is the gravitational constant, B  is the ball of radius R  and dV is the volume element.
The potential V is given by the volume potential

V (x)=∫
B

Gρ
‖x−ξ‖

dV (ξ)  with ∇V (x)=F (x) by a well known property of the volume 

potential.
At a point x0∈B , taking the cartesian coordinate system such that
x0=(a  , 0  , 0)   ,  a=‖x 0‖ we have , integrating without difficulties :

V (x 0)=∫
0

2π

∫
−R

R

∫
0

√R2
−s2

Gρ r

√(s−a)2+r2
dr d sd ϕ=2πGρ(R2

−
1
3
a2
)

and so we have the well known result about the gravitational field in a homogeneous sphere

F (x )=− 4
3
πGρ x

Therefore g(r )=
4
3
πGρ   and γ=αg is constant in the interior of the sphere. 

      Now from equations (21) , (23) we obtain
ℒ l(ℒ l−σ)(ℒ−p σ)W=−l(l+1)C lW       (31) where 

C l=
2β γ
κ ν R

4 .  Let  F= l(l+1)
γ
ν R

4
Θ . According (23)  and (31) we have :
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ℒ l(ℒ l−σ)W=F      (32)
(ℒ l−pσ)F=− l(l+1)C lW       (33)

W=F=0   ,  
d2W
d r 2 =0    at   r=1       (34)

For φ   ,  ψ some arbitrary class C2 functions on the [0,1] interval , integrating by parts we 
have :

∫
0

1

r 2
φℒ lψd r=r

2
φ
d ψ
d r |0

1

−∫
0

1

{r2 dφ
d r

dψ
d r

+ l (l+1)φψ}d r=

=r 2(φ d ψd r −ψ
dφ
d r )|0

1

+∫
0

1

r2
ψℒ lφd r

(35)

Therefore, multiplying (33) by r 2F* and integrating over r , substituting for the conjugate
F* in the obtained right side according to (32) and using (35) considering the boundary 

conditions (34) we obtain after calculus :

∫
o

1

{r2|dFd r |
2

+l( l+1)|F|
2
+pσ r2|F|

2}d r−

−l( l+1)C l {−2[r|dWd r |
2

]
0

1

+∫
0

1

r 2
|ℒ lW|

2d r+σ*∫
0

1

[r2|dWdr |
2

+l( l+1)|W|
2]d r }=0       (36)

Taking the imaginary part of (36) , it follows :

ℑσ {p∫
0

1

r2|F|2d r+ l(l+1)C l∫
0

1

[r2|dWd r |
2

+l( l+1)|W|
2]dr }=0

The factor of ℑσ   in this equation is positive definite and so  ℑσ=0
Since σ is real, there are no oscillatory modes and the change of stability, when the heat sources 
defined by β are changing , occurs via  marginal stationary states with σ=0 , which states 
determine also the convection patterns.
The equations governing the marginal stationary state are :

ℒ l Z=0      (37)

ℒ l
2W=F       (38)

ℒ l F=−l (l+1)C lW       (39)

F=l (l+1)
γ
ν R

4
Θ       (40)

with boundary conditions  W=F=0   ,  
d2W
dr2 =0  at r=1        (41)

We  have also in spherical polar coordinates :

r ωr=x⋅(∇×u)=
∂uϕ

∂ϑ
−

1
sin(ϑ)

∂uϕ

∂ ϕ
+cot(ϑ)uϕ      (42)

Applying ∂
∂r

−
1
r

in (42) and considering (24) and (25) it follows that :

(
d
dr

−
1
r
)Z=0   at r=1      (43)

It is easy to prove, solving (37), that if l≠1 , (40) leads to
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Z≡0      and if  l=1    then  Z=C r    with  C     constant   

We will however consider Z≡0   and so, according ( 30 )  u is entirely poloidal
Consider an elementary marginal stationary state ( as shown above this is also an onset of 
instability) which corresponds to an spherical harmonic of order l :
r ur=W (r )Y l

m
(ϑ  , ϕ)     (44)

θ=Θ(r )Y l
m
(ϑ  , ϕ)      (45)

 

We expand F in a Fourier-Bessel series of the form

F= 1

√r
∑
j

A j Jl+1
2

(α l  , j r)     (46)  where J
l+

1
2

 denotes the Bessel function of order l+ 1
2

 and  α l  , j   is its j -th   zero and we will consider   A j as variational parameters.
Clearly F = 0 at r = 1 and so the boundary condition for F is satisfied .
From (38) we can express W in the form 

W=∑
j

A jW j     (47)   where  ℒ l
2W j=

1

√r
J
l+

1
2

(α l  , j r ) .

Since ℒ l(
J
l+

1
2

(αr )

√r )=−α
2

√r
J
l+ 1

2

(αr )        (48) we have the general solution which is free of 

singularity at the origin :

W j=
1

αl  , j
4

J
l+ 1

2

(αl  , j r )

√r
+B jr

l
+C j r

l+2      (49) ( because the equation ℒ l
2W=0  admits 

the fundamental system of solutions (r l  , r l+2  , r−l−1  , r−l+ 1
) )  where  B j   ,  C j are 

constants.

The condition W j=0   at  r=1   requires  B j=−C j

Since at r=1 , considering also (48) we have

d 2W j

d r2
=ℒ lW j−( 2

r
d
d r

−
l(l+1)

r2 )W j=−2(2 l+1)B j−
2 J ′

l+ 1
2

(α l  , j)

α l  , j
3

,

the condition 
d 2W j

d r 2 =0    at   r=1 requires

B j=−
1

2 l+1

J ′
l+1

2

(α l  , j)

αl  , j
3

        (50)

Now substituting F and W in (39) according to (46) and (49) we obtain :

∑
j

A jα l  , j
2

J
l+1

2

(αl  , j r )

√r
=l( l+1)C l∑

j

A j { 1
α l  , j

4

J
l+ 1

2

(α l  , j r )

√r
+B j(r

l
−r l+2

)}       (51)

Because of the orthogonality relation :
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∫
0

1

r J
l+1

2

(α l  , j r ) Jl+ 1
2

(αl  , k r )dr=
1
2
δ j k [ J ′ l+1

2

(α l  , j)]
2
  for  j  , k∈ℕ* which is satisfied by the 

Bessel functions, multiplying equation (51) by r
3
2 J

l+
1
2

(αl  , k r ) and integrating over r, we obtain

1
2 [ J ′l+ 1

2

(α l  , k)]
2
αl  , k

2 Ak=l(l+1)C l{1
2

[ J ′l+ 1
2

(αl  , k)]
2

αl  , k
4 +∑

j

(k|j)A j}    (52) for k = 1, 2 , 3 …

where (k|j)=B j∫
0

1

(r
l+

3
2−r

l+
7
2 ) J

l+ 1
2

(α l  , k r )d r (53)

The Bessel functions satisfy the relations :

z ν+1 Jν (z)=
d
d z

[ z ν+1 Jν+1(z)]

Jν+2+ Jν=2
ν+1
z

Jν+1

z J ′ν=ν Jν−z Jν+1

Using these relations, from (53) and (50), follows without difficulties that we have :

(k|j)=2B j

J
l+ 5

2

(αl  , k)

α l  , k
2

=

4 (l+ 3
2
)

2 l+1

J ′
l+ 1

2

(α l  , j) J ′l+ 1
2

(αl  , k)

αl  , j
3

α l  , k
3

       (54)

and so (k|j)=( j|k ) which reflects the self-adjoint character of the characteristic value problem 
for C l
The system of equations (52) must have proper solutions for A j , and so approximations for the 
characteristic value C l can be obtained by restricting to a finite number  n of equations in (52) 
and requiring the corresponding determinant of the system for the unknown variables (A j)j=1  , n

to be zero. This gives an equation for the characteristic value C l

With  (k|j)  given by ( 54 ) and D j=

J ′
l+ 1

2

(αl  , j)

αl  , j
3

A j   for j=1  , 2  , 3...  the system (52) can be 

rewritten in the form :

∑
j {−(2 l+1)

4(2 l+3)
α l  , k

8 [
1

l (l+1)C l
−

1
α l  , k

6 ]δ j k+1}D j=0         (55)

The required secular determinant is :

‖−
2 l+1

4 (2 l+3)
α l  , k

8 [ 1
l (l+1)C l

−
1

α l  , k
6 ]δ j k+1‖j  , k=0

This equation determines C l .
The coefficients A j  now can be determined from (52) by setting an arbitrary value on A1 .
A first approximation to the value of C l can be obtained by setting the (1,1) element of the 
secular matrix above, equal to zero.
Thus in first approximation we will have :

l( l+1)C l=
α l  , 1

8

α l  , 1
2

+
4 (2 l+3)

2 l+1
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W=
1

α l  , 1
4

J
l+1

2

(α l  , 1 r )

√r
+

1
2 l+1

J
l+ 3

2

(αl  , 1)

αl  , 1
3

(r l−r l+2
)

F= 1

√r
J
l+

1
2

(α l  , 1 r )

Θ= ν
γ

1

l( l+1)R4

1

√r
J
l+

1
2

(α l  , 1 r )

The velocity field, as we noticed is entirely poloidal and so we have :

S̄= r W
l(l+1)

ur=
1

r2 l(l+1) S̄Y l
m
(ϑ  , ϕ)

uϑ=
1
r
d S̄
d r

∂Y l
m

∂ϑ
(ϑ  , ϕ)

uϕ=
1

r sin(ϑ)
d S̄
d r

∂Y l
m

∂ϕ
(ϑ  , ϕ)

The streamlines equations are 
d x 1

u1

=
d x2

u2

=
d x3

u3

or in spherical polar coordinates

d r
ur

=
r d ϑ
uϑ

=
r sin(ϑ)d ϕ

uϕ

        (56)

For l = 1 , m = 0 we have Y l
m
(ϑ  , ϕ)=P1

0
(cos (ϑ))=cos(ϑ) and the equations (56) become :

1
2 S̄

d S̄
d r

d r=−cot(ϑ)dϑ

d ϕ=0
Integrating these equations we obtain, in terms of W :

sin(ϑ)=
1

√r W
sin(ϑ0)√r0W (r0)

ϕ=ϕ0

where r0  , ϑ0  , ϕ0 are the coordinates of a single point 

belonging to the streamline (we observe that the streamline remains in the same meridional section)
Also we have the temperature distribution field

T=T0+Θ cos (ϑ)

T=β0−β r
2
+ ν

2γR4

1

√r
J3

2

(α1  , 1r )cos(ϑ)

with
β= κν

2 γR4C l

C l=
1
2

α1  , 1
8

α1  , 1
2

+
20
3

We observe that T=K 0−K 1r
2
+K2

1

√r
J3

2

(α1  , 1r )cos (ϑ)   where K 1  , K 2 are positive constants 

depending on the fluid material and the radius of the sphere and K 0 can be interpreted as a 
additive temperature scale constant.
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The streamlines (for l = 1 , m = 0 first approximation) in a meridional section on the onset of 
instability pattern mode are presented in fig.1 and the corresponding temperature distribution field 
is presented in fig.2
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