
                 Boomerang model simulation

We present a simulation model for throwing a boomerang. The boomerang consists of three at 120° 
angular distance, radial disposed profiled wings. For calculating the moment of inertia tensor we 
will approximate each wing as an 2a x 2b sized rectangle which is placed with an axis of symmetry 
along the radius,and with centre at distance r0 from a central point C, which is also the mass centre 
of the whole boomerang. We have therefore a body tied Cartesian reference frame

R(C , i⃗ , j⃗ ,k⃗ )  with origin at C  and axis versors i⃗ , j⃗ , k⃗  such that the first wing is on j⃗  axis 
Each rectangular wing has by approximation thickness 2h and mass density rm.
Therefore the tensor moment of inertia with respect to the frame R(C , i⃗ , j⃗ ,k⃗ )  will be

I=I0+T I0T
T
+T 2 I0T

2T  where T  is the 120° rotation matrix in the ( i⃗ , j⃗)  plane and  

I0=
8
3
rmhab(

a2
+3 r0

2 0 0

0 b2 0
0 0 a2

+b2
+3 r 0

2)
where in the matrix we neglected the terms in h2.
We consider a fix Cartesian reference frame R1(O , i⃗1 , j⃗1 , k⃗ 1)

The motion of the boomerang is described  by the coordinates and velocities of the mass centre in 
frame R1 :(x , ẋ )=(ξ , η,ζ , ξ̇ , η̇ , ζ̇)  where ż  denotes the time derivative of function z
and the Euler angles and angular velocities of mobile reference frame R  in the fix frame R1

(w ,ẇ )=(ψ ,θ ,φ , ψ̇, θ̇ , φ̇)

For

m1=(
cos (ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1)  , m2=(
1 0 0
0 cos (θ) sin(θ)

0 −sin(θ) cos (θ)) ,

m3=(
cos(φ) sin(φ) 0
−sin(φ) cos (φ) 0

0 0 1)  we will have (
ī
j̄
k̄ )=m3 m2 m1(

ī1

j̄ 1

k̄1
)  in matrix multiplication 

formalism.
The coordinates of the angular velocity vector ω  in the frame R  are (see refernce [1]) 

ω1=ψ̇ sin(θ)sin(φ)+θ̇cos (φ)

ω2=ψ̇ sin(θ)cos(φ)−θ̇sin(φ)

ω3=ψ̇ cos (θ)+φ̇ and we have

˙⃗i=ω× i⃗  , 
˙⃗j=ω× j⃗  , 

˙⃗k=ω×k⃗ and

the motion equations for the boomerang
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I ω̇=MC  and m0 ẍ=R  where MC  is the resultant moment of forces with respect to C
and R is the resultant of forces which are acting on the boomerang of whole mass m0.
To determine MC and R  for each wing ,we must consider the pressure on the surface of the wing 
caused by the flow of air along the moving boomerang.
We hold a right handed boomerang with the right hand such that the wings plane is inclined slightly 
of a vertical plane and we throw it forwards at the same moment giving him a fast forwards 
rotation. The profiled or shaped side of the wing must show to the left of the at most 15° to the 
horizontal inclined initial trajectory.
During the flight, the upper rotating wing ( and because of the three wings format, there is always 
one) rotates against the direction of translational moving and experiences a faster air flow around it 
and so by aerodynamic laws will have a higher resultant force acting on it which will be oriented to 
the left of the translational trajectory. Therefore the resultant moment from all three wings, 
considering the gyroscopic effect, rotates the plane of rotation to the left of the trajectory and the 
total resultant force direction, which is approximatively perpendicular to the wings plane will be 
oriented to the positive curvature of the trajectory (in this case the left of the trajectory) causing, for 
suitable initial conditions of throwing, a almost returning curved trajectory. Also, the component of 
the resultant force parallel to the wings plane will be slowing down the rotation, causing finally a 
decreasing of the resulting lift and the descending by gravitation course of the trajectory.
                                          y

                                           A

                                             P        B

                                               C                                                                     x

                                                                               P’’

                   P’

     z
   ‖C P‖=‖CP ′‖=‖CP ″‖=r 0  , ‖P A‖=a  , ‖P B‖=b

P̂ ′C P=P̂ ″C P ′=P̂ C P ″= 120° 
The wings plane, which contains the three rectangles with centres at P, P’ and respective P’’ is the 
xCy plane ; Cx , Cy , Cz are respective the i , j , k  axes.
We can approximate, considering the throwing conditions and the shape of the wings that the 
aerodynamic forces acting on a wing q (q = 0,1,2) are produced in the instantaneous body tied 
reference frame R(C , ī , j̄ , k̄ ) by a local in time stabilised stationary flow with velocity, density , 
pressure field (v 1 ,ρ1 ,p1) which is  small perturbed from the field (w0+v 0 ,ρ0 ,p0)

p0 ,ρ0  are constant and w0+v 0=−ω×r0 T
q j̄−m ẋ  
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 where −w0=ω×r 0 T
q j̄  is the velocity of the centre of the wing from rigid 

rotation and −v 0=m ẋ  is the velocity of the mass centre C  as they are considered 
 with R(C , ī , j̄ , k̄ )  coordinates 

Moreover, the k component of the unperturbed flow velocity field is relatively small and will be 
considered  not significant in producing the total aerodynamic force, considering also the 
aerodynamic shape of the wing.
We have
v1=w0+v 0+v  , p1=p0+p  , ρ1=ρ0+ρ

(v ,ρ , p)=(v ,ρ ,p)(x )  is considered small of first order, depending on spatial coordinates x
in mobile body tied frame R and in first order approximation we have the aerodynamic perturbation 
equations and boundary conditions :
ρ0(w0+v 0)⋅gradv=−grad p        (1)
(w0+v 0)⋅gradρ+ρ0divv=0       (2)

gradρ=
1

c2
grad p       (3)

lim
‖x‖→∞

(v ,ρ ,p)=0        (4)

(w0+v 0+v)⋅n̄=0  on ∂D        (5)

(1) derives from the fluid motion equations, (2) from the continuity equation , (3) contains the 
thermodynamic of the fluid, c being the speed of sound in air, (4) can be valid for a subsonic flow 
(we consider  (w0 + v0)2 < c2 ) and D⊂ℝ

3  is the domain of the wing in R (C , ī , j̄ , k̄ )  with  n̄
 the normal on ∂D (Note that the domain depends on what wing we consider)

Hence we can apply the thin profiles theory which we present briefly below according reference [2].

             Thin profiles theory

The linearised equations of stationary aerodynamics for a small perturbation field
(v ,ρ , p)  depending on spatial coordinates x=(x1 ,x 2, x 3)  (see [2]) are : 
ρ0V 0v , 1=−grad p       (6)

V 0 p, 1+c2divv=0        (7)

gradρ=
1

c2
grad p        (8)

where (V 0 ī ,ρ0 ,p0)  (with V 0,ρ0, p0  real positive constants and ī , j̄ , k̄ the versors of the 
Cartesian coordinate system x=x1 ī +x2 j̄+x 3k̄ ) is the unperturbed state.

If the flow is around a body represented by the domain D⊂ℝ
3  we must have : 

(V 0 ī+v )⋅n̄=0  on ∂D      (9)(  with n̄  the normal on ∂D)

Also we must require lim
x 1→−∞

((v ,ρ , p), grad (v ,ρ ,p))=0      (10)

From (6) follows (rotv ),1=0  and so rotv=F (x 2 , x3)

Because of (10) we will have now F=0  and therefore the flow is irrotational and we can 
consider the potential ϕ=ϕ(x)  such that v=grad ϕ  
From (6) and (10) we can conclude now that p=−ρ0 V0 v1  where v=(v1 ,v 2 ,v3) and from (7) 

follows (1−M0
2
)ϕ ,11+ϕ, 22+ϕ, 33=0  where M0

2
=

V 0
2

c2 is the Mach number of the unperturbed flow.
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For the bidimensional case of a thin identical profiled and potential infinite in the x3 direction wing 
we can reduce the x3 dependence and consider the domain of the wing as

D={(x 1 , x2)∈ℝ
2|−a≤x 1≤a  and h− (x 1)≤x2≤h+ (x1)}

 with a>0  and with |h±|,|h ′±| small of first order 
Also for a subsonic flow (Mach number less than 1) we assume that h ′±  is Hölderian what 
means that we have A ,α>0  , α<1  such that for any ξ1,ξ2∈[−a ,a]  we have : 
|h ′± (ξ1)−h ′± (ξ2)|≤A|ξ1−ξ2|

α

                                                         x2

                                                                                  RN            R

                                      V0                                                                    RP

                                                                                                                                                                                      x1

                                                                        -a                            a                              

For the thin profile the force acting on element  dx1 , normal to the unperturbed flow velocity 
direction, which is the x1 axis, is given by 
−⟦p⟧d x1  where for a function F we define ⟦F⟧=F (x1+0)−F (x1−0) and therefore the 

resultant normal force is

RN=−∫
−a

a

⟦p⟧d x1  and the resultant momentum of forces with respect to centre of wing is 

MC=−∫
−a

a

⟦p⟧ x1 d x 1

If the profile is a thin plane plate we have h ′+=h ′−=−tan (ε)  with ε the angle of attack and the 
forces are normal to the plate so the parallel to the unperturbed flow velocity direction component 
of resultant force is RP=RN tan(ε)

In the bidimensional subsonic case we change the spatial variables to
X=x1  and Y=βx 2  where β=√1−M0

2 and we have for the velocity perturbation field

v1=
∂ϕ

∂ X
 , v2=β

∂ϕ

∂Y
   with  

∂
2
ϕ

∂X2 +
∂

2
ϕ

∂Y 2=0  on ℝ2
∖([−a ,a]×{0})  , ϕ(X ,Y )=ϕ(x1 , x2)

Also we have ρ0V 0
∂ϕ

∂ X
=−p  and at first order approximation the boundary condition is 

V 0h ′± (X )=β
∂ ϕ

∂Y
(X ,±0)  for −a<X<a  (11)

 Consider f =f (X)=⟦
∂ ϕ

∂X
⟧. Obviously  f (X )=0  for |X|>a  because ϕ  is harmonic on 

ℝ
2
∖([−a ,a]×{0})

 Let Z=X+ iY  the complex variable and the holomorphic function on ℂ∖[−a,a]

Φ(Z)=
∂ϕ

∂ X
−i

∂ ϕ

∂Y
We have
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⟦Φ(Z )⟧={
0 for |X|>a

f (X )−i
V 0

β
⟦h ′⟧ for |X|<a

 where ⟦Φ(Z )⟧=Φ(X ,+0)−Φ(X ,−0)  and ⟦h ′⟧=h+ (X)−h− (X )

According to [2] the solution for Φ  is 

Φ(Z)=
1

2π i ∫−a

a

(f (t )−i
V 0

β
⟦h ′⟧)

d t
t−Z

 and we have the Plemelj formula :

(
∂ϕ

∂ X
−i

∂ϕ

∂Y )
Y =±0

=±
1
2
(f (X)−i

V 0

β
⟦h ′⟧)+

1
2π i

′∫
−a

a

(f (t )−i
V 0

β
⟦h ′⟧(t ))

d t
t−X

(12)

 for |X|<a ,

where for the Hölderian function F we used the notation for the principal value of the improper 
integral :

′∫
−a

a

F (t ) 1
t−X

d t=lim
ϵ↓0 (∫

−a

X−ϵ

F (t )
1

t−X
d t+ ∫

X+ϵ

a

F (t ) 1
t−X

dt )
 for |X|<a

Separating the imaginary part in (12) and considering the boundary condition (11) we will have :

β
π ′∫

−a

a f (t )
t−X

d t=V0(h ′+ (X )+h ′− (X ))  for |X|<a

The solution for the unknown function f  on (−a ,a)  is given by

βf (X )=−
v 0
π √a−X

a+X
′∫
−a

a

√ a+t
a−t

h ′+ (t )+h ′− (t )
t−X

d t  and we have 

⟦p⟧=−ρ0V 0 f (X )  for |X|<a
It follows now that for a thin plane plate with angle of attack
ε  , which gives h ′+=h ′−=−tan (ε) we  have, after some integration work, the resultant of 

aerodynamic forces in the case of subsonic flow : R=
ρ0 π tan (ε)V0

2

√1−M0
2

An̄

 where A  is the area of the plate and n̄=(sin (ε) , cos(ε) ,0) is the normal on the plane 
rectangular , with one side parallel to j axis, plate.

If the flow is supersonic  (M0
2
<1) , the equation for ϕ  function is hyperbolic and taking (in 

the bidimensional case) 
β1=√M0

2
−1   ,  x=x1   ,  y=x2  we have the solutions for v=(v 1 ,v2) :

v±=(F± (x∓β1 y) ,∓F± (x∓β1 y))  , p±=−ρ0 V0 F± (x∓β1 y)

where index plus is for the solution in the upper half plane and index minus is  for the solution in 
the lower half plane.

Indeed, the general solution for ϕ  of the equation −β1
2 ∂

2
ϕ

∂x 2 +
∂

2
ϕ

∂ y2=0 is

ϕ=A(x+β1 y)+B(x−β1 y )  and v=(
∂ϕ

∂ x
,
∂ϕ

∂ y
)

 For any x0∈ℝ ,y>0  we have : 
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v1(x 0−β1 y  , y)=A ′(x 0)+B ′(x 0−2β1 y)  and 
v2(x 0−β1 y  , y)=β1 A ′(x 0)−β1 B ′(x 0−2β1 y)

 We must have lim
x→−∞

(β1 v1+v2)=0  and so it follows A ′(x 0)=0

Therefore , for y>0  we must take 
v(x  , y)=(B ′(x−β1 y)  , −β1 B ′(x−β1 y)) and in the same way, we must take for 
y<0  the form of solution 
v(x  , y)=(A ′(x+β1 y)  , β1 A ′ (x+β1 y))  and the whole solution follows. 

As in the subsonic case we have boundary conditions at first order of approximation which lead to

F± (x)=∓
V 0

β1
h ′± (x)  for −a<x<a

 For |x|>a  we take F± (x)=0 because the thin profile is the only source of perturbations.
Hence the resultant normal on the unperturbed flow direction component of aerodynamic force is

RN=−
ρ0V 0

2

β1
∫
−a

a

(h ′++h ′− )d x

For the thin plane plate with area A and angle of attack ε  we have a resultant force normal to the
plate given by the relation

R=
2 tan (ε)ρ0 V 0

2 A

√M0
2
−1

n̄   with   n̄=(sin(ε)  , cos(ε)  , 0)

Regarding now the boomerang wing, considering u0=w0+v 0 the unperturbed flow in the 
instantaneous body tied reference frame we assume as mentioned, because of the throwing 
conditions and aerodynamic shape of the wing that only u1=u0−(u0⋅k̄ )k̄ is relevant for 
aerodynamic resultant forces and so we can consider that the aerodynamic forces system is 
equivalent approximatively to a resultant force R with application point at the centre of the wing 
which is at r0 distance from the mass centre C and we have for the wing q ( q = 0,1,2 ) :

R=RP

u1

‖u1‖
+RN k̄

RP=cP

u1
2

√1−
u1
2

c2

ρ0 A

RN=cN

u1
2

√1−
u1
2

c2

ρ0 A

cP=cN tan(ε0)

 where ε0  is the angle between the normal versor of the wings plane k̄ and the resultant force R,
cP ,cN are aerodynamic coefficients and A is the reference area of the wing.
The aerodynamic shape of the wing leads us to consider that cP, cN = 0 if the flow comes from 
behind the wing (  if u0⋅T

q ī<0)

The aerodynamic coefficients may depend on other  positional variables such as the angle of attack. 
However , because we assumed that the k component of the unperturbed flow velocity is not 
significant we consider that the variations of these coefficients are not qualitative important .
To run the Python program for computing the trajectory of the boomerang and after that presenting
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 a Matplotlib animation of the boomerang flight I have taken: the angle ep= ε0 = 0.17 rad , the 
radius r0=0.2 m ; the wing referential dimensions a=b= 0.06 m ; the aerodynamic coefficient cf = 
0.2 ;the ratio rt = 1  between the horizontal, in j1 direction initial velocity of the throw component et 
= -30 m/s and the velocity of the wing centre by initial rotation versus the axis of direction k 
through the centre C ; the initial velocity vertical component zet = 2.5 m/s; the initial nutation angle
tet = 1.55 rad ( approximative 90° ) ;the initial proper rotation angle phi = -0.034 rad. We have also 
considered an initial precession angle of 90°. That means we throw the boomerang as we mentioned
in the beginning, having no wind velocity ws. With these parameters, the program computes an 
almost returning curved trajectory as we can see in the figures below.
The lower boundary of absolute sinus value of the nutation angle at which we consider a proper 
procedure for calculating the angular Euler velocities from the angular velocity vector components 
is ap = 0.01 . ( If the nutation angle has at one step of integration an absolute sinus value below ap , 
we consider that ϕ̇  not changes value at that step and we calculate ψ̇  from  the third equation of 
angular velocity vector)
The program takes the proper rotation angle as integration variable (instead of time) and stops if the
computed time derivative of this angle changes sign. The step of integration is the “angular 
spacing” parameter sp , which I have taken 40.
For preventing uncontrolled increasing of computed angular momentum during the step by step 
integration the program corrects the modulus of angular momentum by a formula for integration of 
the angular momentum modulus.
The program runs also a reduced loop of iterations in integration which contains the first four points
of the trajectory at which the x coordinate becomes zero or the trajectory becomes parallel to xOz 
plane in the fix reference frame.
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     The figures at the end of the file show the computed reduced loop trajectory of the boomerang 
for ratios rt = 1 and respective rt = 1.1
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