
                   On the rotation groups and the restricted Lorentz group

 Consider the n-dimensional rotations group
 SO(n)={R∈Mn×n(ℝ)|RR

T
=I  , det R=1} .

On the rotations group we take the topology induced from the square real matrices space such that a
fundamental system of neighbourhoods of R0∈SO(n)  is (Vε(R0))ε>0  with 
Vε (R0)={R∈SO(n)||Ri j−R0 i j|<ε  for i , j=1,n}
 For any R=(Qi j)i , j∈SO(n+1)  if Qk1≠0  we consider 

e1
k
=(Qi1)i=1 ,n+1  , e j

k
=(δ j−1 i)i=1 ,n+1  for j=2 ,k  , e j

k
=(δ j i)i=1 ,n+1  for j=k+1 ,n+1  and 

f 1
k
=e1

k

f p+1
k =vers(ep+1

k −∑
j=1

p

⟨f j
k ,ep+1

k ⟩ f j
k)  for p=1 ,n−1

f n+1
k =sign (Qk 1) vers(en+1

k −∑
j=1

n

⟨f j
k ,en+1

k ⟩f j
k)

 Then if Qk 1≠0  for Q(k )
=(f i j

k
)i , j=1 ,n+1  we have Q(k )

∈SO(n+1)  and 

Q(k )R=(
1 01×n

0n×1 R(k ))=M(k )  with 

R(k)
∈SO(n)

 where ⟨ .,.⟩  denotes the euclidean scalar product and δ  the Kronecker symbol 
We suppose as a induction hypothesis that we have a C∞  class mapping with 
W∋(ψ j)j=1 ,n (n−1 )/2→R((ψ j)j)∈SO(n)

W  an open set of ℝn(n−1)/2  and rank (
∂Rpq

∂ψ j
)pq , j

=
n(n−1)

2
 , p ,q=1,n  , j=1 ,n(n−1)/2

 We take (ψs)s=n (n−1) /2+1,n(n+1)/2→(Qs1)s=1 ,n+1∈Sn  where Sn={x∈ℝ
n+1|‖x‖=1} is the 

n+1- dimensional sphere, a mapping of Sn.

 We have Q(k )T
=(
Q11 A
B C )  with A∈M1×n(ℝ)  , B∈Mn×1(ℝ)  , C∈Mn×n (ℝ).

B=(
Q2 1

.

.
Qn+11

)  and (AC )  has an inverse S∈M(n+1)×n(ℝ)  : S(AC )=In

It follows

Q(k )TM(k )
=(Q1 1 AR(k)

B CR(k ))   (1) and we can consider now a mapping R(k )  such that 

R(k)
((ψs)s=1,n(n+1)/2

)=Q(k )T (
1 01×n

0n×1 R )
Q(k )

=Q(k )
((ψs)s=n(n−1)/2+1 ,n(n+1)/2)

R=R((ψ j)j=1 ,n(n−1)/2)

 Since rank(
∂Qi1

∂ ψs
)i ,s=n  with i=1,n+1  , s=n(n−1)/2+1,n(n+1)/2

 and the mapping R  has rank n(n−1)/2  and we have the inverse S  for 
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(AC )  it follows that if ∑
j=1

n(n+1)/2

α j

∂(Q(k)M(k )
)

∂ψ j
=0  with α j∈ℝ  , j=1 ,n(n+1)/2

 then α j=0  for j=1,n(n+1)/2  and so rank(∂Rpq
(k )

∂ψ j
)pq , j

=
n(n+1)

2

 where p ,q=1 ,n+1  , j=1 ,n(n+1)/2
 The application Φ(k) :Sn×SO(n)→SO(n+1)

Φ
(k )
((Qi1)i=1 ,n+1 ,R(k)

)=M(k )

is a local homeomorphism, defined in the neighbourhood of each
((Qi1)i=1 ,n+1 ,R(k ))  with Qk 1≠0  and so by induction we can define a smooth class C∞

manifold structure on SO(n+1)  having dimension n (n+1) /2  that generates the same 
 topology on SO(n+1)  as induced from M(n+1)×(n+1)(ℝ) .

Suppose now the induction assumption that for any R∈SO(m)  , m≤n  exists 
W∈Mm×m(ℝ)  such that W=−WT  and R=exp(W )

 For Q∈SO(n+1)  if Q  invariates a subspace V  of ℝn+1  (i.e. Q(V )=V  ) 
 then Q  invariates also V ⊥

 If λ∈ℂ  , x∈M(n+1)×1(ℂ)  , x≠0  , Qx=λ x  it follows λ λ=1  , since QQT
=I

(λ  the complex conjugate of λ)
 If further λ∈ℂ∖ℝ  taking u=ℜ x  , v=ℑ x  we have 
λ=cos (θ)+i sin(θ)  , sin (θ)≠0  , v≠0
Qu=ucos(θ)−v sin(θ)  , Qv=u sin(θ)+v cos (θ)  and since QQT

=I  we will have 
‖u‖2

=‖u‖2 cos2
(θ)+‖v‖2 sin2

(θ)−2⟨u ,v ⟩sin (θ)cos (θ)
‖v‖2

=‖u‖2 sin2
(θ)+‖v‖2 cos2

(θ)+2⟨u ,v ⟩sin(θ)cos (θ)
⟨u ,v ⟩=(‖u‖2

−‖v‖2
)sin(θ)cos(θ)+⟨u ,v⟩(cos2

(θ)−sin2
(θ))

(‖u‖2
−‖v‖2

)(cos (2θ)−1)−2 ⟨u ,v ⟩ sin(2θ)=0
(‖u‖2

−‖v‖2
)sin(2θ)+2 ⟨u ,v ⟩ (cos (2θ)−1)=0

 Therefore, since sin(θ)≠0  it follows ⟨u ,v⟩=0  , ‖u‖=‖v‖≠0
Q  invariates Sp(u ,v )  and Sp (u ,v)⊥  and so we can find R∈SO(n+1)  such that 

RQRT
=(

B 02×(n−1)

0(n−1)×2 Q0
)

 with Q0=exp(W 0)∈SO(n−1)  , W0=−W0
T
∈M(n−1)×(n−1 )(ℝ)

B=(cos (θ) −sin(θ)
sin (θ) cos (θ) )=exp(θA)  where A=(0 −1

1 0 )
 Taking W=RT (

θ A 02×(n−1)

0(n−1)×2 W0
)R  we obtain Q=exp(W )

 If λ∈ℝ  we must have λ∈{−1 , 1}
 Then if x∈M(n+1)×1(ℝ)  , Q x=−x  , x≠0  since detQ=1  there it exists another 
y≠0  , y∈{x}⊥  such that Q y=−y  and we will have 

R∈SO(n−1)  with RQRT
=(

exp (π A) 02×(n−1)

0(n−1 )×2 Q0
)  , Q0=exp (W0)  , W0=−W0

T

 and we can take Q=exp(W )  with W=RT (
π A 02×(n−1)

0(n−1)×2 W0
)R=−W T

∈M(n+1)×(n+1)(ℝ)

Page 2 of 12



 If x∈M(n+ 1)×1(ℝ)  , x≠0  , Qx=x  we will have R∈SO(n+1)  such that 

RQRT
=(

1 01×n

0n×1 Q0
)  where by induction assumption Q0=exp(W0) ,W0=−W0

T

 Taking W=RT

(
0 01×n

0n×1 W 0
)R=−W

T
∈M

(n+1)×(n+1)(ℝ)  we will have Q=exp(W )

Therefore , by induction we have proved that for any
Q∈SO(n)  exists W∈Mn×n(ℝ)  such that W=−W T  and Q=exp(W )

 Also it is obvious that if W=−WT  then WWT
=WTW  and so for Q=exp(W) :

QQT
=exp(W+WT

)=I  , Q∈O(n)
 Moreover we have W= J S J−1  where S  is the Jordan normal form of W

det exp(W )=det exp(S)=∏
i=1

n

exp(λi)  ,   where 

det(W−λ I)=∏
i=1

n

(λ−λ i)

 For W=−WT
∈Mn×n (ℝ)  , W x=λ x  , x∈Mn×1(ℂ)  , λ∈ℝ  we can take x∈Mn×1(ℝ)

 and so xTWx=xTWT x=−xTW x=0  , 0=xTW x=λ‖x‖2  and 
all real eigenvalues of W must vanish and since W is real we can split the eigenvalues as
E={i∈{1, ..n}|λ i∈ℂ∖ℝ}=E1∪E2  , E1∩E2=∅  , cardE1=cardE2

E1={i1 ,..., ik} , E2={ j1 ,..., jk} , λ i s=λ j s  for s=1 ,k

 Therefore it follows ∏
i=1

n

exp(λ i)>0  , Q=exp(W )∈SO(n).

We will prove now that the function
Φ :Mn×n(ℝ)→Mn×n(ℝ)  with Φ(W )=exp (W)  for any W∈Mn×n (ℝ) satisfies 

det(
∂Φpq

∂ t i j )pq ,i j

≠0  for any W=(ti j)i , j∈Mn×n(ℝ)   where  i , j ,p ,q=1 ,n     (2)

Φ=(Φpq)p ,q=(epq
W
)p ,q

(2) is equivalent to the fact that

 for any W  , β∈Mn×n(ℝ)  the relation ∂
∂h

exp (W+hβ)¿|
h=0

=0  implies β=0 .

 Suppose we have W ,β∈Mn×n(ℝ)  such that ∂
∂h

exp(W+hβ)|
h=0

=0

 Since for any J∈Mn×n(ℂ)  with det J≠0  we have 
∂
∂h

exp( JW J−1
+h Jβ J−1

)= J(
∂
∂h

exp(W+hβ)) J
−1 it is sufficient to prove (2) only for W 

having the upper triangular normal Jordan form

W=(
C1 0 .. 0
0 C2 .. 0
. .. . 0
0 .. 0 Cr

)  with C i  cells of the form C i=λ iIsi+Nsi  , λ i∈ℂ  , si∈ℕ
*

Ns i=(nk l)k , l=1 ,s i  , nk l={1  if l=k+1 ,1≤k≤si−1
0  otherwise 

 for k , l=1,si

 We denote W i i=μi  for i=1 ,n

Let W having the Jordan normal form and we have :
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∂eW

∂ ti j
=∑

m=1

∞ 1
m!∑k=0

m−1

Wm−1−k E i jW
k  where E i j=(δi kδ j l)k , l=1 ,n     (3)

 For any k∈ℕ  , Wk is upper triangular and has diagonal coefficients 
(Wk

)i i=μ i
k  and therefore calculating the terms Wm−1−k E i jW

k  it follows that 

∂epq
W

∂t i j
=0  if q< j  or p>i .

We consider for pq and ij pass the ordering (1n)(2n))...((n-1)n)(nn)(1(n-1))...(n(n-1))(1(n-2))…...
(11)((21)...((n-1)1)(n1) we find that the matrix

(
∂epq

W

∂t i j )pq , i j

 has an upper triangular form and so 

det(
∂ epq

W

∂t i j )pq ,i j

=∏
p ,q=1

n ∂ epq
W

∂ tpq
Calculation from (3) , with W having the Jordan normal form leads to 

∂epq
W

∂tpq
=∑

m=1

∞ 1
m!∑k=0

m−1

μp
m−1−k

μq
k
={

exp(μp)−exp(μq)
μ p−μq

 if μ p≠μq

exp(μp)−1
μp

 if μ p=μq

 and so det(
∂epq

W

∂ ti j )pq , i j

≠0  for any W∈Mn×n(ℝ) (3’)

 Let ( Js)s=1 ,n(n−1) /2 a system of linear independent generators for the antisymmetric real   

matrices  so that we have
W=−WT

∈Mn×n(ℝ)W=ψs Js  , ψs∈ℝ ( with Einstein summation convention for indexes

 s=1,n(n−1)/2)
Because we have (3’), it follows that for 
R0∈SO(n)  and ψ0

=(ψs
0
)s  such that exp(ψs

0 Js)=R0  we have an open neighbourhood 

U0  of ψ0  , an open neighbourhood G0  of R0  and the injective function 
Φ :U0→G0  , Φ(ψ)=exp (ψs Js)  , ψ=(ψs)s

As we proved , we can choose G0 such that we have a mapping
R :V 0→G0  of SO(n)  from some open neighbourhood V 0  of φ0  such that φ0

=(φs
0
)s  and   

R(φ0
)=R0  , rank (

∂Rpq

∂φs )pq , s
=
n (n−1)

2
   (4)

 Thus we have R(φ0
)=exp (ψs

0 Js)  and for φ=R−1
∘Φ(ψ)  we have R(φ)=exp(ψs Js)

 for any ψ∈U0  and the function R−1
∘Φ :U0→V 0  is continuous and injective .

Therefore, since U0 is open and U0 , V0 have the same dimension it follows that
R−1

∘Φ(U0)=W0  is an open set and φ0
∈W0  and we have a homeomorphism 

R−1
∘Φ :U0→W0  

Since (4) , by the implicit function theorem we will have a C1 class function
h :U1→V1  with U1  open neighbourhood of ψ0  , V 1  open neighbourhood of φ0  such that 
R(h(ψ))=exp(ψs Js)  for any ψ∈U1

 and for any (φ ,ψ)∈V1×U1:R(φ)=exp(ψs Js)  if and only if φ=h(ψ)
Since (3’) we have that
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rank(
∂ exp(ψs Js)pq

∂ψk
)pq ,k

=
n(n−1)

2
and we will have also a C1 class function

g :V 2→U2  with U2  open neighbourhood of ψ0  , V 2  open neighbourhood of φ0  such that 
R(φ)=exp(gs(φ) Js)  for any φ∈V 2

 and for any (φ ,ψ)∈V2×U2:R(φ)=exp(ψs Js)  if and only if ψ=g (φ).
 It follows (g∘h)(ψ)=ψ  , (h∘g)(φ)=φ  for any (φ ,ψ)∈V 1∩V 2×U1∩U2

Therefore we can find U, V open neighbourhoods of ψ
0  respective φ0  such that 

h(U)=V  , g (V )=U  , h|U=g
−1|U  , R(h(ψ))=exp (ψs Js)  , R(φ)=exp (gs(φ) Js)

 for any (φ ,ψ)∈V×U.
Intermediating through the R  mappings of the manifold structure SO(n)  we obtain that 

 for any ψ0  , ψ1  with exp (ψs
0 Js)=exp(ψs

1 Js)  there exist 

W0  an open neighbourhood of ψ0  and W 1  an open neighbourhood of ψ1  and a C∞  class 
 function f :W 0→W1  such that for any (ψ,ψ′)∈W0×W1 :
exp(ψs Js)=exp (ψ ′s Js)  if and only if ψ ′=f (ψ) and so we have the same manifold structure 
 on SO(n)  with topology induced from Mn×n(ℝ)  given by the mappings 
(ψs)s=1 ,n(n−1)/2→exp(ψs Js)  having the continuous surjective function 

Φ :ℝn (n−1) /2
→SO(n)  with Φ(ψ)=exp(ψs Js)  and so we find SO(n)  as a 
n (n−1)/2- dimensional connected Lie group. 

Consider now the Minkowski space
ℝ

4  identified with M4×1(ℝ)  having the pseudometric (ηαβ)α ,β  with 
ηαβ=0  if α≠β  , ηi i=−1  for i=1,3  , η0 0=1

( we  use greek characters for indexing from 0 to 3 and latin characters for indexing from 1 to 3 )
 We have the pseudo-scalar product ℝ4

×ℝ
4
∋(x , y)→x⋅y=yT ηx∈ℝ

x  , y  as column vectors x=xαEα  , (Eα)α  Minkowski base with 
Eα=(δαβ)β  (as column vector) , Eα⋅Eβ=ηαβ

We remind that , as a consequence of the Cauchy-Bunyakowsky-Schwarz inequality, we have:
i)  if x , y∈ℝ4  and x≠0  , xT

ηx≥0  , yT
ηx=0  then yT

ηy≤0
ii)  if x  , y∈ℝ4  and x≠0  , xT

ηx=0  , yT
ηx=0  then exists λ∈ℝ  with y=λ x .

 For M∈SO+
(3 ,1) ( see Chap. Representations of the rotations group and of the restricted 

Lorentz group , Spin representations) we have : 
M=R(θ ,n)B(χ ,q)=M( θ⃗ , χ⃗)  where θ⃗=θn  , χ⃗=χq  , θ⃗=(θi)i  , χ⃗=(χi)i
R(θ ,n)=(Rαβ)α ,β  , B(χ ,q)=(Bαβ)α ,β  , 
Ri j=−ϵi j knk sin(θ)+(δi j−n in j)cos(θ)+n in j  , Ri0=R0 i=0  , R0 0=1
Bi j=δ i j+(cosh (χ)−1)q iq j  , B0 i=Bi0=−q i sinh(χ)  , B0 0=cosh (χ)
B  is symmetric positive definite and so M=RB  must be the polar decomposition of  M  , 

B=√MTM  , R=M(√MTM)
−1

 and we can find k∈{1 ,2 ,3} such that : 
n=vers(ϵi j k(Ri−δi)×(R j−δ j))  with Ri=(Ri l)l  , δi=(δ i l)l

sin(θ)=−
1
2
ϵi j lnlR i j  , cos (θ)=

1
2
(Ri i−1)

cosh (χ)=B00  , sinh (χ)=√B0 0
2
−1  , qi=−

Bi0

√B0 0
2
−1
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Therefore we have a local homeomorphism :
ℝ

6
∋(θ⃗ , χ⃗)→M (θ⃗ , χ⃗)∈SO+

(3 ,1)  when SO+
(3 , 1)  is considered with the topology 

 which is induced from M4×4 (ℝ) and a 6-dimensional connected Lie group structure on
SO +

(3 , 1)  given by the mappings ( θ⃗ , χ⃗)→M(θ⃗ , χ⃗) .
Suppose now we have

(αk)k  , (βk)k∈ℝ
3  such that αk

∂M
∂θk

+βk
∂M
∂χk

=0  for a value of (θ⃗ , χ⃗)

It follows :

0=βk
∂B0 i

∂χk
=βk (−

δ i k
χ +

1
χ qiqk) sinh (χ)−βkqkqicosh (χ)

0=βk
∂B00

∂χk
=βkqk sinh(χ)  and so we obtain βi=0  for i=1 ,3

αk
∂R
∂θk

=0  with (Ri j)i , j=exp (θk Jk)  , ( Jk)i j=−ϵi j k  , for i , j ,k=1 ,3 .

 Since det(
∂epq

W

∂ ti j )pq ,i j

≠0  for any W=(t i j)i , j∈M3×3(ℝ)  as we have proven, it follows : 

rank (
∂ exp(θk Jk)i j

∂θl )i j , l=3  and so we must have also αk=0  for k=1, 3 .

 Therefore taking (ψl)l=1 ,6=(θ⃗ , χ⃗)  we have rank(∂Mαβ

∂ψl
)
αβ ,l
=6

We remind that we rise or lower the indexes according to
V α=ηαβV

β  , Vα
=η

αβVβ  , (ηαβ)=(η
αβ
)

 Let ϵαβ γδ  be the signature of the permutation (
α β γ δ

0 1 2 3)  and we define 

Jγ δ
αβ
=ϵ

αβ γε
ηεδ . We will have: 

J0 i=− J i0=− Ji  , J
i j
=ϵi j kK k  where Ji  , K k  are the Lorentz group generators 

( Jk)i j=−ϵi j k  , ( Jk)i0=( Jk)0 i=( Jk)0 0=0  , (Kk)i j=0  , (K k)i0=(K k)0 i=δ i0  , (Kk)0 0=0
R(θ ,n)=exp(θnk Jk)  , B(χ ,q)=exp(−χqkK k).

We define also

Jγ δ
αβ
=

1
2
ϵ  ψφ
αβ Jγ δ

ψφ
=−

1
2
ϵ
αβψφ

ϵψφδρη
γρ  obtaining 

Ji j=−ϵi j k Jk  , J0 i
=− Ji0=−K i .

 For a Lorentz coordinates transformation x ′μ=Λ  ν
μ x ν   ,  (Λ  ν

μ
)μ, ν=Λ∈SO

+
(3 ,1)

 we denote (Λμ
 ν
)ν ,μ=Λ

−1 .

 The relation Λ  α
μ
Λ  β
ν Jαβ=Λ−1 JμνΛ      (5) is equivalent to 

Λ  γ
ε
Λ  α
μ
Λ  β
ν
Λρ

 δ Jγδ
αβ
= Jερ

μ ν .
 Since Λ∈SO+

(3 ,1)  we have Λρ
 δ
=Λ ψ

φ
ηψδηρφ  and so (5) is equivalent to 

Λ  α
μ Λ  β

ν Λ  γ
ε Λ  ψ

κ ϵαβγψ=ϵμνε κ  which is true since det Λ=1
 Also, since Λ∈SO+

(3 , 1)  we have 
ϵ  μν
γ ε
Λ  α
μ
Λ  β
ν
=η

κ γ
η
ρε
ϵαβψφΛκ

 ψ
Λρ

 φ
=ϵ  αβ

κ ρ
Λ κ
γ
Λ  ρ
ε .

Therefore, from (5) follows :
Λ  α
ν
Λ  β
ν Jαβ=Λ−1 JμνΛ          (6)  
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We will prove further that if M∈SO+
(3 , 1)  then exists Λ∈SO +

(3 ,1)  such that 
M=Λ−1 exp(θ J3+χK 3)Λ  or M=Λ−1exp(α( J1+K 2))Λ  for some θ , χ ,α∈ℝ .

 If exists μ∈ℂ∖ℝ  such that we have x∈ℂ4
(x  as a column vector )x≠0  with 

Mx=μ x  , then if xT ηx≠0  it follows, since MT
ηM=η  that μ2

=1  and because 
μ∈ℂ∖ℝ  , we must have xT

ηx=0  and so 
ℜxT ηℜ x=ℑ xT ηℑ x  , ℜxT

ηℑ x=0        (7)
 If also ℜ xT ηℜx=0  , since ℑ x≠0 (   because μ∉ℝ)  we have λ∈ℝ  with ℜx=λℑ x .
 This leads to (i+λ)Mℑ x=( i+λ)μ ℑ x  which again contradicts μ∉ℝ .
 Therefore we have u=ℜx  , v=ℑ x  , x=u+ iv
uT ηu=vT

ηv≠0  , uT ηv=0      (8)
xT ηx=uT ηu+vT

ηv≠0     (9)  which from Mx=μ x   leads to  μμ=1  and α∈ℝ  with 
Mu=ucos(α)−v sin(α)
Mv=usin(α)+v cos(α )

As a consequence of Cauchy-Bunyakowsky-Schwarz inequality, from (8) we obtain
uT ηu=vT

ηv<0  and we can therefore consider uT ηu=vT ηv=−1 .
M  invariates V=Sp(u ,v)  and for V ⊥

={w∈M4×1(ℝ)|w
T
ηz=0  for any z∈V },

M  invariates also V ⊥ .
 We can take Λ∈SO+

(3 ,1)  such that Λ−1E1=u  and Λ−1E2=v .

 For M=ΛMΛ
−1  we will have: 

ME1=E1cos (α)−Esin(α)  , ME2=E1 sin(α)+E2cos (α) and that 
M  invariates Sp(E1 ,E2)  and Sp(E3 ,E0)=Sp (E1 ,E2)

⊥ .
 Hence exist θ  , χ∈ℝ  such that M=exp (θ J3)exp(χK 3)=exp (θ J3+χK 3)

M=Λ−1 exp(θ J3+χK 3)Λ

Therefore, to prove the statement we can further suppose that 
 if μ∈ℂ  , x∈M4×1(ℂ)  , x≠0  , Mx=μ x  then μ∈ℝ∗  and x∈M4×1(ℝ)  
 Let x∈M4×1(ℝ)  , λ∈ℝ∗  , x≠0  , Mx=λ x
 If xT ηx=0  we can choose x∈M4×1(ℝ)  and take Λ∈SO +

(3 ,1)  such that 

Λ x=E  where E=E3+E0  . Then for M=ΛMΛ
−1  , M  invariates 

{E}⊥=Sp(E1 ,E2,E )=V  and we will have: 
ME1=αE1+βE2+γE
ME2=α ′E1+β ′E2+γ ′E

ME=λ E

(10)

 Since M∈SO +
(3 ,1)  we obtain: 

α
2
+β

2
=1  , α ′2+β ′2=1  , αα ′+ββ ′=0

α=cos (θ)  , β=sin(θ)  , α ′=cos (θ ′)  , β ′=sin(θ ′)  , θ−θ ′=2k+1
2

π  , k∈ℤ .

 Let S=(
α α ′ 0
β β ′ 0
γ γ ′ λ)

After some calculus we find that solutions for the characteristic equation in μ  are: 

μ=λ  and μ=
1
2
(1+(−1)k+1

±√(1+(−1)k+1
)cos2

(θ)+4(−1)k)

 If k≡1(mod2)  and cos2
(θ)≠1  , S  and therefore also M  has an eigenvalue which is not real 

and so we can consider that k≡0(mod 2)  if cos2
(θ)≠1 .
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 If k≡0(mod 2)  or cos2
(θ)≠1  , M  must have an eigenvalue μ∈ℝ∗  , μ≠λ  , μ2

=1 .
My=μy  , ME=λE  , y∈V={E }⊥=Sp(E1 ,E2 ,E) .
M  invariates Sp(y ,E)  and Sp(y ,E)⊥=W  having dimW=2 .
 For z∈W  we have zT ηE=0 and as a consequence of the Cauchy-Bunyakowsky-Schwarz 

inequality, for any z∈W  which is independent of E  follows zT ηz<0 .
 Let E ′∈W  , E ′T ηE ′=−1  and we have β ″  , α ″∈ℝ  , β ″2

=1  with 
My=μ y

ME ′=β ″ E ′+α ″ E
ME=λ E

(10’)

yT ηE ′=0  , E ′T ηE=0  , ET
ηy=0  , yT

ηy=−1  , E ′T ηE ′=−1  , ET
ηE=0   (10’’)

Sp(y ,E ′ ,E )=Sp(E1 ,E2 ,E )  and from (10) , (10') follows 

det(S−ρI)=det(S ′−ρI)  for any  ρ∈ℂ  where S ′=(
μ 0 0
0 β ″ 0
0 α ″ λ

) and so we must have

(μ=1  and β ″=−1)  or (μ=−1  and β ″=1) .
 Because detM=1  , the characteristic equation in ρ  , det(M−ρI)=0 must have another 

solution ρ=−
1
λ

 and since λ∈ℝ  we have λ≠−
1
λ

 and z∈M4×1(ℝ)  , z independent of

x   such that Mz=− 1
λ
z  , Mx=λ x  , zT ηx=−zT ηx=0 .

 Hence because xT ηx=0 , x cannot be independent of z , and so, when all eigenvalues of M are 
real, as we can consider , we must suppose that we are in case a) or case b) described below:

a)  for any λ∈ℂ  , x∈M4×1(ℂ)  , x≠0  with Mx=λ x  we can consider that 

λ∈ℝ
∗  , x∈M4×1(ℝ)  , x≠0  , Mx=λ x  , xT

ηx≠0  , λ2
=1

(the last equality in case a) follows because M is a Lorentz transformation)
b)  there exist an eigenvalue λ∈ℝ∗  such that the corresponding x  , θ  , k  which we 
 have for λ  satisfy xT ηx=0  , cos2

(θ)=1  , k≡1(mod2)
 .

   In case a), taking x 0∈M4×1(ℝ)  with x0≠0 ,λ0∈ℝ
∗  , Mx 0=λ0 x0  we have that 

M  invariates {x 0} and {x0}
⊥  and we can take successively xi∈M4×1(ℝ)  , x i≠0  , λi∈ℝ

∗

such that after eventually a permutation of indexes we have:
Mxα=λα xα  , λα

2
=1  , xα

T
ηxβ=ηαβ  for α  , β=0 , 3 .

 Then we can find εα∈{1 ,−1} , Λ∈SO+
(3 ,1)  with Λ−1Eα=εα xα .

 In the basis (E1 ,E2 ,E3 ,E0)  the transformation M ′=ΛMΛ
−1  has the diagonal form 

(
λ1

λ2

λ3

λ0
)  and since M ′∈SO +

(3 ,1)  we have λ0=1 .

 If λ3=−1  it follows λ1λ2=−1  and we can take Q∈SO+
(3 , 1)  with QT

=Q−1  , 

QM ′QT
=exp(π J3+0K 3)  . If λ3=1  it follows λ1λ2=1  and also we can take Q∈SO+

(3, 1)

 with QT
=Q−1  , QM ′QT

∈{exp(π J3+0K 3)  , exp(0 J3+0K 3)}

 In case b) we must have μ=β ″=cos (θ)∈{±1} and the characteristic equation has another 

solution ρ=
1
λ

 , det(M−ρ I)=0.
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 If β ″≠λ  , taking z=E ′+ α ″
β ″−λ

E    we obtain: 

My=μy  , Mz=μ z  , ME=λ E  , 
yT ηz=0  , yT ηy=zT ηz=−1  , E∈{y ,z}⊥  and we find Λ∈SO+

(3 ,1)  with 
ε∈{±1} , ρ∈ℝ∗  , Λ−1E1=y  , Λ−1E2=ε z  , Λ−1E=ρE .

 For M ′=ΛMΛ
−1  we obtain M ′E1=μE1  , M ′E2=μE2  , M ′E=λE

SinceM ′∈SO+
(3 ,1)  it follows λ>0  , M ′  invariates Sp(E1 ,E2)=H  and Sp(E3 ,E0)=H

⊥

We will have therefore :

M ′=exp(θ J3+χ K 3)  , θ∈{0 ,π} , cosh (χ)+sinh(χ)∈{λ ,
1
λ }

 If λ2
≠1  we have obviously β ″≠λ  and so we have now left the case 

λ
2
=1  , β″=λ  having now the situation: 

μ=λ=β ″=cos(θ)∈{±1}  , k≡1(mod 2)  , sin(θ)=cos (θ ′)=0  , sin(θ ′)=cos(θ)
ME1=μE1+γE  , ME2=μE2+γ ′E  , ME=μE  and so in the basis (E1 ,E2 ,E3 ,E0):

M=(
μ 0 δ −δ

0 μ ε −ε

γ γ ′ ρ μ−ρ

γ γ ′ φ μ−φ
)  and M∈SO+

(3 , 1)  leading to: 

γ=−δ  , γ ′=−ε  , μ(ρ−φ)=1  , μ(δ2
+ε

2
)=−2φ  , μ≥φ+1

 If μ<0  it will follow φ≥0  , μ≥1  and so we must have μ=1  , ρ=φ+1  , δ2
+ε

2
=−2φ

 Taking Q=(
Q 02×2

02×2 I2
)  with Q=( cos (ζ ) sin(ζ)

−sin (ζ) cos(ζ))∈SO(2)  where 

ζ∈ℝ  , δcos(ζ)+ε sin(ζ )=0  we have that QMQT  has the form: 

S (α)=(
1 0 0 0
0 1 α −α

0 −α 1−α2
/2 α

2
/2

0 −α −α
2
/2 1+α2

/2
)  with α∈ℝ .

After some calculus we find out that S (α+α ′)=S (α)S (α ′)  for any α ,α ′∈ℝ  and so 
d S
dα

=S dS
dα

(0)=−S ( J1+K 2)  , S (α)=exp (−α( J1+K 2))

Thus the statement is completely proved :
 For any M∈SO+

(3 ,1)  exist Λ∈SO +
(3 ,1)  , θ ,χ ,α∈ℝ  such that 

M=Λ−1 exp(θ J3+χK 3)Λ   or  M=Λ−1exp(α( J1+K 2))Λ

 In conclusion, for any M∈SO+
(3 , 1)  exist Λ∈SO+

(3 ,1)ω=(ωαβ)α ,β∈M4×4(ℝ)

 with ω=−ωT  , M=Λ−1 exp(ωαβ J
αβ
)Λ

Above we have already  proven that
Λ
−1 JαβΛ=Λ  μ

α
Λ  ν
β Jμν  and so, taking ω=ΛT

ωΛ  we obtain: 

ω
T
=−ω   ,  M=exp (ωμν J

μν
)

 For any M∈SO+
(3 ,1)  exists ω∈M4×4(ℝ)  such that ω=−ωT  and M=exp(ωαβ J

αβ
)

 Let ω=(ωαβ)α ,β∈M4×4(ℝ)  with ω=−ωT  and we suppose detω≠0 .   (11)

 For Λ∈SO+
(3 , 1)  we have Λ−1

ηωΛ=ηΛ
T
ωΛ  , ΛT

ωΛ=ηΛ
−1
ηωΛ .      (12)

 If x , y∈M4×1(ℂ)  and x , y≠0  , μ ,λ∈ℂ  such that: 
ηω x=λ x  , ηω y=μy  then, because of (11) we have: 
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λ ,μ≠0  and yT
ω x=λ yT

ηx  , −yTω x=μyT
ηx . (the overline means that we are taking the 

complex conjugate)  Therefore, if yT ηx≠0  we must have λ=−μ .
 Since we have also ηω x=λ x  it follows that if xT ηx≠0  then λ=−λ (13)
 and if xT

ηx≠0  then λ=−λ .
 Because we assumed detω≠0  we must have xT ηx=0
 for any x≠0  with x∈M4×1(ℂ)  , λ∈ℂ  , ηω x=λ x
 Let x∈M4×1(ℂ)  , x≠0  , λ∈ℂ  with ηω x=λ x  and consider the case xT

ηx=0

 Since xT ηx=0  , for u=ℜ x  , v=ℑx  it follows uT ηu=vT
ηv=0  , uT ηv=0  and so: 

u=cv  or v=c ′u  , c ,c ′∈ℝ  and we can consider x∈M4×1(ℝ)  , λ∈ℝ∗

 We have det(ω−λη)=det (ωT
−λ η)=det(ω+λ η)  and therefore 

 we can take y∈M4×1(ℝ)  with y≠0  , ηω y=−λ y
 Supposing yT ηy≠0  it follows λ=−λ=0  which cannot be since we assumed det(ηω)≠0

Hence, in the considered case we have :
x , y∈M4×1(ℝ)  linear independent each of other with 

λ∈ℝ
∗  , yT ηy=xT

ηx=0  , ηωx=λ x  , ηω y=−λ y
.

 Taking u=x+y  , v=x−y  we obtain uT ηv=0  , uT ηu=−vT ηv .
Since x and y are independent, u and v are independent too and so we cannot have
uT ηu=−vT ηv=0 .
 Hence we can take u ,v∈M4×1(ℝ)  with uT ηv=0  , uT ηu=1  , vT ηv=−1  and 
ηωu=λv  , ηωv=λu .
ηω  invariates Sp(u ,v) .
 If ηω  invariates the subspace V⊂M4×1(ℝ)  ,for any z∈V ⊥  we have 

zT ηw=0  for any w∈V  and so (ηωz )T ηw=−zTωw=−zT ηw ′=0  for some w ′∈V
 Since det(ηω)≠0  weobtain that ηω  invariates also V ⊥ .
 So ηω  invariates Sp(u ,v )⊥ .
 In the case xT ηx≠0  we have λ=iμ  , μ∈ℝ∗  and we take u=ℜ x  , v=ℑx .
 We obtain: ηωu=−μv  , ηωv=μu  , uT ηu=vT

ηv≠0  , uT ηv=0
 where we can take uT

ηu=vT
ηv=−1  , u  , v  being independent since μ≠0.

Therefore we have two Minkowski-orthogonal subspaces , in both considered cases,
Sp(u1 ,v 1)  and Sp(u2,v2)  invariated by ηω  with u i

T
ηv i=0  , i=1, 2   one and only

 one of them  having a vector, say v1  with v 1
T
ηv 1=1  the other u i ,v i  having the 

Minkowski norm equal to -1.
So we have :

ηωu1=λv 1  , ηωv1=λu1  , ηωu2=−μ v2  , ηωv 2=μu2  , λ ,μ∈ℝ∗

ui
T
ηv j=0  for i , j=1 , 2 ;u i

T
ηu j=0  , vi

T
ηv j=0  for i≠ j  , i , j=1 , 2

u2
T
ηu2=v 2

T
ηv2=u1

T
ηu1=−1  , v1

T
ηv 1=1  and we can choose ui ,vi  such that v 1 0>0.

 Then we can take Λ∈SO +
(3 ,1)  with: 

ΛE1=εu2  , ΛE2=εv 2  , ΛE3=εu1  , ΛE0=v1  , ε∈{±1}.
 For φ=Λ−1

ηωΛ  we will have: 
φE1=−μE2  , φE2=μE1  , φE3=ελE0  , φE0=ελ E3  and in the basis (E1 ,E2 ,E3 ,E0) ,

we have the matrix form :
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Λ
T
ωΛ=ηφ=(

0 −μ 0 0
μ 0 0 0
0 0 0 −ελ

0 0 ελ 0
)

exp(ωαβ J
αβ
)=Λexp (ωαβΛ

−1 JαβΛ)Λ−1
=Λexp (ωαβΛ  γ

α
Λ  δ
β Jγ δ)Λ−1

=

=Λ exp(2μ J3−2ελK 3)Λ
−1

  

 Since J3  commutes with K 3  we will have exp(ωαβ J
αβ
)∈SO+

(3 ,1),
 if as we assumed ω=−ωT

∈M4×4(ℝ)  with detω≠0 .

 If we have ω=−ωT
∈M4×4(ℝ)  and detω=0  we observe that the set 

A={ω∈M4× 4(ℝ)|ω=−ω
T  , detω≠0} is dense in {ω∈M4×4(ℝ)|ω=−ω

T
}=A .

 The function M4×4(ℝ)∋ω→exp (ωαβ J
αβ
)∈M4×4 (ℝ)  being continuous, 

 since SO+
(3 , 1)  is closed in M4×4(ℝ)  it follows exp(ωαβ J

αβ
)∈SO+

(3 ,1)  for any ω∈A

The above proven results lead to the following three facts:
i)  We have 6 independent matrices {Hk}k=1 , 6  where 

Hk=−
1
2
ϵi j k J

i j
= Jk  , Hk+3=− J0k  for k=1 , 3

 ii)  We have a surjective C∞  class function 

Φ :ℝ6
→SO+

(3 ,1)  , Φ((ψs)s)=exp(ψsHs)  such that rank (
∂Φpq

∂ψk )pq ,k
=6

 with p ,q=0 ,3  , k=1 ,6

 iii) Φ  is local injective (Since det(
∂ epq

W

∂ t i j )pq ,i j

≠0  , p ,q , i , j=0 , 3

 for any W∈M4×4(ℝ)  , W=(ti j)i , j  ) 

As we proved for the rotation group SO(n) we conclude that the manifold structure 
 on SO+

(3 , 1)(  with the topology induced from M4×4(ℝ)) is equivalent to a structure given by 
the mappings ((ψs)s)→exp(ψsHs) .
Having the continuous surjective function Φ  we find SO +

(3 ,1) as a 6-dimensional connected 
Lie group (as well as by the mapping (θ⃗ , χ⃗)→exp( θ⃗ J⃗)exp( χ⃗ K⃗ )  ) .

 For U∈Mn×n(ℂ)  , n∈ℕ
∗  we denote U +  the conjugate transpose of  U .

 Let SU(n)={U∈M4×4 (ℂ)|U
+U=I  , detU=1}

 Consider Mn×n(ℂ)  as its natural complex Hilbert space .
 Then if x∈M(n+1)×(n+1)(ℂ)  , λ∈ℂ  , U∈SU(n+1)  with U x=λ x  we will have that 
U  invariates Sp(x )  and also Sp(x)⊥  and λλ=1 .

Therefore we can obviously prove by induction ( in a sampler way as we did for  SO(n) ) that for 
any U∈SU (n)  exists H∈Mn×n(ℂ)  with H+

=H  , U=exp (i H) . (14)

 Since tr (H)=tr ( JH J−1
)  , detU=  for any J∈Mn×n(ℂ)  with det J≠0 , taking H in the normal 

Jordan form, from (14) we deduce for H  that trH=0 .
From the way we proved it , it is obvious that the relation (3’) works even for complex W.
Therefore are no difficulties in proving that we have a surjective and local injective mapping
Ψ :ℝr

→SU(n)  , Ψ(φ)=exp(iφaT a)  where φ=(φa)a=1 ,r  , r=n2
−1 ,
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(T a)a  is a basis of the real vector space S={H∈M4×4(ℂ)|H
+
=H  , trH=0} .

 For n=2  we can take (T a)a=(σ i)i=1, 3  the Pauli matrices (see Chap. Representations of the 
rotations group and the restricted Lorentz group. Spin representations).

 Let M=exp (ωμν J
μν
)  with ω=−ωT

∈M4×4 (ℝ)

 Then,as we proved above, if detω≠0  we can find Λ∈SO+
(3 , 1)  such that 

Λ
T
ωΛ=ω ′  , ω ′αβ=0  for (α ,β)∉{(1 ,2) ,(2 ,1) ,(0 , 3) ,(3 ,0)} and 

Λ
−1MΛ=exp (−2ω ′1 2 J3−2ω ′0 3K 3)

(15)

We have the representation 
S :SO+

(3 ,1)→M4×4(ℂ)  such that for any M∈SO +
(3 , 1)  , S=S (M)  satisfies 

S−1
γ
μS=Mμν γ

ν  for μ=0 ,3   (16)  (see Chap. Representations of the rotations group and the 
restricted Lorentz group. Spin representations). 

S(exp(θ J3))=cos (θ
2
)I+sin (θ

2
) γ

1
γ

2
=exp ( θ

4
[ γ

1 ,γ2
])

S (exp (χ K 3))=cosh (
χ

2
)I+sinh(

χ

2
)γ

0
γ

3
=exp (

χ

4
[ γ

0 , γ3
])

 where [A ,B]=AB−BA  denotes the commutator of A  and B

   (17)

 We denote σμν
=
i
2
[γ

μ , γν ] .

 Since [ J3 ,K 3]=0  and [σ1 2,σ03
]=0 , from (15) and (17) , after some calculus we obtain:

S (M)=exp(
i
2

2ω ′1 2S (Λ)σ
12 S(Λ)−1

+
i
2

2ω ′0 3S (Λ)σ
03S(Λ)−1

) .  (18)

 From (16) we can deduce S(Λ)−1
σ
μνS(Λ)=Λ  α

μ
Λ  β
ν
σ
αβ  and so (15) and (18) will lead to: 

S (M)=exp(
i
2
ωαβσ

αβ
)  if as we assumed detω≠0

 If detω=0  we have ω= lim
n→∞

ωn  with ωn=−ωn
T
∈M4×4(ℝ)  , detωn≠0  and 

 since the representation S  is continuous, for Mn=exp (ωnαβ J
αβ
)  we have 

lim
n→∞

S (Mn)=S (M)  deducing S(M)=exp(
i
2
ωαβσ

αβ
)  for any ω=−ωT

∈M4×4(ℝ)   .

 The Dirac spinorial function ψ=(ψα)α (x)  (as a column 4x1 matrix ) , 
x=(xα

)α  space-time coordinates, which satisfies the Dirac equation 
i γμ ∂μψ−mψ=0

 

transforms under a Lorentz coordinates transformation 
x ′μ=Mμ ν x

ν  according to ψ ′=S (M)ψ  and considering 

M=exp(ωαβ J
αβ
)  , ψ=ψ+

γ
0  with ψ +  the complex conjugate transpose of ψ

we have for the transformation of the conserved current , Jμ=ψγμψ     , the expression: 

J ′μ=ψ+ S +
(M)γ0

γ
μS(M)ψ=ψ+ exp(−

i
2
ωαβσ

+αβ
)γ

0
γ
μexp (

i
2
ωαβσ

αβ
)ψ

 We have σ +αβ
=γ

0
σ
αβ
γ

0  and so we obtain: 

J ′μ=ψ+
γ

0exp (−
i
2
ωαβσ

αβ
)γ

μ exp(
i
2
ωαβσ

αβ
) ψ=ψ

+
γ

0S (M)−1
γ
μS(M)ψ=Mμνψ γ

ν
ψ

.

Therefore, the conserved current transforms like a contravariant Lorentz vector.
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