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Representations of the rotation group and of the restricted Lorentz group
Spin representations

For a finite dimensional vector space V, we have the general linear group

GL(V)=(T:V > VIT linear homeomorphism|
with the usual composition operation and topology and for a given Lie group G (as a real manifold
with continuous differentiable group inversion and multiplication) we consider group
representations U such that for any map of G, h:D-G , U is considered to be definite on the
map domain D by a function U:D-GL(V) and there exists a map

h,:D,»G with I,eh,(D,) such that for any map h:D -G of the manifold G ,

for any Reh(D) exist neighbourhoods of I and R , W/ respective W, such that

U(h™'(RyR,))=U(hy'(R,))U(h'(R,)) forany R,eW, , R,eW, .
if there is no confusion we will denote U h,' by U and Uoh™' by U,
Moreover we consider that U is continuous differentiable on map domain for any map of G.
In the following we will denote indexing from 1 to 3 by Latin characters and indexing from 1 to 4
by Greek characters and also use the Einstein summation convention for repeating indexes.
Let G=[ReM,,(R)IR"R=1, detR=1, R=(R;;)}=SO(3) the rotation group.
Any ReSO(3) can be written as R=R(@,n) a rotation around an axis of versor
n=(n,) by an angle of ¢ radians and we will have :
R, j=—¢€N¢sin(@)+(6,;—n;n;)cos(@)+n;n;
Obviously we have :
R(g+8¢,n)=R(d¢,n)R(¢p,n)

dR, _dR
d_¢(¢,n)_d(p(0,n)_R((p,n) )
R(5¢:n):|_i5¢nkjk+o(5(p2) with (./k)ij:_i €ijk (1)
IR (0.m)==inJ,

Y _
R(g,n)=exp(—ign, J;) (1)

Therefore SO(3) is a 3-dimensional manifold with maps given from the parametrisation in

(@, @, @3)=(@n,, @n,,@n,) as local coordinates and further we will take as h, the map
from the ( 0, 0, 0) containing domain.
It is easy to verify that we have the commutation relations:

[],,j_j]:i e,jk_l_k where [A,B]=AB—BA denotes the commutator of A and B.
Let U be a representation of SO(3) over a finite dimensional complex vector space V such that U
takes unitary operators as values. We have :

U,(R(gp+3¢p,n))=U(R(8¢,n))U,(R(@,n)) if ¢ is small enough
and so , differentiating with respect to 0@ we obtain

dUu du
~—(R(¢,n))===(R(0,n))U(R(g,n)) for R(p,n)eh,(D,)
dg de
. . du . .
and if we define the operators J, by d—(R(O,n))——Inkjk we will have :
@

U(R(¢,n))=exp(~ign,J,) for R(@,n)eh,(D,) (2)
and
U(R(6¢,n))=1-idgn, J+O(5¢’) (2)



Page 2 of 11

The representation being unitary it follows that the operators J, must be self-adjoint.
Forany ReSO(3),because detR=1 we have
Rp€ijkReq=Rim€mpq » R’ JiR=R;p, ], and thus
R exp(—i 6] ) R=exp(—i6R;J,) (3) and for ¢,6 small enough with R=R (¢, n)
we will have :
U(R)"U(exp(—i6J;))U(R)=U (exp(—i6RJ,)) (4)and from (1’) and (2) we obtain now
U(R) "exp(—i6J,)U(R)=exp(—i elejj) (5)
Differentiating with respect to 6 we obtain
U(R)_lj/U(R):lejj (57
Taking @=0¢ from (1) and (2’) follows
(I"'iéfﬂnkfk)J/(ljié(Pnk jk>:<6lj_i6(pnk(./k)lj)jj+o(6(p2)
and so, because ( /), j/=—1I €,; we have the commutation relations :

[./k’jl]:ieklj.lj (6)

We say that the representation U is irreducible if and only if there are no proper invariant subspaces
of V ,i.e. if

V, is a subspace of V satisfying U (R)(V,)cV, forany Reh(D,) then V ,={0} or V,=V
Consider now U a finite dimensional complex unitary representation of SO(3).
Because of the commutation relations (6) we find that J*=J, /, commutes with all of the
generators J, and by (2) with U(R) forany R=R(¢,n)eh,(D,)

U being unitary J* is selfadjoint positive semi-definite and so it has an eigenvalue A€RR,

For Rehy(D,) ,if J’v=Av wehave J°U(R)v=U(R)J’v=AU(R)v and U(R) leaves the
eigenspace of A invariant . Therefore, because the representation is irreducible, the eigenspace

must be the whole space V.
Let denote (/)=(/,,/,,J,). We can take j=>0 such that A=j(j+1)

J, being self-adjoint and V' finite dimensional, there will be a finite number of distinct
eigenvalues of J,:4,<A,<..<A,
Let J,=J,+iJ,. Thenif J,v=uv with v#0 from (6) follows J,J, v=(u+1)v
Hence, because V is finite dimensional we can take m,=max |{meNI|JTv#0}
Let vV,= J;"v and we will have J,v,=(u+m,)v,
For J_=J,—i],. Thenif J,w=pw with w0 follows J, ) w=(p—1)/_w and we take
m,=max (meN|J"v,#0} , v,=J v, for k=0,m, .
From (6) follows J, /= J°—J2+ J, and therefore for k=1,m, we have
J V= (+1)= (e my— k1 Pk my—k+1)) v, andalso J, vy=0
Hence the subspace generated by v, Vv,...,v, , S=5p [V, Vl...,vmj is invariant under
J.,J-,J, and so under U(R) for any Reh,(D,) which leadsto S=V and
(AL Ay, A =lurmy—my u+my—m,+1,..,u+mg} , m+1=p the eigenspace for each
eigenvalue A, =u+m,—m +k—1 being unidimensional and so we have a, €C such that
J.Vie=a, v, _, for k=1,m, and also we have J_v,=v,,, for k=0,m,—1,
J.v,=0, J_v,=0and J.=J_ because J, and J, are self-adjoint. Therefore we have
|0‘k2|<Vk71|Vk71>:< Vil Jovi)=(v v ) (j (j+1)=(u+my—k)(u+m,—k+1)) and
<Vk+1|Vk£<V/<U+ Jo V=V lvo (j (j+1) = (u+my=k ) (u+m,—k —1))
for k=1, m, and respective k=0,m,—1 and
urmy=j , —u—my+m,=j
Hence we have
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m,=2j and — j<u+m,—k<j for k=0,m, , dimV=2j+1
Unitary complex finite dimensional irreducible representations of SO(3) have 2 j + 1 dimensional
J, having eigenvalues with one-dimensional eigenspaces : — j,— j+1,...,j—1,j

J? has only eigenvalue j(j+1) and j is a non-negative half-integer multiple.
If we take for V the wave functions Hilbert space of a quantum particle, because of the
commutation relations for coordinates operators and momentum operators ,
[X),p;]=i0;h
it follows that the angular momentum operators J,= % L ; with L=XxP
satisfy the commutation relations (6) and therefore they can generate an unitary complex
representation of SO(3). In polar coordinates (r, 6, ¢) we have:
15 1 o 1 9 ( . 0 )
=L =- - =7(sin(6) =27
/n sin?(6) 8¢ sin(6) 00 ( )69
the spherical functions operator , which has the eigenvalues I(I+1) with eigenstates the spherical
harmonics
YX(6, p)=P¥(cos(6))exp (i k @) with k,/€N|k|</ and P the associated Legendre
polynomials. Also we will have :

1, i )04 i o) -0
7 L,=exp(iq) a6+Icot(¢9)exp(l(,17) o0

L o axo(—i ) Ot o) -0-
7L = exp( I(p)agﬂcot(ﬁ)exp( I(p)éq)
1pn : 0
hz 0@

where we have taken

z=rcos(0) , y=rsin(6)sin(¢p) , x=rsin(6)cos( )
The eigenstates of the I(I+1) generate (for constant r) the invariant subspace of the irreducible spin I
representation.

Let (0,) be the Pauli matrices

0 1 0 —i 1 0
01:(1 0]’ Gz:(i 0 ) ’ 03:(0 —1)
For MeSU(2)={SeM,,(C)|S*S=1, det S=1} we have uniquely determined
(a,)eC’ and a,€C such that M=ol —i o, 0, , because (1,0,,0,,0;) provide a basis for the
complex vector space M, ,(C)
For a=R(q,) , b=3(a,) , X=R (&) , Y =3(&) the conditions MeSU(2) lead to
0

a’+b’+X*+Y?=1 and a’+ X’~b°~Y*=1 and so we have a versor (n,) and an angle 5

uniquely determining a= cos(g) , ;(:nsin(g) , b=0, Y=0

Therefore SU(2) is a 3-dimensional Lie group with local mappings given by the parametrisation

(@n,)ER’, h(((pnk)):exp(—linkak)zcos(%)I—Ism(%)nkok

We can verify that we have a local diffeomorphism
T:SU(2)-SO(3) which in any map parametrisation (¢n, ) has the expression

T (exp(=i5@n, a,))=R(¢.n)

Moreover, considering the factor group
SU(2)/{—1,1} with the projection p:SU(2)»SU(2)/{—1,1} we have that
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poT " is well defined as diffeomorphism from SO(3) to SU(2)/{—1,1} which has a
differential manifold structure that can be considered as induced by the local diffeomorphism T.

SU(2) is a double covering of SO(3), for any R(¢,n) corresponding

i(cos(%) I—isin(g)nkak) because we have R(@,n)=R(¢+2m,n)

For R=R(¢,n)€S0O(3) , SeSU(2), T(S)=R we have that

SflakSZRkjaj and so if S,€SU(2) satisfies T (S,)=R,€S0O(3) for i=1,2 then

for §=5,S, , R=R,R, we have that 5_1OkS:Rk/-O“j with k=1,2,3

If WeSU (2) satisties T(W)=R we will have also W' o, W =R, ; 0; and therefore

for H=SW™' we have Ho,=o, H with k=1,2,3

Thus (1, 0,, 0,,0,) being a basis of M, ,(C),H commutes with any 2x2 complex matrix so

exists A€C such that H=A1I and because det H=1 follows H==I
therefore S=+W and because T (W )=T (—W) we conclude that

T(S,)T(S,)=T(S,S,) forany S,,5,€SU(2) and poT~' is a groups isomorphism.

Let U the so called spin % representation U (R (¢,n))=exp(— i% @n, o)

For any map h of SO(3) we have obviously T(U-h™'(R))=R and so
T(Uoh™(RyR,))=T(Uch,'(R,))T (Uch™(R,)) and as we have proven above it follows
U,(R,R,)==U(R,)U,(R,) for R,,R, in some neighbourhoods of | respective R (*)

Because U, and U- h, are continuous in neighbourhoods of R and respective | and

Uohy'(1)=1 , from the relation (*) we can derive the condition for U to be indeed a
representation of SO(3).

For U’ a GL(V/,) valued representation of SO(3) with i=1,n we can consider the
n

GL(Q V) valued representation which in any map h:D-SO(3) has the expression
i=1

Un(R)(¢,®@,...© 0,)=U},(R) 9, 8U4(R) ¢,®...0 Uy (R) g,
If we denote the generators of U* by Ji ;i=1,2,3 then for the generators J; of U we have

n

_I,:kz: 1®...9J, ;®...®1 and so J, carries eigenvalues m,+m,+...+m,
=1

with m, €[~ j,..., j) if U* isaspin j, representation for k=1,n

Take now n=2j and U*=U"" the same spin % representation , valued on GL (V")

having generators j(,l) with eigenstates e, ,e_ for eigenvalues % respective —% of j(zl)

We can consider the subspace of symmetric tensors of the tensorial product space
2j
VP=® V" namely
k=1

S=| Z Ai1iz.in Z eir(1)®eir(2)®"'®eir(n)|ai1i2...inec for i1,i2,...,in=x+|

i1,i2,..., in=+ €S,
The product representation is U with generators J!"
The subspace S is invariant under U'" carries the eigenstate €,€,®...Q0€,
of eigenvalue j of J (z”) and has dimension N+1=2 j+1 and therefore the restriction of

U" to S must be a spin j irreducible representation of SO(3) .
In the same way we conclude that the representation given by
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U(R)=R for any R€SO(3) is a spin 1 irreducible representation
and the representation given by

U(R)((&);.j=1.25)=(R;R;;&;) , with invariant space

V:{56M3X3(C)|3,j=£ &, =0 with i,j=1,2,3} , the symmetric traceless tensors, is a spin 2
representation.

ji 2

Consider now G=S0"(3,1) the restrict Lorentz group (by suitable measuring units for time we

can consider the speed of light constant to be c = 1 ) and the Minkowski space with pseudo-metric
(naﬁ) ) 77”:_5// ’ 77i4: 774i=0 ’ 7744:1

For any M€G we have uniquely determinated B=B(y,q) , R=R(6,n) with

n=(n;) , g=(q;) versors and y, 6 € R such that M=BR

R,j:—eijknksin(6)+(5,j—n,nj)cos(8)+n,nj ,R,=R,,=0,R,,=1

Bij:(Sij"'(COSh(X)_l)qiqj , B;,=B,;=—q;sinh(x) , B,,=cosh(y)

(see Chap. Special relativity. Lorentz transformation )v,=q;tanh  x)

G=S0"(3,1) is therefore a 6-dimensional Lie group with maps by parametrisation in

((xq,),(6n,)) and as the map h, we will take the map which contains (0)€RR® in its domain.

We can verify that

B(x+6x,q9)=B(5x,q)B(x.q) (7)
R(6+660,n)=R(660,n)R(6,n)  (8)

and we can define (J;), (K;) such that

nk./k:%(oxn) . q K =—=—1(0,q) with

(j_i)jk:_eijk ) (]i)4a:(_i)a4:0 ) (Ki>jk:0 ) (Ki)4j:(Ki)j4:5ij ) (Ki)44:0
and so we will have : ~

B(x.q)=exp(~xqK,) , R(6,n)=exp(6n,J,) ¢)

M(5y,q;00,n)=B(5x,q)R(66,n)=1-6xq, K, +56n,J,+O(&) (9

for 6, 66 € O_(s)_ o ~

[ji’jj]zeijkjk ) [Ki’Kj]:_Eijkjk ) [ji’Kj]:eiijk (10)

For a representation U of SO (3,1) we can define (J,) , (K,) such that

n J.=2Y (R(0,n)), q.K,=—2Y (B(0,q)) and we will have:

do dx
U(B(x.q))=exp(—xq,K,) , U(R(6,n))=exp(6n,J,) (11)
U(M(6%.,9;66,n))=1-6xq,K+56n, J +O(¢) (11%)
for 6y , 60 € Ofe)

Let A (6)=R(—0,n)J,R(6,n). Then from (9) and (10) follows
dA _ _
d—é’l: € ;A;=(Ji);;A; and because A(0)=J, we have the solution
A,=R,;]; where R=R(6,n) and so we have
R_leXP(fpf/)RZEXP((PRU./,‘)
Therefore, according (9) and (11), for 6, @ small enough we obtain
U(R) "exp(¢J;)U(R)=exp(@R,;J;) and taking the second order approximation in ¢:
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U(R)™"J,U(R)=R,,J; and so for 6= 36 follows
(I_58nk./l<)./I(I+58nkjk):(5lj_58nkEIjk)]j"'O(éHZ)
[jl’jk]zflkjjj (12)

In the same way, taking A,(8)=R(—60,n)K,R(6,n) we obtain

R 'exp(—xK,)R=exp(—xR,;K,) with R=R(6,n) and further, if 6=06 is small enough :
(1=86n,J )K,(1+66n, J,)=(6;,—6n, ;) K +O(5¢)

(n,) being an arbitrary versor, we will have

[J.K/]=€;K;  (13)

We take now

A(x)=B(=x,q)K,B(x.q) , C,(x)=B(-x,q)J;B(x,q) and we have from (9) and (10)
dA,

dx =—0x&;C;
dC,
W:_qkeklej

Therefore , for B=B(x,q) and R=R(x,q) the solution
Bil(Kl+.II)B:RIj(Kj+_jj ~ £14)_ o
From (10) we obtain [K;+J;,K ;+ J;]=0 , [K}, J;]=0 for i, j=1,2,3 and so we have:

eXP(X, (K/"']/))ZEXP(X,K/)GXP (X,]/) and

eXp(X,RIj(Kj'I' j)):HeXP(X,RIjKj)eXP(X,RIj./j)

Multiplying (14) by x  , exponentiating , applying U for small enough y and )" and after
that considering (11) we obtain now:

U(B) "exp(x'K )exp(x" J)U(B)=]] exp(x'R;;K Jexp(x"R;; ;)
j=1

Taking the second order approximation in "~ we obtain, for small enough y that:
U(B) ' (K,+J,)U(B)=R,,(K +],) and for x=5x
(1+6xq, K, )(K+J)(1-6 xq, Kk):(fslj_ Oxqy Ek/j)(Kj+jj)

With (13) we can now conclude that
[Kk’KI]:_EkIj-Ij (15)

We have therefore the commutation relations (12) , (13), (15) for the generators.

Consider now the Dirac equation for a four component wave function y=(,) (as a column
vector) of a mass m particle :

i y'0,y—my=0
with the 4x4 matrices

o a_ (10

-0, 0
Under a Lorentz transformation M=(M,,) with
X“=M,;x°, (x")=(x,y,z,t), (x")=(x",y",z’",t") (we consider the speed of light c = 1)
we suppose that the wave function transforms like

K _
y =
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Y'=S s
We have M0, =0,, y'M,,0,’S '¢=mS 'y and so requiring Lorentz invariance of the
Dirac equation we come to
S'y's=M,y"
We can verify that:
Y'Y+ y=20" (16
Considering (16), for M=B(y,q) we can take
S=P(X,q):cosh(%) I+sinh(%)qk Yy

and for M=R(6,n) we can take

S=O(H,n):cos(g)l+%sin(§0)nk R

Let SL(2,C)={SeM, ,(C)ldet S=1}

Since (1, 0,,0,,0,) is a basis of M,,(C) we have «,,a,,,,a, €C ,uniquely determined for
SeSL(2,C) such that S=al+a, 0, (17)

and a;—&°=1 which leads to

(Rao)—(Jap)=(Ra)f—(Ia)+1  (18)

(9?0(0)<3 0{0)2(9{5{)(3_&) (18%)

If we suppose now that S=(al-X, o, )(bl-iY, 0,) (19)

with a,beR , a=1 , (X,),(Y,)eR®

a’-X=1 (19)

b*+Y?=1  (19”), then (17) leads to

ab+iXY=a, (20) and

bX+iaY+XxY=—¢ (21), or, by taking real and imaginary parts :
ab=Ra, (22)

bX+XxY=R&  (23)

XY=3a, (24)

a¥Y=—3a& (25)

Also from (17) we have :

bl-iY, o =(al+X,0,)(ol+a, 0,) andso
b=aa,+aX (26)

Y=iaX+iaa—Xx& (27)

LIf (Ra)x(Ia)=0
1.1if 3&=0 we obtain Y =0 from (25) and so, from (19") b*=1
By (18) and (18’) we will have in this case 3 a,=0 and taking the real part of (27) it follows
XXR &=0 , X=AR & with A€R
From (26) we have now b=aa,+A (R &)° and multiplying by a , using (22) we have:
a,(1—a°)=A&" and so with (19") follows —a, A’ & =Ad’a  (28)
If in this case af)z 1 from (18) we will have &=0 and so X=0 and by (19') and (22)
a=1, b=q,a.Hence a,b, X,Y are uniquely determined from (19) by ¢, &
If in this case &#1 from (18) follows R &#0 and from (22) and (19”) follows
a’#1 and X #0. Therefore A0 and (28) leads to —A,=a
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and so, by (19') and (18) a*=(R «,)’=1+(R &)°*>1 provides the correct uniquely determination
of a,b,X ,Y from(19)by «,,&

-

1.2. If 3 a#0 follows
Ra=A3 a with )LEIR and because from (25) and (27) we have

(a’~1)3a=—-a3 aOX aXxRN & , we will also have
a(XxR&)P=0 and (a°~1)Ia=—aI o, X (29) which by (19) leads to
(@°-1(3a)y=a*(a’-1)(Ia,) (30)
1.2.1Tf (R ) (I ap) =0

In th_i§ subcase, from (18’) follows R &=0 and with (23) and (25) we obtain

bX*=0 and X=uY , ucR
From (22), (25), (197) and (18) we have a°=(R ¢, )'+(I &)’=1+(J o )+(R & )’'>1
From (24) and (25) we have u(3&)=a’3 a, andso a,b, ;( Y are correctly uniquely

determined.
1.2.2If (Rap) (T ) #0

In this subcase, (24) leads to

X #0 and so, by (19) a’#1 and from (30) follows a*((3 &)’ — (I ) )=(I &,/ (31)
In this case (R &)*(Ia)’=((R&)(I&)) and therefore, by (18) and (18") taking

~ 2
uzz((\;o_io)l we obtain (1—u’)((R &)°+(3 @,)’+1)=1 and so u’<1
a

Hence, by (31), (29), (22), and (25) a,b, X , Y are again correctly uniquely determined.

2.If (Ra)X(I &)#0

we have A, u, p€R such that

X=AR a+uIa+p(R &)X(I &) the relations (25) , (21) and (24) leading to

AR op+p(Ia)’=—a (32)

uRa,—p(Ra)(Ia)=0 (33)

A=pRa,=0 (34)

ARG (Ia)+u(Ia)=—Ia, (35)
From (22), (25), (19”) and (18) we have a’=(R o, )’ +(3 &)*=1+(T o)’ +(R & )*=>1
which determines correctly

a>1 and now (32),(34) and (35) determine A,u, p and therefore X ; (25 ) determines Y

a,b,X Y are correctly unlquely determlnated from (19) by «, and &

Taking a= cosh (£ , X= sinh (£ q b=cos , Y =sin 9\n with versors q,n ,
2 2

we seethat SL(2 ,(D) can be Con51dered as a 6-dimensional Lie group with mappings given by
local parametrisation in

1 .1
((%qk>:(9nk))€|R6 > h(()(qk) :<0nk)): EXP(_Equ ak)exp (_l B on, Ok) )
because we can easily verify by differentiation and same initial conditions that
cosh (£ )I —sinh (£ >q/< 0= exp(—%qu o,) and
cos(g)l —isin(g)

We define T:SL(2,C)»S0O"(3,1) and H:SL(2,C)->M,_,(C) such that if

n, Gk:exp(—i% on, o)

Szexp(—%)(qk Ok)exp(—i%an o, ) then
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T(S)=B(x,q)R(6,n) and H(S)=P(x,q)Q(6,n)

For S, , S ESL(Z,C) we can verify that:

H(S,) 'y'H(S;)=(T(S;)),,y fori=1,2 , u=1,4 and therefore
(H(S)H(S)) " V' (H(S)H(S,))=(T (1) T (S2)),vy"

Letbe S such that T(S)=B(x,q)R(6,n)=T(S,)T(S,). Then we can have only

Sziexp(—%qu O, )exp (—i%@nk o,) and we have also:

H(S)'y'H(S)=(T(S,)T(S,)).,y"” and for W=H(S)(H(S,)H(S,))"" we will have
y'W=W y" for u=1,4 (36)

We take W =| 4 g) with A,B,C,D € M,_(C)

Taking u=4 in (36) we obtain B=—B and C=—C and so B=C=0
For u=i in (36) follows Ao,=0;D (37)

From (36) we obtain W yi y’ = yi y’ W and so, because for i# j we have
0 —i €, Oy

Ao=0,A and Do,=0,D (38)
Hence, (I, 0,, 0,, 0,) being a basis of M, ,(C) , (37) and (38) lead to
A=D=Al with A€C andso W=A4l , H(S)=AH(S,)H(S,) (39)
For the subspace of C* (cosidered as column vectors), namely K ={(X, X )eC*xC’}
we can verify that for any S,€SL(2,C),Z=(X,X)eK we have H(S,)Z=(5,X,S,X)
Therefore, from (39) we obtain
S=185,S, and because det S=det S,=det S,=1 it follows A=+1
Obviously T(S)=T(-S) forany S€SL(2,C) andso T(S,S,)=T(S,)T(S,)
Thus we have a well defined groups isomorphism
peT ':SO"(3,1)»SL(2,C)/{—1,1] where p is the projection operator
p:SL(2,C)>SL(2,C)/{-L,1}
Moreover, T is a local diffeomorphism , is a double covering of SO (3,1) by SL(2,C)
and determines also the differential structure of SL(2,C)/{—1,1]
Considering F=(poT')"' the inverse group isomorphism defined above we have that
U is a representation of SO*(3,1) if and only if UoF is a representation of
SL2,C)-11] .
By composition with the projection operator at left, any representation of
SL(2,C)/{—1,1} determines a representation of SL(2,C)
Consider now the functions U:D-SL(2,C) defined for any map h:D->SL(2,C)/{—1,1} such

that U((qu),(ﬁnk)):exp( _quak)exp( 16” Gk) for ((qu),(ﬁnk))ED

it follows

We have that T(Ush"*(S))=R for any ReSO*(3,1) where S=p-T '(R)
Therefore T (U ( $))=T(U(S,))T(U,(S,)) and so, as already proven above, we must have
U (S S,)=+ ( ) U,(S,) for S, , S, in some neighbourhoods of I respective Seh(D)
Because Uoch™" and Ue hg are continuous, if these neighbourhoods, W, respective W, , are
connected then U (S S,)= U(§O)U (S,) for (S,,5,)eW xW,
Hence if U is a representation of SL(2,C) then UoU is a representation of
SL(2,Cc)/{-L1} .

Therefore any representation of SL(2,C) determines a representation of SL(2,C)/{—1,1} and
backwards.
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Determining irreducible representations of S O"(3,1) reduces to determining irreducible
representations of SL(2,C) .
Let U be a representation of SL(2,C) . We denote

A(;{,q):exp(—%quak) ; C(H,n)zexp(—iéenkak) and we will have
Alx+0x,q)=A(6x,q9)A(x.q) ; C(6+56,n)=C(56,n)C(6,n)  (40)

As we mentioned , we denote by U the same function Uch, " where h,:D,>GL(V)

is the map around the origin from the representation definition.
In the same way as we proven in the case of SO"(3,1) , considering the relations (40), if we
define (M,),(N,) by

du
dX( (0,g,))=—q,M, ,

U(A(x.q))=exp(—xq,M,) , U(C(6,n))=exp(—i6bn N,)
We will in addition suppose that the functions defined in y+i 6 €C by
fj()(+i 9)=U(A(X,(5jk))C(9 (5,k))) U(exp(—%()ﬁl 0)o )) are complex differentiable, or

d

c

(C(0,n))=—in.N,

Q
)

that the function defined on the complex variables ()

F((e,))= \/ 1+& 1+, 0, ) is complex differentiable in each variable ¢, in some
neighbourhood of (0, 0, 0).

We can prove that we have  f ,(x+i 6)=U (cosh(5 ()(+I 0))l —smh( (;{+I 6))o;) and so any of
these two suppositions will lead to M, =N,

Let E H):%C (—6,n)0,C(6,n) and considering the commutation relations satisfied by

1 . dE .
(E 0,) weobtain ——~=-n, €,E; and so we have the solution

do
E, R a Therefore for 6,06 small enough we will have:

C(—é@,n)exp(—iéxa,)C((50,n)=exp( 6;(R,j ;) and
U(C) 'exp(—0xM,)U(C)=exp(— (5)(R,ij) where C=C(56,n)

Taking the second order approximation in ¢y and after that in 66 it follows

(1+i 66N M )M,(1-i 56N M, )=(1-56n,€,,;)M;+O(56") and so we will have the
commutation relations:

(M ,M,]=i € ;M (41)
We take X=M+iM, , Y=M,—iM, , H=2M, and we will have:

[X,Y]=H , [H,X]=2X , [H,Y]==-2Y (42)

M1:N1:%(X+Y) , MZ:NZ:%(iY—iX) , M3:N3:%H
Suppose that U is finite-dimensional complex and irreducible.
Then exists an eigenvalue A€C of H with an eigenvector veV , Hv=Av , v#0

From [H, X ]=2X follows H X’v=(A+2j)X’v and the space being finite-dimensional we
can take ;= max [i€NIX'v=0}. Let v,=X""v , v,=Y’v,

From [H,Y ]=—-2Y follows Hv ;=(A+2(i,—j))v, and the space being finite-dimensional we
can take M= max {i€N|v,;#0}
We have

j
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XVy=0, XV, ,=XYVv,=Y XV +Hv =Y XV +(A+2(i;—j))v,, YVv,=v,,,Y v, =0
Vo, Vi, ... Vm are linearly independent being eigenvectors of H for distinct eigenvalues and by
induction follows from the above relations that H, X, Y leave invariant the subspace generated by
them. The representation being irreducible, that subspace must be the whole space and H has
therefore one-dimensional eigenspaces for each eigenvalue A+2(i,—j), j=0,m with
eigenvectors respective v; . Therefore for the trace of H we have:

trH=" (3+2(i,~j))=(m+1)(2+2iy-m) .

j+1 j+12

=0

Since ter:tr[X,Y]:o it follows A=m—2i,

By induction we can prove XV ;=j(m—j+1)v,_, for j=1,m having X v,=0 .

In conclusion we will have V=Sp[v,,v,,...,v,], ij:(m—Zj)Vj for j=0,m and also
Yv,=0, ij:v

jn for j=0,m—1 for the spin m/2 irreducible representation representation.

It can be proved without difficulties that if the V is the subspace of complex polynomials given by
m

VOn: zzan"FJY“EP[X,Y]
j=0

then U:SL(2,C)>GL(V,) with U(A)p(x,y)=p(A™'(x,y)) forany A€SL(2,C)
and any p(x,y)eV, , A" acting on the column vector (x,y) , provides a m+1-dimensional
irreducible representation of SL(2,C)

a;eC for j=0,m

For A:exp(—i%t?ag,) we have Afl:cos(g)lﬂsin( )o, and

N |

exp(—i = 0H) (X" y))=U(A)(x" Ty/)=

leac(Daici (ON L (eac (O)_ici (O wmi i — e (iM=20 ) mi i
—(cos(2)+lsm(2)) (cos(2) Ism(2))x y’=exp(i 5 O)x" 'y

Differentiating with respect to 6 and taking /=0 we obtain

H(x" 7y )=(m-=2(m—j))x™y’ and so we have obtained the eigenvalues and eigenvectors
of H in the representation.



