
                
             Representations of the rotation group and of the restricted Lorentz group
                              Spin representations

For a finite dimensional vector space V, we have the general linear group
GL(V )={T :V→V|T linear homeomorphism}

with the usual composition operation and topology and for a given Lie group G (as a real manifold 
with continuous differentiable group inversion and multiplication) we consider group 
representations U such that for any map of G, h :D→G  , U  is considered to be definite on the 
map domain D by a function U :D→GL(V ) and there exists a map
h0 :D0→G  with IG∈h0(D0)  such that for any map h :D→G  of the manifold  G  , 
 for any R∈h(D)  exist neighbourhoods of IG  and R  , W0  respective W1  such that 

U(h−1
(R0R1))=U (h0

−1
(R0))U(h−1

(R1))  for any R0∈W 0  , R1∈W1  . 
if there is no confusion we will denote U∘h0

−1  by U  and U∘h−1  by Uh

Moreover we consider that U is continuous differentiable on map domain for any map of G.
In the following we will denote indexing from 1 to 3 by Latin characters and indexing from 1 to 4 
by Greek characters and also use the Einstein summation convention for repeating indexes.

 Let G={R∈M3×3(ℝ)|RTR=I  , det R=1  , R=(Ri j)}=SO(3) the rotation group.
 Any R∈SO(3)  can be written as R=R(φ ,n) a rotation around an axis of versor 
n=(ni)  by an angle of φ  radians and we will have :
Ri j=−ϵi j knk sin(φ)+(δi j−nin j)cos (φ)+nin j

Obviously we have :
R(φ+δφ ,n)=R(δφ ,n)R (φ ,n)

dR
dφ

(φ ,n)=
dR
d φ

(0 ,n)R(φ ,n)

R(δφ ,n)=I−i δφnk J̄k+O(δφ
2
)  with ( J̄k)i j=−i ϵi j k          (1)

dR
dφ

(0 ,n)=−i nk J̄k

R(φ ,n)=exp (−iφnk J̄k)           (1’)
Therefore SO(3) is a 3-dimensional manifold with maps given from the parametrisation in

(φ1 ,φ2 ,φ3)=(φn1,φn2 ,φn3)  as local coordinates and further we will take as h0 the map 
from the ( 0, 0, 0) containing domain.
It is easy to verify that we have the commutation relations:

[ J̄i , J̄ j ]=i ϵi j k J̄k  where [A ,B]=AB−BA denotes the commutator of A and B.
Let U be a representation of SO(3) over a finite dimensional complex vector space V such that U 
takes unitary operators as values. We have :
Uh(R(φ+δφ ,n))=U (R(δφ ,n))Uh(R(φ ,n))  if δφ  is small enough 

and so , differentiating with respect to δφ  we obtain 
dU
dφ

(R (φ ,n))=
dU
d φ

(R(0 ,n))U(R(φ ,n))  for R(φ ,n)∈h0(D0)

and if we define the operators Jk  by 
dU
d φ

(R(0 ,n))=−i nk Jk  we will have : 

U(R(φ ,n))=exp (−iφnk Jk)  for R (φ ,n)∈h0(D0)    (2)
and
U(R(δφ ,n))=I−i δφnk Jk+O(δφ

2
)         (2’)
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The representation being unitary it follows that the operators Jk must be self-adjoint.
For any R∈SO(3)  , because det R=1  we have 
R j pϵi j kRk q=Rimϵmpq   ,  RT J̄iR=Rim J̄m  and thus 

RT exp(−i θ J̄ j)R=exp(−iθR j k J̄k)     (3)  and for φ ,θ  small enough with R=R(φ ,n)

we will have :
U(R)

−1U(exp (−iθ J̄ j))U(R)=U (exp(−i θR j k J̄k)) (4) and from (1’) and (2) we obtain now

U(R)
−1 exp(−i θ Jl)U (R)=exp (−i θRl j J j)    (5)

Differentiating with respect to θ  we obtain 
U(R)

−1 JlU(R)=Rl j J j (5’)
Taking φ=δφ from (1) and (2’) follows

(I+i δφnk Jk) J l(I−i δφnk Jk)=(δl j−i δφnk ( J̄k)l j) J j+O(δφ
2
)

 and so, because ( J̄k)l j=−i ϵk l j  we have the commutation relations : 

[ Jk , Jl ]=i ϵk l j J j (6)

We say that the representation U is irreducible if and only if there are no proper invariant subspaces 
of V ,i.e. if
V1  is a subspace of V  satisfying U (R)(V 1)⊂V 1  for any R∈h0(D0)  then V 1={0} or V 1=V

Consider now U a finite dimensional complex unitary representation of SO(3).
Because of the commutation relations (6) we find that J2= Jk Jk commutes with all of the 
generators Jl and by (2) with U(R)  for any R=R(φ ,n)∈h0(D0)

U  being unitary J2  is selfadjoint positive semi-definite and so it has an eigenvalue λ∈ℝ+

 For R∈h0(D0)  ,if J2v=λv  we have J2U(R)v=U(R) J2v=λU(R)v  and U (R) leaves the 
eigenspace of λ  invariant . Therefore , because the representation is irreducible, the eigenspace 
must be the whole space V.

 Let denote ( Jk)=( Jx , Jy , Jz ). We can take j≥0  such that λ= j( j+1)

Jz  being self-adjoint and V finite dimensional, there will be a finite number of distinct 
eigenvalues of Jz :λ1<λ2<…<λp

 Let J+= Jx+ i Jy . Then if Jz v=μv  with v≠0  from (6) follows Jz J+ v=(μ+1)v
Hence, because V is finite dimensional we can take m0=max {m∈ℕ| J+

mv≠0} .

 Let v 0= J+
m0v  and we will have Jzv0=(μ+m0)v0

 For J−= Jx−i Jy . Then if Jzw=ρw  with w≠0  follows Jz J−w=(ρ−1) J−w  and we take 

m1=max {m∈ℕ| J−
mv0≠0}  ,  vk= J−

k v 0  for k=0 ,m1 .

 From (6) follows J+ J−= J2− Jz
2
+ Jz  and therefore for k=1 ,m1  we have 

J+ vk=( j ( j+1)−(μ+m0−k+1)
2
+(μ+m0−k+1))vk−1  and also J+v 0=0

 Hence the subspace generated by v0 ,v1…,vm1
 , S=Sp [v 0 ,v1… ,vm1

] is invariant under

J+ , J− , Jz  and so under U(R)  for any R∈h0(D0)   which leads to S=V  and 
{λ1 ,λ2 ,…,λp}={μ+m0−m1 ,μ+m0−m1+1 ,…,μ+m0} , m1+1=p the eigenspace for each 

eigenvalue λk=μ+m0−m1+k−1  being unidimensional and so we have αk∈ℂ  such that 
J+ vk=αkvk−1  for k=1 ,m1  and also we have J− vk=vk+ 1  for k=0 ,m1−1 ,
J+ v0=0  , J−vm1

=0  and J+
+
= J−  because Jx  and Jy are self-adjoint. Therefore we have

|αk
2|⟨vk−1|vk−1⟩=⟨vk| J− J+|vk ⟩=⟨v k|vk⟩( j ( j+1)−(μ+m0−k )(μ+m0−k+1)) and

⟨vk+1|vk+1⟩=⟨vk| J+ J−|vk⟩=⟨vk|vk ⟩( j ( j+1)−(μ+m0−k )(μ+m0−k−1))

 for k=1 ,m1  and respective k=0 ,m1−1 and
μ+m0= j  , −μ−m0+m1= j

Hence we have 
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m1=2 j  and − j≤μ+m0−k≤ j  for k=0 ,m1  , dimV=2 j+1
Unitary complex finite dimensional irreducible representations of SO(3) have 2 j + 1 dimensional
Jz  having eigenvalues with one-dimensional eigenspaces : − j ,− j+1 ,…, j−1 , j
J2  has only eigenvalue j ( j+1)  and j is a non-negative half-integer multiple.

If we take for V the wave functions Hilbert space of a quantum particle, because of the 
commutation relations for coordinates operators and momentum operators ,

[ x̂l , p̂ j]=i δl j ℏ

it follows that the angular momentum operators Ji=
1
ℏ
L̂i  with L̂=X̂×P̂  

satisfy the commutation relations (6) and therefore they can generate an unitary complex 
representation of SO(3). In polar coordinates (r ,θ ,φ)  we have: 

1

ℏ
2
L̂2

=−
1

sin2
(θ)

∂
2

∂φ
2
−

1
sin(θ)

∂
∂θ (sin(θ) ∂

∂θ )
the spherical functions operator , which has the eigenvalues l(l+1) with eigenstates the spherical 
harmonics
Y l
k
(θ ,φ)=P l

|k|(cos (θ))exp (i kφ)  with k , l∈ℕ|k|≤l  and P l
|k| the associated Legendre 

polynomials. Also we will have :
1
ℏ
L̂+=exp( iφ) ∂

∂θ
+i cot(θ)exp (iφ) ∂

∂φ

1
ℏ
L̂−=−exp(−iφ) ∂

∂ θ
+ i cot(θ)exp(−i φ) ∂

∂φ

1
ℏ
L̂z=− i ∂

∂φ

where we have taken 
z=r cos(θ)  , y=r sin (θ)sin(φ)  , x=r sin (θ)cos(φ)

The eigenstates of the l(l+1) generate (for constant r) the invariant subspace of the irreducible spin l
representation.

 Let (σk) be the Pauli matrices 

σ1=(0 1
1 0)  , σ2=(0 −i

i 0 )  , σ3=(1 0
0 −1)

 For M∈SU(2)={S∈M2×2(ℂ)|S+ S=I  , det S=1} we have uniquely determined

(αk)∈ℂ
3  and α0∈ℂ  such that M=α0I−iαkσk  , because (I ,σ1 ,σ2 ,σ3) provide a basis for the 

complex vector space M2×2(ℂ)

 For a=ℜ(α0)  , b=ℑ(α0)  , X⃗=ℜ(α⃗)  , Y⃗=ℑ(α⃗)  the conditions M∈SU(2)   lead to 

a2
+b2

+ X⃗2
+Y⃗ 2

=1  and a2
+ X⃗2

−b2
−Y⃗ 2

=1  and so we have a versor (nk)  and an angle θ
2

 uniquely determining a=cos( θ
2
)  , X⃗=nsin( θ

2
)  , b=0  , Y⃗=0

Therefore SU(2) is a 3-dimensional Lie group with local mappings given by the parametrisation

(φnk)∈ℝ
3  , h((φnk))=exp(−i 1

2
nkσk)=cos (

φ

2
)I−i sin(

φ

2
)nkσk

We can verify that we have a local diffeomorphism
T :SU(2)→SO(3)  which in any map parametrisation (φnk)  has the expression 

T (exp(−i 1
2

φnk σk))=R(φ ,n)

Moreover, considering the factor group
SU (2)/{−I ,I} with the projection p :SU(2)→SU (2) /{−I ,I} we have that 

Page 3 of 11



p∘T−1  is well defined as diffeomorphism from  SO(3)  to SU (2)/{−I ,I} which has a 
differential manifold structure that can be considered as induced by the local diffeomorphism T.
SU (2)  is a double covering of SO(3) , for any R(φ ,n)  corresponding 

±(cos(
φ

2
)I−i sin(

φ

2
)nkσk)  because we have R(φ ,n)=R(φ+2π ,n)

 For R=R (φ ,n)∈SO(3)  , S∈SU(2)  , T (S)=R  we have that 
S−1

σk S=Rk jσ j  and so if Si∈SU(2)  satisfies T (Si)=Ri∈SO(3)  for i=1,2  then 

 for S=S1 S2  , R=R1R2  we have that S−1
σk S=Rk jσ j  with k=1 ,2 ,3

 If W∈SU (2)  satisfies T (W )=R  we will have also W−1
σkW=Rk jσ j  and therefore 

 for H=SW−1  we have Hσk=σkH  with k=1 , 2, 3
 Thus (I ,σ1 ,σ2 ,σ3)  being a basis of M2×2(ℂ) ,H commutes with any 2x2 complex matrix  so
 exists λ∈ℂ  such that H=λ I  and because det H=1  follows H=±I
therefore S=±W and because T (W )=T (−W )  we conclude that 
T (S1)T (S2)=T (S1S2)  for any S1 ,S2∈SU(2)  and p∘T−1 is a groups isomorphism.

 Let U  the so called spin 
1
2

 representation U (R(φ ,n))=exp(−i 1
2

φnk σk)

 For any map h  of SO(3)  we have obviously T (U ∘h−1
(R))=R  and so 

T (U∘h−1
(R0R1))=T (U ∘h0

−1
(R0))T (U∘h−1

(R1)) and as we have proven above it follows
Uh(R0R1)=±U(R0)Uh(R1)  for R0 ,R1  in some neighbourhoods of I  respective R  (*)
 Because Uh  and U∘h0  are continuous in neighbourhoods of R  and respective  I and

U∘h0
−1

(I)=I , from the relation (*) we can derive the condition for U to be indeed a 
representation of SO(3).

 For U i  a GL(V i)  valued representation of SO(3)  with i=1 ,n  we can consider the  

GL(
i=1

n

V i)  valued representation which in any map h :D→SO(3)  has the expression 

Uh(R)(φ1⊗φ2…⊗φn)=Uh
1
(R)φ1⊗Uh

2
(R)φ2⊗…⊗Uh

n
(R)φn

 If we denote the generators of Uk  by Jk ,i i=1 ,2 ,3  then for the generators Ji  of U  we have 

Ji=∑
k=1

n

I⊗…⊗ Jk ,i⊗…⊗I  and so Jz  carries eigenvalues m1+m2+…+mn

with mk∈{− jk ,…, jk} if Uk  is a spin jk  representation for k=1 ,n

Take now n=2 j  and Uk
=U(1) ,the same spin 

1
2

 representation , valued on GL(V (1 )
)

 having generators J i
(1)  with eigenstates e+ ,e−  for eigenvalues 

1
2

 respective −
1
2

 of Jz
(1)

We can consider the subspace of symmetric tensors of the tensorial product space

V (n)
=
k=1

2 j

V (1) namely

S={ ∑
i1 ,i2 ,… ,i n=±

ai 1 i2…i n ∑
τ∈Sn

eiτ(1)⊗ei τ(2)⊗…⊗ei τ(n)|ai1 i 2… i n∈ℂ  for i1 , i 2 ,…, i n=± }

 The product representation is U(n)  with generators J i
(n)

The subspace S  is invariant under U(n)  carries the eigenstate e+⊗e+⊗…⊗e+

of eigenvalue j  of Jz
(n)  and has dimension n+1=2 j+1 and therefore the restriction of 

U(n )  to S  must be a spin j  irreducible representation of SO(3) .
In the same way we conclude that the representation given by
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 U(R)=R  for any R∈SO(3)  is a spin 1 irreducible representation 
and the representation given by
U(R)((εi j)i , j=1 , 2 ,3)=(Rk iRl j εi j)k ,l  with invariant space 
V={ε∈M3×3(ℂ)|εi j=ε j i  , εkk=0  with i , j=1, 2 ,3} , the symmetric traceless tensors, is a spin 2 

representation.

Consider now G=SO+
(3 , 1) the restrict Lorentz group (by suitable measuring units for time we 

can consider the speed of light constant to be c = 1  ) and the Minkowski  space with pseudo-metric
(η

αβ
)  , ηi j=−δi j  , η

i 4
=η

4 i
=0  , η4 4

=1
 For any M∈G  we have uniquely determinated B=B(χ ,q)  , R=R(θ ,n)  with 
n=(ni)  , q=(qi)  versors and χ ,θ  ∈ ℝ  such that M=BR
Ri j=−ϵi j knk sin(θ)+(δi j−n in j)cos(θ)+n in j  , Ri4=R4 i=0  , R4 4=1
Bi j=δ i j+(cosh (χ)−1)qiq j  , Bi4=B4 i=−q i sinh(χ )  , B4 4=cosh (χ)

 (see Chap. Special relativity. Lorentz transformation )v i=q i tanh (χ)

G=SO+
(3 , 1)  is therefore a 6-dimensional Lie group with maps by parametrisation in 

((χq i) ,(θn i))  and as the map h0  we will take the map which contains (0)∈ℝ
6 in its domain.

We can verify that
B(χ+δ χ ,q)=B(δ χ ,q)B(χ ,q)    (7)
R(θ+δθ ,n)=R(δθ ,n)R(θ ,n)      (8)

and we can define ( J̄i)  , (K̄ i)  such that 

nk J̄k=
dR
dθ

(0 ,n)   ,  qk K̄ k=−
dB
d χ

(0 ,q)  with  

( J̄i) j k=−ϵi j k   ,  ( J̄i)4α=( J̄ i)α 4=0   ,  (K̄ i)j k=0   ,  (K̄ i)4 j=(K̄ i) j4=δi j   ,  ( K̄ i)4 4=0
and so we will have :
B(χ ,q)=exp(−χqk K̄ k)   ,  R(θ ,n)=exp (θnk J̄k)      (9)

M(δχ ,q ;δθ ,n)=B(δ χ ,q)R (δθ ,n)=I−δ χqk K̄ k+δθnk J̄k+O(ε
2
)      (9’)

 for δχ  , δθ   ∈   O(ε)

[ J̄i , J̄ j ]=ϵi j k J̄k  , [K̄ i , K̄ j ]=−ϵi j k J̄k  , [ J̄i , K̄ j ]=ϵi j k K̄k     (10)

 For a representation U  of SO+
(3 ,1)  we can define ( J i)  , (K i)  such that 

nk Jk=
dU
d θ

(R(0 ,n))  , qkK k=−
dU
d χ

(B(0 ,q))  and we will have: 

U(B(χ ,q))=exp(−χqkKk)   ,  U (R(θ ,n))=exp(θnk Jk)   (11)

U(M(δχ ,q ;δθ ,n))=I−δ χqkK k+δθnk Jk+O(ε
2
)      (11’)

 for δχ   ,  δθ  ∈  O(ε)

 Let Al(θ)=R(−θ ,n) J̄lR(θ ,n) . Then from (9) and (10) follows 
d Al

d θ
=ϵl k j A j=( J̄k)l j A j  and because Al(0)= J̄l  we have the solution 

Al=R l j J̄ j  where R=R(θ ,n)  and so we have 

R−1 exp(φ J̄l)R=exp(φRl j J̄ j)
Therefore, according (9) and (11) , for θ  , φ  small enough we obtain 
U(R)

−1 exp(φ Jl)U(R)=exp(φRl j J j)  and taking the second order approximation in φ:
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U(R)
−1 JlU(R)=Rl j J j  and so for θ=δθ  follows 

(I−δθnk Jk) Jl(I+δθnk Jk)=(δ l j−δθnk ϵl j k) J j+O(δθ
2
)

[ Jl , Jk ]=ϵl k j J j      (12)

 In the same way, taking Al(θ)=R(−θ ,n) K̄ lR(θ ,n)  we obtain 

R−1 exp(−χ K̄ l)R=exp (−χRl j K̄ j)  with R=R(θ ,n)  and further, if θ=δθ  is small enough : 

(I−δθnk Jk)K l (I+δθnk Jk)=(δ l j−δθnk ϵk l j)K j+O(δθ
2
)

(nk)  being an arbitrary versor, we will have 
[ Jk ,K l ]=ϵk l jK j    (13)

We take now
Al (χ)=B(−χ ,q) K̄ lB(χ ,q)  , C l(χ)=B(−χ ,q) J̄lB(χ ,q)  and we have from (9) and (10)
d Al
d χ

=−qk ϵk l jC j

dC l

d χ
=−qk ϵk l j A j

Therefore , for B=B(χ ,q)  and R=R (χ ,q)  the solution 
B−1

(K̄ l+ J̄l)B=Rl j(K̄ j+ J̄ j)    (14)
 From (10) we obtain [K̄ i+ J̄i , K̄ j+ J̄ j ]=0  , [ K̄ i , J̄i ]=0  for i , j=1 ,2 , 3  and so we have: 

exp(χ ′ (K̄ l+ J̄l))=exp(χ ′ K̄ l)exp (χ ′ J̄l) and

exp(χ ′R l j( K̄ j+ J̄ j))=∏
j=1

3

exp (χ ′Rl j K̄ j)exp(χ ′Rl j J̄ j)

Multiplying (14) by χ ′ , exponentiating , applying U  for small enough χ  and χ ′  and after 
that considering (11) we obtain now:

U(B)
−1 exp(χ ′K l)exp (χ ′ Jl)U(B)=∏

j=1

3

exp(χ ′Rl jK j)exp (χ ′Rl j J j)

Taking the second order approximation in χ ′  we obtain, for small enough χ  that: 
U(B)

−1
(K l+ J l)U(B)=Rl j(K j+ J j)  and for χ=δ χ

(I+δχqkK k)(K l+ Jl)(I−δ χqk Kk)=(δl j−δχqk ϵk l j)(K j+ J j)
With (13) we can now conclude that 

[Kk ,K l]=−ϵk l j J j     (15)
We have therefore the commutation relations (12) , (13) , (15) for the generators.

Consider now the Dirac equation for a four component wave function ψ=(ψα) (as a column 
vector) of a mass m particle :
i γμ

∂μ ψ−mψ=0
with the 4x4 matrices 

γ
k
=(

0 σk

−σk 0 )  , γ4
=(

I 0
0 −I)

Under a Lorentz transformation M=(Mαβ) with
x ′μ=Mμδx

δ  , (xμ
)=(x , y , z , t )  , (x ′μ)=(x ′ ,y ′ ,z ′ ,t ′) (we consider the speed of light c = 1 )

we suppose that the wave function transforms like
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ψ ′α=Sαδ ψδ

We have Mνμ∂ν ′=∂μ  , γμMνμ∂ν ′S
−1

ψ ′=mS−1
ψ ′ and so requiring Lorentz invariance of the 

Dirac equation we come to
S−1

γ
νS=Mνμ γ

μ

We can verify that:
γ

α
γ

β
+γ

β
γ

α
=2η

αβ   (16)
 Considering (16), for M=B(χ ,q)  we can take 

S=P(χ ,q)=cosh (
χ

2
)I+sinh(

χ

2
)qk γ

k
γ

4

 and for M=R(θ ,n)  we can take 

S=Q(θ ,n)=cos( θ
2

)I+ 1
2

sin ( θ
2
)nk ϵk i j γ

i
γ
j

 Let SL(2,ℂ)={S∈M2×2(ℂ)|det S=1}

 Since (I ,σ1 ,σ2 ,σ3)  is a basis of M2×2(ℂ)  we have α0 ,α1 ,α2 ,α3   ∈ℂ , uniquely determined for
S∈SL(2,ℂ)  such that S=α0I+αkσk    (17)

 and α0
2
−α⃗

2
=1 which leads to

(ℜα0)
2
−(ℑα0)

2
=(ℜα⃗)

2
−(ℑα⃗)

2
+1    (18)

(ℜα0)(ℑα0)=(ℜα⃗)(ℑα⃗)          (18’)
 If we suppose now that S=(a I−X kσk)(bI−i Yk σk)   (19)

 with a,b∈ℝ   ,  a≥1   ,  (Xk) ,(Y k)∈ℝ
3

a2
−X⃗2

=1    (19’)
b2

+Y⃗ 2
=1     (19’’) , then (17) leads to

ab+ i X⃗ Y⃗=α0   (20)   and 

b X⃗+ ia Y⃗+ X⃗×Y⃗=−α⃗   (21) , or , by taking real and imaginary parts :
ab=ℜα0    (22)

b X⃗+ X⃗×Y⃗=ℜα⃗      (23)
X⃗ Y⃗=ℑα0    (24)

aY⃗=−ℑα⃗   (25)

Also from (17) we have :
b I−i Y kσk=(aI+Xkσk)(α0 I+αk σk) and so

b=aα0+α⃗ X⃗ (26)

Y⃗=iα0 X⃗+ i aα⃗− X⃗×α⃗   (27)

 1. If (ℜ α⃗)×(ℑα⃗)=0
        1.1 if ℑα⃗=0  we obtain Y⃗=0  from (25) and so, from (19'') b2

=1
By (18) and (18’) we will have in this case ℑα0=0 and taking the real part of (27) it follows

X⃗×ℜα⃗=0  , X⃗=λ ℜα⃗  with λ∈ℝ

From (26) we have now b=aα0+λ (ℜα⃗)
2  and multiplying by a  , using (22)  we have:

α0(1−a2
)=λ α⃗

2  and so with (19') follows −α0 λ
2
α⃗

2
=λα⃗

2a    (28)

If in this case α0
2
=1  from (18) we will have α⃗=0  and so X⃗=0  and by (19') and (22) 

a=1  , b=α0a . Hence a ,b , X⃗ , Y⃗ are uniquely determined from (19) by α0 , α⃗

If in this case α0
2
≠1  from (18) follows ℜα⃗≠0  and from (22) and (19’) follows

a2
≠1  and X⃗≠0 . Therefore λ≠0  and (28) leads to −λα0=a
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 and so, by (19') and (18) a2
=(ℜα0)

2
=1+(ℜα⃗)

2
>1 provides the correct uniquely determination 

of a ,b , X⃗  , Y⃗  from (19) by α0 , α⃗ .
       1.2. If ℑα⃗≠0  follows 

ℜα⃗=λ ℑα⃗  with λ∈ℝ  and because from (25) and (27) we have 
(a2

−1)ℑα⃗=−aℑα0 X⃗−a X⃗×ℜα⃗  , we will also have 

a( X⃗×ℜα⃗)
2
=0  and (a2

−1)ℑ α⃗=−aℑα0 X⃗ (29)  which by (19’) leads to 

(a2
−1)

2
(ℑ α⃗)

2
=a2

(a2
−1)(ℑα0)

2    (30)
                    1.2.1 If (ℜα0)(ℑα0)=0
In this subcase, from (18’) follows ℜα⃗=0  and with (23) and (25) we obtain 

b X⃗2
=0  and X⃗=μ Y⃗  , μ∈ℝ

From (22), (25) , (19’’) and (18) we have a2
=(ℜα0)

2
+(ℑα⃗)

2
=1+(ℑα0)

2
+(ℜα⃗)

2
≥1

From (24) and (25) we have μ(ℑα⃗)
2
=a2

ℑα0  and so a ,b , X⃗ , Y⃗ are correctly uniquely 
determined.
                       1.2.2 If (ℜα0)(ℑα0)≠0
In this subcase, (24) leads to
X⃗≠0  and so, by (19') a2

≠1  and from (30) follows a2
((ℑ α⃗)

2
−(ℑα0)

2
)=(ℑα0)

2 (31)

In this case (ℜα⃗)
2
(ℑ α⃗)

2
=((ℜα⃗)(ℑ α⃗))

2  and therefore, by (18) and (18') taking

μ
2
=

(ℑα0)
2

(ℑα⃗)
2  we obtain (1−μ

2
)((ℜ α⃗)

2
+(ℑα0)

2
+1)=1  and so μ2

<1

Hence, by (31) , (29) , (22) , and (25) a ,b  , X⃗  , Y⃗ are again correctly uniquely determined.

 2. If (ℜ α⃗)×(ℑα⃗)≠0
 we have λ ,μ ,ρ∈ℝ  such that 
X⃗=λ ℜα⃗+μ ℑα⃗+ρ(ℜ α⃗)×(ℑα⃗)  the relations (25) , (21) and (24) leading to 
λ ℜα0+ρ(ℑα⃗)

2
=−a   (32)

μ ℜα0−ρ(ℜα⃗)(ℑ α⃗)=0 (33)
λ−ρℜα0=0    (34)

λ (ℜα⃗)(ℑα⃗)+μ(ℑα⃗)
2
=−ℑα0     (35)

From (22) , (25) , (19’’) and (18) we have a2
=(ℜα0)

2
+(ℑα⃗)

2
=1+(ℑα0)

2
+(ℜα⃗)

2
≥1

which determines correctly
a≥1  and now (32),(34) and (35) determine λ ,μ ,ρ  and therefore X⃗ ; ( 25 ) determines Y⃗
a,b , X⃗ , Y⃗  are correctly uniquely determinated from (19) by α0  and α⃗

 Taking a=cosh (
χ

2
)  , X⃗=sinh(

χ

2
)q  , b=cos (θ

2
)  , Y⃗=sin( θ

2
)n  with versors q ,n ,

we  see that S L(2 ,ℂ) can be considered as a 6-dimensional Lie group with mappings given by 
local parametrisation in

((χqk),(θnk))∈ℝ
6  , h((χqk) ,(θnk))=exp(−

1
2

χ qkσk)exp (−i 1
2

θnkσk) ,

because we can easily verify by differentiation and same initial conditions that

cosh (
χ

2
)I−sinh(

χ

2
)qkσk=exp(−

1
2

χqkσk)  and  

cos (θ
2

)I−i sin( θ
2
)nkσk=exp(− i 1

2
θnkσk)

We define T :SL(2 ,ℂ)→SO+
(3 , 1)  and H :SL (2,ℂ)→M4×4(ℂ)  such that if 

S=exp(−
1
2

χ qkσk)exp (−i 1
2

θnkσk)  then 
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T (S)=B(χ ,q)R(θ ,n)  and H(S)=P(χ ,q)Q(θ ,n)

 For S1  , S2∈SL(2 ,ℂ)  we can verify that: 

H (S i)
−1

γ
μH (Si)=(T (S i))μν γ

ν  for i=1 ,2   ,  μ=1 , 4  and therefore 

(H (S1)H (S2))
−1

γ
μ
(H (S1)H (S2))=(T (S1)T (S2))μνγ

ν

 Let be S  such that T (S)=B(χ ,q)R (θ ,n)=T (S1)T (S2) . Then we can have only 

S=±exp(−
1
2

χqkσk)exp (−i 1
2

θnkσk)  and we have also: 

H (S )
−1

γ
μH(S)=(T (S1)T (S2))μν γ

ny  and for W=H (S )(H(S1)H(S2))
−1  we will have 

γ
μW=W γ

μ  for  μ=1, 4       (36)

 We take W=(A B
C D)  with A,B ,C ,D   ∈  M2×2(ℂ)

 Taking μ=4  in (36) we obtain B=−B  and C=−C  and so B=C=0
 For μ=i  in (36) follows Aσ i=σiD      (37)

 From (36) we obtain W γ
i
γ
j
=γ

i
γ
jW  and so, because for  i≠ j  we have 

γ
i
γ
j
=(

− i ϵi j kσk 0

0 −i ϵi j kσk
)  it follows 

Aσk=σk A   and  Dσk=σkD    (38)
 Hence, (I ,σ1 ,σ2 ,σ3)  being a basis of M2×2(ℂ)  , (37) and (38) lead to 
A=D=λ I  with λ∈ℂ  and so W=λ I   ,  H (S)=λH(S1)H(S2)      (39)

 For the subspace of ℂ4  (cosidered as column vectors), namely K={(X ,X )∈ℂ
2
×ℂ

2|}

we can verify that for any S0∈SL(2,ℂ) ,Z=(X ,X )∈K  we have H (S0)Z=(S0X , S0X )

Therefore, from (39) we obtain
S=λ S1S2  and because det S=det S1=det S2=1  it follows λ=±1
 Obviously T (S)=T (−S)  for any S∈S L(2 ,ℂ)  and so T (S1S2)=T (S1)T (S2)

Thus we have a well defined groups isomorphism
p∘T−1 :SO+

(3 , 1)→SL(2,ℂ)/{−I ,I} where p is the projection operator 
p:S L(2,ℂ)→SL(2,ℂ)/{−I ,I}

Moreover, T is a local diffeomorphism , is a double covering of SO+
(3 ,1)  by S L(2 ,ℂ)

and determines also the differential structure of S L(2 ,ℂ)/{−I , I}
 Considering F=(p∘T−1

)
−1  the inverse group isomorphism defined above we have that 

U  is a representation of SO+
(3 , 1)  if and only if U∘F is a representation of

S L(2 ,ℂ)/{−I , I} .
 By composition with the projection operator at left, any representation of 
SL(2 ,ℂ)/{−I , I} determines a representation of SL(2 ,ℂ)

Consider now the functions U :D→SL(2 ,ℂ)  defined for any map h :D→SL(2,ℂ)/{−I ,I} such 

that U((χqk), (θnk))=exp(−
1
2

χqkσk)exp(−i 1
2

θnkσk)  for ((χqk) ,(θnk))∈D

 We have that T (U∘h−1
(Ŝ ))=R  for any R∈SO+

(3 ,1)  where Ŝ=p∘T−1
(R)

 Therefore T (Uh( Ŝ0 Ŝ1))=T (U (Ŝ0))T (Uh(S1)) and so, as already proven above, we must have

Uh(Ŝ0 Ŝ1)=±U(Ŝ0)Uh( Ŝ1)  for Ŝ0  , Ŝ1  in some neighbourhoods of I  respective Ŝ∈h(D)

 Because U ∘h−1  and U ∘h0
−1 are continuous, if these neighbourhoods, W0 respective W1 , are 

connected then Uh( Ŝ0 Ŝ1)=U( Ŝ0)Uh( Ŝ1)  for ( Ŝ0 , Ŝ1)∈W0×W1   
Hence if Ū  is a representation of SL(2 ,ℂ)  then Ū∘U is a representation of
S L(2 ,ℂ)/{−I , I} .

Therefore any representation of SL(2 ,ℂ)  determines a representation of S L(2,ℂ)/{−I ,I} and 
backwards.
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Determining irreducible representations of SO+
(3 ,1) reduces to determining irreducible 

representations of SL(2 ,ℂ) .
 Let U  be a representation of SL(2,ℂ) . We denote

A(χ ,q)=exp (−
1
2

χqkσk)   ;  C (θ ,n)=exp(−i 1
2

θnkσk)  and we will have 

A(χ+δχ ,q)=A(δχ ,q)A(χ ,q)   ;  C (θ+δθ ,n)=C (δθ ,n)C (θ ,n)        (40)
As we mentioned , we denote by U  the same function U ∘h0

−1  where h0:D0→GL(V )

is the map around the origin from the representation definition.
In the same way as we proven in the case of SO+

(3 ,1) , considering the relations (40), if we 
define (Mk),(Nk)  by 
dU
d χ

(A(0 ,qk))=−qkMk   ,  
dU
d θ

(C (0 ,n))=− i nkNk

U(A(χ ,q))=exp (−χqkMk)   ,  U (C (θ ,n))=exp(−iθnkNk)         
 
 

We will in addition suppose that the functions defined in χ+i θ  ∈ℂ  by 

f j(χ+iθ)=U (A(χ ,(δ j k))C (θ ,(δ j k)))=U(exp(−
1
2

(χ+i θ)σ j)) are complex differentiable, or 

that the function defined on the complex variables (αk)

F ((αk))=U(√1+α⃗
2 I+αk σk)  is complex differentiable in each variable αk in some 

neighbourhood of (0 , 0, 0).

We can prove that we have f j(χ+iθ)=U (cosh (
1
2
(χ+iθ))I−sinh(

1
2
(χ+ iθ))σ j) and so any of 

these two suppositions will lead to Mk=Nk .

 Let E l(θ)=
1
2
C (−θ ,n)σlC (θ ,n) and considering the commutation relations satisfied by 

(
1
2

σk) we obtain 
dEk

d θ
=−nk ϵk l jE j  and so we have the solution 

E l=Rl j

1
2

σ j .   Therefore for δχ ,δθ  small enough we will have: 

C (−δθ ,n)exp (−
1
2

δχσ l)C (δθ ,n)=exp(−
1
2

δχRl jσ j)  and 

U(C )
−1 exp(−δ χMl)U (C)=exp(−δχR l jM j)  where C=C (δθ ,n)

Taking the second order approximation in δχ  and after that in δθ  it follows 
(I+i δθnkMk)Ml(I−i δθnkMk)=(I−δθnk ϵk l j)M j+O(δθ

2
) and so we will have the 

commutation relations:
[Mk ,Ml ]=i ϵk l jM j        (41)

We take X=M1+iM2   ,  Y=M1−iM2   ,  H=2M3   and we will have: 
[X ,Y ]=H   ,  [H ,X ]=2X   ,  [H ,Y ]=−2Y     (42)

M1=N1=
1
2

(X+Y )   ,  M2=N2=
1
2
( iY−i X )   ,  M3=N3=

1
2
H

Suppose  that U is finite-dimensional complex and irreducible.
Then exists an eigenvalue λ∈ℂ  of H  with an eigenvector v∈V  , Hv=λv  , v≠0

 From [H ,X ]=2X  follows H X jv=(λ+2 j)X jv and the space being finite-dimensional we 
can take i0= max {i∈ℕ|X iv≠0}. Let v 0=X

i 0v  , v j=Y
jv 0 .

 From [H ,Y ]=−2Y  follows Hv j=(λ+2(i0− j))v j and the space being finite-dimensional we 
can take m=  max {i∈ℕ|vi≠0}

We have 
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X v0=0  , Xv j+1=XY v j=Y Xv j+Hv j=Y X v j+(λ+2( i0− j))v j  , Y v j=v j+1 ,Y vm=0
v0 , v1, … vm are linearly independent being eigenvectors of H for distinct eigenvalues and by 
induction follows from the above relations that H, X, Y leave invariant the subspace generated by 
them. The representation being irreducible, that subspace must be the whole space and H has 
therefore one-dimensional eigenspaces for each eigenvalue λ+2(i0− j)  , j=0 ,m with 
eigenvectors respective vj . Therefore for the trace of H we have:

tr H=∑
j=0

m

(λ+2(i0− j ))=(m+1)(λ+2 i0−m) . 

Since tr H=tr [X ,Y ]=0  it follows λ=m−2 i0
By induction we can prove X v j= j(m− j+1)v j−1  for j=1 ,m  having Xv0=0 .
In conclusion we will have V=Sp[v0 ,v1 ,…,vm]  , Hv j=(m−2 j)v j  for j=0 ,m and also
Y vm=0  , Y v j=v j+1  for j=0 ,m−1 for the spin m/2 irreducible representation representation.

It can be proved without difficulties that if the V is the subspace of complex polynomials given by

Vm={∑
j=0

m

a jx
m− j y j

∈P [x , y ]|a j∈ℂ  for j=0 ,m}
 then U:SL(2,ℂ)→GL(Vm)  with U(A)p(x , y)=p (A−1

(x , y))  for any A∈SL(2 ,ℂ)

 and any p(x , y)∈Vm  , A−1  acting on the column vector (x , y) , provides a m+1-dimensional 
irreducible representation of S L(2 ,ℂ)

 For A=exp (−i 1
2

θσ3)  we have A−1
=cos( θ

2
)I+i sin( θ

2
)σ3  and  

exp (−i 1
2

θH)(xm− j y j
)=U(A)(xm− j y j

)=

=(cos( θ
2
)+ isin (θ

2
))
m− j

(cos (θ
2

)−i sin (θ
2
))
j

xm− j y j
=exp( i

m−2 j
2

θ)xm− j y j

Differentiating with respect to θ  and taking θ=0  we obtain 
H (xm− j y j

)=(m−2(m− j))xm− jy j and so we have obtained the eigenvalues and eigenvectors 
of H in the representation.

Page 11 of 11


