
                    Special relativity, Lorentz transformations

 Consider the affine euclidean space of space-time events in special relativity, U
A reference frame will be identified with a bijective function R :U→ℝ

4

For a space-time event P∈U  we have R (P)=( x̄ , t )  with x̄=(x1 , x2 , x3) spatial coordinates 
and t time coordinate.

R−1
( 0̄)=O  with 0̄=(0 , 0 , 0 ,0)  and OP=( x̄ , t )

For two reference frames R , R’  we have the coordinate transformations
T :ℝ4

→ℝ
4  , T=R ′∘R−1  , R(O)=0̄  , R ′(O ′)=0̄

T (OP)=O ′P ′=T (0̄)+M(OP )
T (0̄)=O ′O  , M(0̄)= 0̄

We consider now ℝ
4
=E as the four dimensional euclidean space of points which has at the same

time the four dimensional real vector space structure.
Suppose that R , R’ are inertial reference frames. The fact that if a particle is moving uniformly 
rectilinear as it is seen in the frame R then it will be seen moving uniformly rectilinear in the frame 
R’ leads to the fact that T transforms any straight line of E into a straight line :

for any points A , B∈E  we have T (AB)=T (A)T (B)
If (A1 A2 A3)  is a plane in E  and P∈(A1 A2 A3) we can take, after eventually renumbering, a 

point Q=P A1∩A2 A3 . Therefore we will have
Q ′=T (Q)=T (P A1)∩T (A1 A2)=P ′ A ′1∩A ′2 A ′3  and so P ′=T (P)∈(A ′1 A ′2 A ′3)

T transforms any plane into a plane.
 Thus if AB∥CD  , A ,B ,C ,D∈E  then A ,B ,C ,D  are coplanar and so A’,B’,C’,D’ are also 

coplanar and A ′B ′∩C ′D ′=T (AB)∩T (C D)=∅  which means A ′B ′∥C ′D ′
On E=ℝ4  we have the compatible affine structure given by AB=B−A  for any A,B∈E
For any A,B∈E  , considering S=0̄  and the parallelogram [S ACB]  we will have 
also [S ′ A ′C ′B ′ ]  as a parallelogram and so 

C=A+B
T (C)=T (A)+T (B)−T (S)  which easily leads to 

M(A+B)=M (A)+M(B)
For A, B, C, D in E such that C is the middle of the segment AB and B is the middle of the segment 
AD, considering the parallelograms [AGBF] and [AKDH] where B is the middle of the segment KH 
we will have that [A’G’B’F’] and [A’K’D’H’] are also parallelograms with centres at C’ respective 
B’ and so C’ is the middle of segment A’B’  and B’ is the middle of the segment  A’D’.
Therefore it is easy to prove by induction that

any A∈E=ℝ4  , m ,n∈ℤ  satisfy M(
m
2n

A)=m
2n

M(A)

      Lemma

 {
m
2n
∈ℚ|m∈ℤ ,n∈ℕ} is dense in ℝ

           Proof :
 For α∈ℝ  , ϵ∈ℝ+

we can take p ,m∈ℤ  , q ,n∈ℕ*  such that 
1
q
< ϵ

2
 , |pq−α|< ϵ2  , 

1

2n
<

1
2q

 , 
m
2n
∈( p

q
,
p+1

q )

and so |m2n
−α|< 1

q
+|pq−α|<ϵ

If T is continuous it follows now that M(αA)=αM(A)  for any A∈ℝ4  , α∈ℝ
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Hence, under the considered assumptions, M is linear continuous.
T (u)=T (0̄)+M(u)  for u∈ℝ4

For ( x̄ ,t )=(x1 ,x 2 , x 3, x4)  and ( x̄ ′ ,t ′)=(x ′1 , x ′2 ,x ′3 , x ′4)  we have 
x ′k=Mk l x l  (with Einstein summation convention) , or taking ( x̄ , t )  and ( x̄ ′ ,t ′)

as column vectors X respective X’ , we write X’ = MX.
Let G=(γpq)  with γαβ=δαβ  ,γ4α=γα 4=0  , γ4 4=−c2  for α ,β=1 , 2, 3

( where c is the speed of light constant )
Considering O ,P∈U separated by a light signal, for OP=XT  we have XT G X=0
because the light signal travels from O to P with the speed c.
We assume, according to special relativity, that the speed of light is the same constant in any inertial
reference frame and so it follows that if XT

∈ℝ
4  satisfies XT G X=0  then X ′T G X ′=0

Therefore if XT
∈ℝ

4  and XT G X=0  then XT MT GM X=0          (1)
Taking X T

=(±c t , 0 ,0 , t )   ,  MT G M=(ak l)  it follows 

a11 c2 t2
+a4 4t

2
±2a1 4ct 2

=0  for any t∈ℝ  and so a14=a4 1=0  ,−a4 4=c2 a11

In the same way we have a4 4=c2 aαα  , aα 4=a4 α=0  for α=1 ,2, 3
(the matrix MTGM  being obviously symmetric)

Taking X T
=(c x1 ,±c x 2 , 0 ,√x1

2
+x2

2
)  it follows now 

a4 4 x 1
2
+a4 4 x2

2
−a4 4(x 1

2
+x2

2
)±2a12 x1 x2=0  for any x1 , x2∈ℝ  and so a12=0

In the same way we obtain aαβ=0  for α≠β

Hence exists l∈ℝ  such that l G=MT G M
We suppose now that the frame R  moves with constant velocity v̄ ′  in R ′
 (i.e.  a point at rest in R  moves with velocity v̄ ′  in R ′  )
and R ′  moves with constant velocity v̄  in R
We take S :ℝ4

→ℝ
4  , S=T−T (0̄)  and we have S∘R ′∘R−1

=M
Let Ort={(ak l)∈M4×4(ℝ)|aα 4=a4 α=0  , (aαβ)=Q  , α ,β=1 ,2, 3  , QT Q=I  , a4 4=1}

Rotating adequately the frames S∘R ′  and R  we can find Q ,P∈Ort  such that P ∘R=R1

moves with velocity (0 , 0 ,v ′)  , v ′=‖v̄ ′‖ in Q∘S∘R ′=R0  and R0  moves with velocity 
(0 ,0 ,v)  , v=−‖v̄‖ in R1

Obviously we have R0 ∘R1
−1
=QM PT

=M̄  , l G=M̄T GM̄        (2)

It follows that for M̄=(mk l)  and M̄−1
=(mk l

*
) we have

(mk 4)k=(0 ,0 , sv ′ , s)  , s≠0

(mk 4
*
)k=(0 ,0 , s* v ,s*

)  , s*
≠0

Let N=(√γpq)    (with √−c2
=i c  , p ,q=1, 4 )  , Z=N M̄N−1       (5)

From (2) follows l I=ZT Z  , l Z−1
=ZT     (6)

By calculus from (5) , (3) , (4) we have  
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Z=(
. . . 0
. . . 0
. . . −i sv ′/c
. . . s

)  , Z−1
=(

. . . 0

. . . 0

. . . −i s* v /c

. . . s* )

Hence , considering (6) we will have

Z=(
. . . 0
. . . 0
. . . −i s v ′ /c
. . −i s* l v /c s

)  , s=s*l  , l=−s*2 l2 v2
/c2

+s2
=−s2 v ′2/c2

+s2

Therefore v=−v ′    (because we have chosen v ′>0  and v<0)

Since v2
<c2  we have l>0

By calculus, it follows

M̄=N−1 Z N=(
. . . 0
. . . 0
. . . sv ′
. . −sv /c2 s

)  , M̄−1
=N−1 Z−1 N=(

. . . 0

. . . 0

. . . s* v

. . −s*v ′ /c2 s* )
t=s ′(t ′−v ′

c2 x ′3)  , t ′=s (t− v
c2 x3)  , x ′3=s (x3−v t )

We admit the causality principle so that if an event precedes an other event at the same spatial point 
as it is seen in the inertial reference frame R1 then that one event precedes the other one event also 
in the inertial reference frame R0 . Therefore we have

s>0  , s=√lβ  where β=
1

√1−
v2

c2

Since we have l>0  such that l G=MT GM  if we consider |det M|=1  we will have  

l4
=(det M)

2  , l=1  and so M leaves invariant  the symmetric bilinear form product on the 
Minkowski space V=ℝ

4  defined by X⋅Y=XT GY  with X ,Y  as column vectors in ℝ4

Consider now M∈M4×4(ℝ)  such that G=MT G M . It is obbvious that also G=M−T GM−1

and |det M| = 1 and so if linearly independent vectors
(Ek)k=1 ,4  are a Minkowski base in V   ( i.e.E p⋅Eq=γpq  for p ,q=1 , 4)  then ( E’k )

with E ′k=ml k
* E l  , (mk l

*
)=M−1  for k , l=1 , 4  is also a Minkowski base of linearly independent

vectors.
Obviously, if xk Ek=x ′k E ′k  then x ′k=mk l x l

mpk mql γpq=γk l ( 7 )
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mpk
* mql

*
γpq=γk l (8)

We have mα4
* mα4

*
−c2 m4 4

*2
=−c2  and so m4 4

* 2
≥1  ( 9 )

The assumed causality principle means

m44
*
>0 . Hence we can take v∈ℝ  , v 2

<c2  such that m44
*
=β=

1

√1−
v2

c2

If v=0 , from (8) follows mα 4
*
=0  and now for any ((x ′α) , t ′)∈ℝ

4  we have 

mαγ
* mα ϵ

* x ′γ x ′ϵ−c2
(m4α

* x ′α+t ′)2=x ′α x ′α−c2t ′2  

This leads to m4α
*
=0  and mα γ

* mαϵ
*
=δγ ϵ and finally to M−1  , M∈Ort

We suppose now v≠0  and we can take 

A= 1
vβ

mα4
* Eα  with α=1 ,2 , 3

E ″3=βA+vβ
c2 E4        (10)

It is easy to prove that we have E ′4=vβA+βE4        (11)
and A⋅E4=0  , A⋅A=1  , E ″3⋅E ′4=0  , E ″3⋅E ″3=1       (12)

Consider the following system in unknown variable X∈V
E ′4⋅X=0        (13)
E4⋅X=0          (14 )
A⋅X=0           (15)
E ″3⋅X=0        (16)

Because of (10) , (11) the system is satisfied if and only if (14) and (15) are satisfied.
Obviously we can take Ek=(δk l)l  for l ,k=1, 4 and so it is easy to prove that we can take
(E ″ i)  such that E ″i⋅E ″ j=δi j  and for X=E ″ i  are satisfied (13)-(14) for i , j=1, 2

Therefore from (14) , (15) , (12) follows that (E’’1 , E’’2 , A) is an orthonormal basis of
[E1 , E2 , E3] and from (13) , (16) , (12) follows that (E’’ 1, E’’2 , E’’3) is an orthonormal basis of
[E’1 , E‘2, E’3].
We can transform the Minkowski base (E1 , E2 , E3 , E4) to Minkowski base (E’’ 1, E’’2 , A , E4)
by orthonormal coordinate transformation Q∈Ort .
However we can choose E’’1 , E’’2  such that detQ = 1 (if not we take -E’’1 instead of E’’1)
We can transform the Minkowski base (E’’ 1. E’’2 , A , E) to Minkowski base (E’’1 , E’’2 , E’’3 , E’4) 
by the boost coordinate transformation

Mv=(
1 O 0 0
0 1 0 0
0 0 β −vβ
0 0 −vβ/c2

β
)

We can transform the Minkowski base (E’’1 , E’’2 , E’’3 , E’4) to Minkowski base 
(E’1 , E’2 , E’3 ,E’4) by orthonormal coordinate transformation P∈Ort
Therefore we have M=P Mv Q  with P ,Q∈Ort , det Q=1

If det M=1 we will have det P=det Q=1
From the relation M=P Mv Q  follows without difficulties that we have : 

Page 4 of 5



Mα γ=R̄α γ+
β−1

v 2 R̄αϵv ϵvγ  where R̄α γ=Pα ϵQϵ γ

M4γ=−
β

c2 vγ  , Mγ 4=−β R̄γ ϵvϵ  , M4 4=β

 with vα=Q3αv  , vαvα=v 2  , β=
1

√1−
v2

c2

 , v 2
<c2

(17)

 for α , γ ,ϵ=1,2 ,3
and so M is described by 6 parameters ( 3 parameters for the rotation R̄ and 3 parameters for 

v̄=(vα) )
Thus we have proven that
ℒ={M∈M4×4(ℝ)|∃P ,Q∈Ort  , v∈ℝ  such that det P=det Q=1  , v2

<c2  , M=P Mv Q}=

={M∈M4×4(ℝ)|m4 4
*
>0  , G=MT GM  , det M=1}

We notice that if M∈ℒ  then according to (17) m4 4=β=m4 4
*
>0  and if 

M∈{M∈M4×4(ℝ)|m4 4>0  , G=MT GM  ,  det M=1} then M−1
∈ℒ  and from the above 

we can deduce m4 4
*
=m4 4>0  and so we have also 

ℒ={M∈M4×4(ℝ)|m4 4>0  , G=MT GM  , det M=1}
If M ,M ′∈ℒ  we have for M ″=M ′M  calculating according to (17) 

M ″4 4=β ′β( v̄ ′⋅R̄v̄
c2

+1)
We have v̄ ′⋅R̄ v̄>−|v v ′|>−c2  and so M ″44>0

Also Mv
−1
=M−v

Therefore , from the above follows that ℒ is a connected 6 – dimensional Lie group,
SO+

(3 , 1) the restricted Lorentz group. The more general set of transformations that also 
includes 4 – dimensional translations in space-time is known as the Poincare group.
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