On the rotation groups and the restricted Lorentz group

Consider the n-dimensional rotations group

$$SO(n) = \{R \in M_{n \times n}(\mathbb{R}) | RR^T = \mathbb{I} \text{ , } det R = 1\}$$

On the rotations group we take the topology induced from the square real matrices space such that a fundamental system of neighbourhoods of $R_0 \in SO(n)$ is $(V_{\epsilon}(R_0))_{\epsilon>0}$ with

$$V_{\varepsilon}(R_0) = \{R \in SO(n) | |R_{ij} - R_{0ij}| < \varepsilon \text{ for } i, j = \overline{1, n}\}$$

For any $R = (Q_{ii})_{i,j} \in SO(n+1)$ if $Q_{k1} \neq 0$ we consider

$$e_1^k = (Q_{i1})_{i=\overline{1,n+1}}$$
, $e_j^k = (\delta_{j-1i})_{i=\overline{1,n+1}}$ for $j=\overline{2,k}$, $e_j^k = (\delta_{ji})_{i=\overline{1,n+1}}$ for $j=\overline{k+1,n+1}$ and $f_1^k = e_1^k$

$$f_{p+1}^k = \text{vers}(e_{p+1}^k - \sum_{j=1}^p \langle f_j^k, e_{p+1}^k \rangle f_j^k) \text{ for } p = \overline{1, n-1}$$

$$f_{n+1}^{k} = \text{sign}(Q_{k1}) \text{ vers}(e_{n+1}^{k} - \sum_{i=1}^{n} \langle f_{j}^{k}, e_{n+1}^{k} \rangle f_{j}^{k})$$

Then if $Q_{k_1} \neq 0$ for $Q^{(k)} = (f_{ij}^{(k)})_{i,j=\overline{1,n+1}}$ we have $Q^{(k)} \in SO(n+1)$ and

$$Q^{(k)}R = \begin{pmatrix} 1 & 0_{1 \times n} \\ 0_{n \times 1} & R^{(k)} \end{pmatrix} = M^{(k)}$$
 with

$$R^{(k)} \in SO(n)$$

where $\langle .,. \rangle$ denotes the euclidean scalar product and δ the Kronecker symbol We suppose as a induction hypothesis that we have a C^{∞} class mapping with $W \ni (\psi_j)_{j=1,n(n-1)/2} \rightarrow \overline{R}((\psi_j)_j) \in SO(n)$

$$W$$
 an open set of $\mathbb{R}^{n(n-1)/2}$ and rank $\left(\frac{\partial \overline{R}_{pq}}{\partial \psi_j}\right)_{pq,j} = \frac{n(n-1)}{2}$, $p,q = \overline{1,n}$, $j = \overline{1,n(n-1)/2}$

We take $(\psi_s)_{s=\overline{n(n-1)/2+1}, \, n(n+1)/2} \rightarrow (Q_{s1})_{s=\overline{1,n+1}} \in S_n$ where $S_n = \{x \in \mathbb{R}^{n+1} | ||x|| = 1\}$ is the n+1- dimensional sphere, a mapping of S_n .

We have
$$Q^{(k)T} = \begin{pmatrix} Q_{11} & A \\ B & C \end{pmatrix}$$
 with $A \in M_{1 \times n}(\mathbb{R})$, $B \in M_{n \times 1}(\mathbb{R})$, $C \in M_{n \times n}(\mathbb{R})$.

$$B = \begin{pmatrix} Q_{21} \\ \vdots \\ Q_{n+11} \end{pmatrix} \text{ and } \begin{pmatrix} A \\ C \end{pmatrix} \text{ has an inverse } S \in M_{(n+1) \times n}(\mathbb{R}) : S \begin{pmatrix} A \\ C \end{pmatrix} = \mathbf{I_n}$$

It follows

$$Q^{(k)T}M^{(k)} = \begin{pmatrix} Q_{11} & AR^{(k)} \\ B & CR^{(k)} \end{pmatrix}$$
 (1) and we can consider now a mapping $\overline{R}^{(k)}$ such that

$$\overline{R}^{(k)}((\psi_s)_{s=\overline{1,n(n+1)/2}}) = Q^{(k)T} \begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & \overline{R} \end{pmatrix}$$

$$\underline{Q}^{(k)} = \underline{Q}^{(k)} ((\psi_s)_{s=\overline{n(n-1)/2+1, n(n+1)/2}}$$

$$\overline{R} = \overline{R}((\psi_j)_{j=\overline{1,n(n-1)/2}})$$

Since rank
$$\left(\frac{\partial Q_{i1}}{\partial \psi_s}\right)_{i,s} = n$$
 with $i = \overline{1, n+1}$, $s = \overline{n(n-1)/2 + 1, n(n+1)/2}$

and the mapping $\frac{1}{R}$ has rank n(n-1)/2 and we have the inverse S for

$$\begin{pmatrix} A \\ C \end{pmatrix} \text{ it follows that if } \sum_{j=1}^{n(n+1)/2} \alpha_j \frac{\partial (Q^{(k)}M^{(k)})}{\partial \psi_j} = 0 \text{ with } \alpha_j \in \mathbb{R} \text{ , } j = \overline{1,n(n+1)/2} \\ \text{then } \alpha_j = 0 \text{ for } j = \overline{1,n(n+1)/2} \text{ and so } \text{rank} \left(\frac{\partial R_{pq}^{(k)}}{\partial \psi_j} \right)_{pq,j} = \frac{n(n+1)}{2} \\ \text{where } p, q = \overline{1,n+1} \text{ , } j = \overline{1,n(n+1)/2} \\ \text{The application } \Phi^{(k)} : S_n \times SO(n) \rightarrow SO(n+1) \\ \Phi^{(k)}((Q_{j_1})_{j=1,\overline{n+1}}, R^{(k)}) = M^{(k)} \\ \text{is a local homeomorphism, defined in the neighbourhood of each } \\ ((Q_{j_1})_{j=1,\overline{n+1}}, R^{(k)}) \text{ with } Q_{k_1} \neq 0 \text{ and so by induction we can define a smooth class } C^{\infty} \\ \text{manifold structure on } SO(n+1) \text{ having dimension } n(n+1)/2 \text{ that generates the same topology on } SO(n+1) \text{ as induced from } M_{(n+1)\times(n+1)}(\mathbb{R}) \text{ .} \\ \text{Suppose now the induction assumption that for any } R \in SO(m) \text{ , } m \leq n \text{ exists } \\ W \in M_{m \times m}(\mathbb{R}) \text{ such that } W = -W^T \text{ and } R = \exp(W) \\ \text{For } Q \in SO(n+1) \text{ if } Q \text{ invariates a subspace } V \text{ of } \mathbb{R}^{n+1} \text{ (i.e. } Q(V) = V \text{)} \\ \text{then } Q \text{ invariates also } V^{\perp} \\ \text{If } \lambda \in \mathbb{C} \text{ , } x \in M_{(n+1)\times 1}(\mathbb{C}) \text{ , } x \neq 0 \text{ , } Qx = \lambda x \text{ it follows } \lambda \overline{\lambda} = 1 \text{ , since } QQ^T = \mathbf{I} \\ \text{ if the complex conjugate of } \lambda \\ \text{If further } \lambda \in \mathbb{C} \setminus \mathbb{R} \text{ taking } u = \Re x \text{ , } v = \Im x \text{ we have } \\ \lambda = \cos(\theta) + i \sin(\theta) \text{ , sin}(\theta) \neq 0 \text{ , } v \neq 0 \\ Qu = u \cos(\theta) - v \sin(\theta) \text{ , } Qv = u \sin(\theta) + v \cos(\theta) \text{ and since } QQ^T = \mathbf{I} \text{ we will have } \\ \|u\|_1^2 = \|u\|_1^2 \cos^2(\theta) + \|v\|_1^2 \sin^2(\theta) - 2\langle u, v \rangle \sin(\theta) \cos(\theta) \\ \|v\|_1^2 = \|u\|_1^2 \sin^2(\theta) + \|v\|_1^2 \cos^2(\theta) + 2\langle u, v \rangle \sin(\theta) \cos(\theta) \\ \langle u, v \rangle = (\|u\|_1^2 - \|v\|_1^2) \sin(\theta) \cos(\theta) + \langle u, v \rangle (\cos^2(\theta) - \sin^2(\theta)) \\ (\|u\|_1^2 - \|v\|_2^2) \sin(2\theta) + 2\langle u, v \rangle (\cos(2\theta) - 1) = 0 \\ (\|u\|_1^2 - \|v\|_2^2) \sin(2\theta) + 2\langle u, v \rangle (\cos(2\theta) - 1) = 0 \\ (\|u\|_1^2 - \|v\|_2^2) \sin(2\theta) + 2\langle u, v \rangle (\cos(2\theta) - 1) = 0 \\ (\|u\|_1^2 - \|v\|_2^2) \sin(2\theta) + 2\langle u, v \rangle (\cos(2\theta) - 1) = 0 \\ (\|u\|_1^2 - \|v\|_2^2) \sin(2\theta) + 2\langle u, v \rangle (\cos(2\theta) - 1) = 0 \\ (\|u\|_1^2 - \|v\|_2^2) \sin(2\theta) + 2\langle u, v \rangle (\cos(2\theta) - 1) = 0 \\ (\|u\|_1^2 - \|v\|_1^2) \sin(2\theta) + 2\langle u, v \rangle (\cos($$

 $RQR^{T} = \begin{pmatrix} B & 0_{2\times(n-1)} \\ 0_{(n-1)\times 2} & Q_{0} \end{pmatrix}$

$$\begin{aligned} RQR &= \begin{bmatrix} 0_{(n-1)\times 2} & Q_0 \end{bmatrix} \\ \text{with } Q_0 &= \exp(W_0) \in SO(n-1) \text{ , } W_0 = -W_0^T \in M_{(n-1)\times (n-1)}(\mathbb{R}) \\ B &= \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \exp(\theta A) \text{ where } A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{aligned}$$

$$\text{Taking } W = R^T \begin{bmatrix} \theta A & 0_{2\times (n-1)} \\ 0_{(n-1)\times 2} & W_0 \end{bmatrix} R \text{ we obtain } Q = \exp(W)$$

If $\lambda \in \mathbb{R}$ we must have $\lambda \in \{-1, 1\}$

Then if $x \in M_{(n+1)\times 1}(\mathbb{R})$, Qx = -x , $x \neq 0$ since $\det Q = 1$ there it exists another $y \neq 0$, $y \in \{x\}^{\perp}$ such that Qy = -y and we will have

$$R \in SO(n-1) \text{ with } RQR^T = \begin{pmatrix} \exp(\pi A) & 0_{2\times(n-1)} \\ 0_{(n-1)\times 2} & Q_0 \end{pmatrix}, \ Q_0 = \exp(W_0) \ , \ W_0 = -W_0^T$$
 and we can take $Q = \exp(W)$ with $W = R^T \begin{pmatrix} \pi A & 0_{2\times(n-1)} \\ 0_{(n-1)\times 2} & W_0 \end{pmatrix} R = -W^T \in M_{(n+1)\times(n+1)}(\mathbb{R})$

If
$$x \in M_{(n+1)\times 1}(\mathbb{R})$$
, $x \neq 0$, $Qx = x$ we will have $R \in SO(n+1)$ such that

$$RQR^{T} = \begin{pmatrix} 1 & 0_{1\times n} \\ 0_{n\times 1} & Q_{0} \end{pmatrix} \text{ where by induction assumption } Q_{0} = \exp(W_{0}), W_{0} = -W_{0}^{T}$$

$$\text{Taking } W = R^{T} \begin{pmatrix} 0 & 0_{1\times n} \\ 0_{n\times 1} & W_{0} \end{pmatrix} R = -W^{T} \in M_{(n+1)\times(n+1)}(\mathbb{R}) \text{ we will have } Q = \exp(W)$$

Taking
$$W = R^T \begin{pmatrix} 0 & 0_{1 \times n} \\ 0_{n \times 1} & W_0 \end{pmatrix} R = -W^T \in M_{(n+1) \times (n+1)}(\mathbb{R})$$
 we will have $Q = \exp(W)$

Therefore, by induction we have proved that for any

$$Q \in SO(n)$$
 exists $W \in M_{n \times n}(\mathbb{R})$ such that $W = -W^T$ and $Q = \exp(W)$

Also it is obvious that if
$$W = -W^T$$
 then $WW^T = W^TW$ and so for $Q = \exp(W)$:

$$QQ^T = \exp(W + W^T) = \mathbf{I}$$
, $Q \in O(n)$

Moreover we have $W = J S J^{-1}$ where S is the Jordan normal form of W

$$\det \exp(W) = \det \exp(S) = \prod_{i=1}^{n} \exp(\lambda_i)$$
, where

$$\det(W - \lambda \mathbf{I}) = \prod_{i=1}^{n} (\lambda - \lambda_i)$$

For
$$W = -W^T \in M_{n \times n}(\mathbb{R})$$
, $W \times X = \lambda \times X$, $X \in M_{n \times 1}(\mathbb{C})$, $\lambda \in \mathbb{R}$ we can take $X \in M_{n \times 1}(\mathbb{R})$ and so $X^T W \times X = X^T W^T \times X = -X^T W \times X = 0$, $0 = X^T W \times X = \lambda ||X||^2$ and

all real eigenvalues of *W* must vanish and since *W* is real we can split the eigenvalues as

$$E = \{i \in \{1, ...n\} | \lambda_i \in \mathbb{C} \setminus \mathbb{R}\} = E_1 \cup E_2, E_1 \cap E_2 = \emptyset, \text{ card } E_1 = \text{ card } E_2$$

$$E_1 = \{i_1, ..., i_k\}$$
, $E_2 = \{j_1, ..., j_k\}$, $\lambda_{is} = \overline{\lambda}_{js}$ for $s = \overline{1, k}$

Therefore it follows
$$\prod_{i=1}^{n} \exp(\lambda_i) > 0$$
 , $Q = \exp(W) \in SO(n)$.

We will prove now that the function

$$\Phi: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$$
 with $\Phi(W) = \exp(W)$ for any $W \in M_{n \times n}(\mathbb{R})$ satisfies

$$\Phi: \mathcal{M}_{n \times n}(\mathbb{R}) \to \mathcal{M}_{n \times n}(\mathbb{R}) \text{ with } \Phi(W) = \exp(W) \text{ for any } W \in \mathcal{M}_{n \times n}(\mathbb{R}) \text{ satisfies}$$

$$\det \left(\frac{\partial \Phi_{pq}}{\partial t_{ij}}\right)_{pq,ij} \neq 0 \text{ for any } W = (t_{ij})_{i,j} \in \mathcal{M}_{n \times n}(\mathbb{R}) \text{ where } i,j,p,q = \overline{1,n}$$
 (2)

$$\Phi = (\Phi_{pq})_{p,q} = (e_{pq}^W)_{p,q}$$

(2) is equivalent to the fact that

for any
$$W$$
, $\beta \in M_{n \times n}(\mathbb{R})$ the relation $\frac{\partial}{\partial h} \exp(W + h\beta) \frac{1}{\delta} \Big|_{h=0} = 0$ implies $\beta = 0$.
Suppose we have W , $\beta \in M_{n \times n}(\mathbb{R})$ such that $\frac{\partial}{\partial h} \exp(W + h\beta) \Big|_{h=0} = 0$

Suppose we have
$$W, \beta \in M_{n \times n}(\mathbb{R})$$
 such that $\frac{\partial}{\partial h} \exp(W + h\beta)\Big|_{h=0} = 0$

Since for any
$$J \in M_{n \times n}(\mathbb{C})$$
 with det $J \neq 0$ we have
$$\frac{\partial}{\partial h} \exp(JWJ^{-1} + hJ\beta J^{-1}) = J\left(\frac{\partial}{\partial h} \exp(W + h\beta)\right)J^{-1} \text{ it is sufficient to prove (2) only for } W$$

having the upper triangular normal Jordan form

$$W = \begin{pmatrix} C_{1} & 0 & \dots & 0 \\ 0 & C_{2} & \dots & 0 \\ \vdots & \dots & \vdots & 0 \\ 0 & \dots & 0 & C_{r} \end{pmatrix} \text{ with } C_{i} \text{ cells of the form } C_{i} = \lambda_{i} \mathbf{I}_{si} + N_{si} \text{ , } \lambda_{i} \in \mathbb{C} \text{ , } s_{i} \in \mathbb{N}^{*}$$

$$N_{si} = (n_{kl})_{k,l = \overline{1,si}} \text{ , } n_{kl} = \begin{cases} 1 & \text{if } l = k+1, 1 \le k \le s_{i}-1 \\ 0 & \text{otherwise} \end{cases} \text{ for } k, l = \overline{1,s_{i}}$$

$$N_{si} = (n_{kl})_{k,l=\overline{1,s_i}}, n_{kl} = \begin{cases} 1 & \text{if } l = k+1, 1 \le k \le s_i - 1 \\ 0 & \text{otherwise} \end{cases} \text{ for } k, l = \overline{1,s_i}$$

We denote $W_{i,i} = \mu_i$ for $i = \overline{1,n}$

Let *W* having the Jordan normal form and we have :

$$\frac{\partial e^{W}}{\partial t_{ij}} = \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{k=0}^{m-1} W^{m-1-k} E_{ij} W^{k} \text{ where } E_{ij} = (\delta_{ik} \delta_{jl})_{k,l=\overline{1,n}}$$
 (3)

For any $k \in \mathbb{N}$, W^k is upper triangular and has diagonal coefficients $(W^k)_{ii} = \mu_i^k$ and therefore calculating the terms $W^{m-1-k}E_{ij}W^k$ it follows that

$$\frac{\partial e_{pq}^{W}}{\partial t_{ij}} = 0 \text{ if } q < j \text{ or } p > i.$$

We consider for pq and ij pass the ordering (1n)(2n)...((n-1)n)(nn)(1(n-1))...(n(n-1))(1(n-2))..... (11)((21)...((n-1)1)(n1) we find that the matrix

$$\left(\frac{\partial e_{pq}^{W}}{\partial t_{ij}}\right)_{pq,ij}$$
 has an upper triangular form and so

$$\det\left(\frac{\partial e_{pq}^{W}}{\partial t_{ij}}\right)_{pq,ij} = \prod_{p,q=1}^{n} \frac{\partial e_{pq}^{W}}{\partial t_{pq}}$$

Calculation from (3), with W having the Jordan normal form leads to

$$\frac{\partial e_{pq}^{W}}{\partial t_{pq}} = \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{k=0}^{m-1} \mu_{p}^{m-1-k} \mu_{q}^{k} = \begin{cases} \frac{\exp(\mu_{p}) - \exp(\mu_{q})}{\mu_{p} - \mu_{q}} & \text{if } \mu_{p} \neq \mu_{q} \\ \frac{\exp(\mu_{p}) - 1}{\mu_{p}} & \text{if } \mu_{p} = \mu_{q} \end{cases}$$

and so
$$\det \left(\frac{\partial e_{pq}^{W}}{\partial t_{ij}} \right)_{pq,ij} \neq 0$$
 for any $W \in M_{n \times n}(\mathbb{R})$ (3')

Let $(J_s)_{s=1,n(n-1)/2}$ a system of linear independent generators for the antisymmetric real matrices so that we have

$$W = -W^T \in M_{n \times n}(\mathbb{R}) W = \psi_s J_s$$
, $\psi_s \in \mathbb{R}$ (with Einstein summation convention for indexes $s = 1, n(n-1)/2$)

Because we have (3'), it follows that for

 $R_0 \in SO(n)$ and $\psi^0 = (\psi_s^0)_s$ such that $\exp(\psi_s^0 J_s) = R_0$ we have an open neighbourhood

 U_0 of ψ^0 , an open neighbourhood G_0 of R_0 and the injective function

$$\Phi: U_0 \rightarrow G_0$$
 , $\Phi(\psi) = \exp(\psi_s J_s)$, $\psi = (\psi_s)_s$

As we proved , we can choose G_0 such that we have a mapping

 $\overline{R}: V_0 \rightarrow G_0$ of SO(n) from some open neighbourhood V_0 of φ^0 such that $\varphi^0 = (\varphi^0_s)_s$ and

$$\overline{R}(\varphi^0) = R_0$$
, rank $\left(\frac{\partial \overline{R}_{pq}}{\partial \varphi_s}\right)_{pq,s} = \frac{n(n-1)}{2}$ (4)

Thus we have $\overline{R}(\varphi^0) = \exp(\psi_s^0 J_s)$ and for $\varphi = \overline{R}^{-1} \circ \Phi(\psi)$ we have $\overline{R}(\varphi) = \exp(\psi_s J_s)$

for any $\psi \in U_0$ and the function $\overline{R}^{-1} \circ \Phi : U_0 \to V_0$ is continuous and injective

Therefore, since U_0 is open and U_0 , V_0 have the same dimension it follows that

 $\overline{R}^{-1} \circ \Phi(U_0) = W_0$ is an open set and $\varphi^0 \in W_0$ and we have a homeomorphism $\overline{R}^{-1} \circ \Phi : U_0 \rightarrow W_0$

Since (4), by the implicit function theorem we will have a C¹ class function

 $h: U_1 \rightarrow V_1$ with U_1 open neighbourhood of ψ^0 , V_1 open neighbourhood of φ^0 such that $\overline{R}(h(\psi)) = \exp(\psi_s J_s)$ for any $\psi \in U_1$

and for any $(\varphi, \psi) \in V_1 \times U_1 : \overline{R}(\varphi) = \exp(\psi_s J_s)$ if and only if $\varphi = h(\psi)$

Since (3') we have that

$$\operatorname{rank}\left(\frac{\partial \exp(\psi_s J_s)_{pq}}{\partial \psi_k}\right)_{pq,k} = \frac{n(n-1)}{2} \quad \text{and we will have also a C^1 class function}$$

 $g: V_2 \rightarrow U_2$ with U_2 open neighbourhood of ψ^0 , V_2 open neighbourhood of φ^0 such that $\overline{R}(\varphi) = \exp(g_s(\varphi)J_s)$ for any $\varphi \in V_{\gamma}$

and for any $(\varphi, \psi) \in V_2 \times U_2 : \overline{R}(\varphi) = \exp(\psi_s J_s)$ if and only if $\psi = g(\varphi)$.

It follows $(g \circ h)(\psi) = \psi$, $(h \circ g)(\varphi) = \varphi$ for any $(\varphi, \psi) \in V_1 \cap V_2 \times U_1 \cap U_2$

Therefore we can find U, V open neighbourhoods of ψ^0 respective φ^0 such that h(U)=V, g(V)=U, $h|_{U}=g^{-1}|_{U}$, $\overline{R}(h(\psi))=\exp(\psi_{s}J_{s})$, $\overline{R}(\varphi)=\exp(g_{s}(\varphi)J_{s})$ for any $(\varphi, \psi) \in V \times U$.

Intermediating through the \overline{R} mappings of the manifold structure SO(n) we obtain that for any ψ^0 , ψ^1 with $\exp(\psi_s^0 J_s) = \exp(\psi_s^1 J_s)$ there exist

 W_0 an open neighbourhood of ψ^0 and W_1 an open neighbourhood of ψ^1 and a C^{∞} class function $f: W_0 \rightarrow W_1$ such that for any $(\psi, \psi') \in W_0 \times W_1$:

 $\exp(\psi_s J_s) = \exp(\psi'_s J_s)$ if and only if $\psi' = f(\psi)$ and so we have the same manifold structure on SO(n) with topology induced from $M_{n\times n}(\mathbb{R})$ given by the mappings

 $(\psi_s)_{s=\overline{1,n(n-1)/2}} \rightarrow \exp(\psi_s J_s)$ having the continuous surjective function

 $\Phi: \mathbb{R}^{n(n-1)/2} \to SO(n)$ with $\Phi(\psi) = \exp(\psi_s J_s)$ and so we find SO(n) as a n(n-1)/2 - dimensional connected Lie group.

Consider now the Minkowski space

 \mathbb{R}^4 identified with $M_{4\times 1}(\mathbb{R})$ having the pseudometric $(\eta_{\alpha\beta})_{\alpha,\beta}$ with $\eta_{\alpha\beta}=0$ if $\alpha\neq\beta$, $\eta_{ij}=-1$ for $i=\overline{1,3}$, $\eta_{00}=1$

(we use greek characters for indexing from 0 to 3 and latin characters for indexing from 1 to 3) We have the pseudo-scalar product $\mathbb{R}^4 \times \mathbb{R}^4 \ni (x, y) \rightarrow x \cdot y = y^T \eta x \in \mathbb{R}$

x, y as column vectors $x = x^{\alpha} E_{\alpha}$, $(E_{\alpha})_{\alpha}$ Minkowski base with

 $E_{\alpha} = (\delta_{\alpha\beta})_{\beta}$ (as column vector), $E_{\alpha} \cdot E_{\beta} = \eta_{\alpha\beta}$

We remind that, as a consequence of the Cauchy-Bunyakowsky-Schwarz inequality, we have:

i) if $x, y \in \mathbb{R}^4$ and $x \neq 0$, $x^T \eta x \geq 0$, $y^T \eta x = 0$ then $y^T \eta y \leq 0$ ii) if $x, y \in \mathbb{R}^4$ and $x \neq 0$, $x^T \eta x = 0$, $y^T \eta x = 0$ then exists $\lambda \in \mathbb{R}$ with $y = \lambda x$.

For $M \in SO^+(3,1)$ (see Chap. Representations of the rotations group and of the restricted Lorentz group, Spin representations) we have:

$$M = R(\theta, n)B(\chi, q) = M(\vec{\theta}, \vec{\chi})$$
 where $\vec{\theta} = \theta n$, $\vec{\chi} = \chi q$, $\vec{\theta} = (\theta_i)_i$, $\vec{\chi} = (\chi_i)_i$

$$R(\theta,n)=(R_{\alpha\beta})_{\alpha,\beta}$$
 , $B(\chi,q)=(B_{\alpha\beta})_{\alpha,\beta}$,

$$R_{ij} = -\epsilon_{ijk} n_k \sin(\theta) + (\delta_{ij} - n_i n_j) \cos(\theta) + n_i n_j, \quad R_{i0} = R_{0i} = 0, \quad R_{00} = 1$$

$$B_{ij} = \delta_{ij} + (\cosh(\chi) - 1)q_i q_j$$
, $B_{0i} = B_{i0} = -q_i \sinh(\chi)$, $B_{00} = \cosh(\chi)$

B is symmetric positive definite and so M=RB must be the polar decomposition of M,

 $B = \sqrt{M^T M}$, $R = M(\sqrt{M^T M})^{-1}$ and we can find $K \in \{1, 2, 3\}$ such that:

 $n = \text{vers}(\epsilon_{ijk}(R_i - \delta_i) \times (R_i - \delta_i)) \text{ with } R_i = (R_{ii})_i, \delta_i = (\delta_{ii})_i$

$$\sin(\theta) = -\frac{1}{2} \epsilon_{ijl} n_l R_{ij}, \cos(\theta) = \frac{1}{2} (R_{ii} - 1)$$

$$\cosh(\chi) = B_{00}, \sinh(\chi) = \sqrt{B_{00}^2 - 1}, q_i = -\frac{B_{i0}}{\sqrt{B_{00}^2 - 1}}$$

Therefore we have a local homeomorphism:

 $\mathbb{R}^6 \ni (\vec{\theta}, \vec{\chi}) \rightarrow M(\vec{\theta}, \vec{\chi}) \in SO^+(3,1)$ when $SO^+(3,1)$ is considered with the topology which is induced from $M_{4\times 4}(\mathbb{R})$ and a 6-dimensional connected Lie group structure on $SO^+(3,1)$ given by the mappings $(\vec{\theta}, \vec{\chi}) \rightarrow M(\vec{\theta}, \vec{\chi})$.

Suppose now we have

$$(\alpha_k)_k$$
, $(\beta_k)_k \in \mathbb{R}^3$ such that $\alpha_k \frac{\partial M}{\partial \theta_k} + \beta_k \frac{\partial M}{\partial \chi_k} = 0$ for a value of $(\vec{\theta}, \vec{\chi})$

It follows:

$$0 = \beta_k \frac{\partial B_{0i}}{\partial \chi_k} = \beta_k \left(-\frac{\delta_{ik}}{\chi} + \frac{1}{\chi} q_i q_k \right) \sinh(\chi) - \beta_k q_k q_i \cosh(\chi)$$

$$0 = \beta_k \frac{\partial B_{00}}{\partial \chi_k} = \beta_k q_k \sinh(\chi)$$
 and so we obtain $\beta_i = 0$ for $i = \overline{1,3}$

$$\alpha_k \frac{\partial R}{\partial \theta_k} = 0 \text{ with } (R_{ij})_{i,j} = \exp(\theta_k J_k) \text{ , } (J_k)_{ij} = -\epsilon_{ijk} \text{ , for } i,j,k = \overline{1,3}$$
.

Since
$$\det \left(\frac{\partial e_{pq}^W}{\partial t_{ij}} \right)_{pq,ij} \neq 0$$
 for any $W = (t_{ij})_{i,j} \in M_{3\times 3}(\mathbb{R})$ as we have proven, it follows:

rank
$$\left(\frac{\partial \exp(\theta_k J_k)_{ij}}{\partial \theta_l}\right)_{ij,l} = 3$$
 and so we must have also $\alpha_k = 0$ for $k = \overline{1,3}$.

Therefore taking
$$(\psi_l)_{l=\overline{1,6}} = (\vec{\theta}, \vec{\chi})$$
 we have $\operatorname{rank} \left(\frac{\partial M_{\alpha\beta}}{\partial \psi_l} \right)_{\alpha\beta,l} = 6$

We remind that we rise or lower the indexes according to

$$V_{lpha} = \eta_{lphaeta}V^{eta}$$
 , $V^{lpha} = \eta^{lphaeta}V_{eta}$, $(\eta_{lphaeta}) = (\eta^{lphaeta})$

Let
$$\epsilon_{\alpha\beta\gamma\delta}$$
 be the signature of the permutation $\begin{pmatrix} \alpha & \beta & \gamma & \delta \\ 0 & 1 & 2 & 3 \end{pmatrix}$ and we define

$$\overline{J}_{\gamma\delta}^{\alpha\beta} = \epsilon^{\alpha\beta\gamma\epsilon} \eta_{\epsilon\delta}$$
. We will have:

$$\overline{J}^{0i} = -\overline{J}^{i0} = -J_i$$
, $\overline{J}^{ij} = \epsilon_{ijk} K_k$ where J_i , K_k are the Lorentz group generators $(J_k)_{ij} = -\epsilon_{ijk}$, $(J_k)_{i0} = (J_k)_{0i} = (J_k)_{00} = 0$, $(K_k)_{ij} = 0$, $(K_k)_{i0} = (K_k)_{0i} = \delta_{i0}$, $(K_k)_{00} = 0$, $(K_k)_{0i} = \delta_{i0}$, $(K_k)_{00} = 0$, $(K_k)_{0i} = \delta_{i0}$, $(K_k)_{00} = 0$, $(K_k)_{0i} = \delta_{i0}$, $(K_k)_{0$

We define also

$$J_{\gamma\delta}^{\alpha\beta} = \frac{1}{2} \epsilon_{\psi\varphi}^{\alpha\beta} \overline{J}_{\gamma\delta}^{\psi\varphi} = -\frac{1}{2} \epsilon_{\psi\varphi\delta\rho}^{\alpha\beta\psi\varphi} \epsilon_{\psi\varphi\delta\rho} \eta^{\gamma\rho} \text{ obtaining}$$

$$J^{ij} = -\epsilon_{ijk} J_k , J^{0i} = -J^{i0} = -K_i .$$

For a Lorentz coordinates transformation $\mathbf{x'}^{\mu} = \Lambda^{\mu}_{\ v} \mathbf{x}^{\ v}$, $(\Lambda^{\mu}_{\ v})_{\mu, v} = \Lambda \in SO^{+}(3, 1)$

we denote $(\Lambda_{\mu}^{\nu})_{\nu,\mu} = \Lambda^{-1}$.

The relation $\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}\overline{J}^{\alpha\beta} = \Lambda^{-1}\overline{J}^{\mu\nu}\Lambda$ (5) is equivalent to

$$\Lambda^{\varepsilon}_{\gamma}\Lambda^{\mu}_{\alpha}\Lambda^{\nu}_{\beta}\Lambda^{\delta}_{\rho}\overline{J}^{\alpha\beta}_{\gamma\delta} = \overline{J}^{\mu\nu}_{\varepsilon\rho}.$$

Since $\Lambda \in SO^+(3,1)$ we have $\Lambda_{\rho}^{\delta} = \Lambda_{\psi}^{\varphi} \eta_{\psi\delta} \eta_{\rho\varphi}$ and so (5) is equivalent to $\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} \Lambda_{\gamma}^{\epsilon} \Lambda_{\psi}^{\epsilon} \epsilon^{\alpha\beta\gamma\psi} = \epsilon^{\mu\nu\epsilon\kappa}$ which is true since $\det \Lambda = 1$

Also, since $\Lambda \in SO^+(3,1)$ we have

$$\epsilon^{\gamma\varepsilon}_{\ \mu\nu}\Lambda^{\mu}_{\ \alpha}\Lambda^{\nu}_{\ \beta} = \eta^{\kappa\gamma}\eta^{\rho\varepsilon}_{\ \epsilon\alpha\beta\psi\phi}\Lambda^{\ \psi}_{\kappa}\Lambda^{\ \varphi}_{\rho} = \epsilon^{\kappa\rho}_{\ \alpha\beta}\Lambda^{\gamma}_{\ \kappa}\Lambda^{\varepsilon}_{\ \rho} \ .$$

Therefore, from (5) follows:

$$\Lambda^{\nu}_{\alpha}\Lambda^{\nu}_{\beta}J^{\alpha\beta} = \Lambda^{-1}J^{\mu\nu}\Lambda \qquad (6)$$

We will prove further that if $M \in SO^+(3,1)$ then exists $\Lambda \in SO^+(3,1)$ such that $M = \Lambda^{-1} \exp(\theta J_3 + \chi K_3) \Lambda$ or $M = \Lambda^{-1} \exp(\alpha (J_1 + K_2)) \Lambda$ for some $\theta, \chi, \alpha \in \mathbb{R}$.

If exists $\mu \in \mathbb{C} \setminus \mathbb{R}$ such that we have $x \in \mathbb{C}^4(x)$ as a column vector $x \neq 0$ with $x = \mu x$, then if $x^T = \eta x \neq 0$ it follows, since $x^T = \eta x = 0$ and so $x = \mu \in \mathbb{C} \setminus \mathbb{R}$, we must have $x^T = \eta x = 0$ and so

 $\Re \mathbf{x}^{\mathsf{T}} \, \eta \Re \mathbf{x} = \Im \mathbf{x}^{\mathsf{T}} \, \eta \Im \mathbf{x} \, , \, \Re \mathbf{x}^{\mathsf{T}} \, \eta \Im \mathbf{x} = 0 \tag{7}$

If also $\Re x^T \eta \Re x = 0$, since $\Im x \neq 0$ (because $\mu \notin \mathbb{R}$) we have $\lambda \in \mathbb{R}$ with $\Re x = \lambda \Im x$.

This leads to $(i+\lambda)M\Im x = (i+\lambda)\mu\Im x$ which again contradicts $\mu\notin\mathbb{R}$.

Therefore we have $u = \Re X$, $v = \Im X$, x = u + iv

 $u^T \eta u = v^T \eta v \neq 0$, $u^T \eta v = 0$ (8)

 $\overline{\mathbf{X}}^T \eta \mathbf{X} = \mathbf{U}^T \eta \mathbf{U} + \mathbf{V}^T \eta \mathbf{V} \neq 0$ (9) which from $\mathbf{M} \mathbf{X} = \mu \mathbf{X}$ leads to $\mu \overline{\mu} = 1$ and $\alpha \in \mathbb{R}$ with

 $Mu = u\cos(\alpha) - v\sin(\alpha)$

 $M v = u \sin(\alpha) + v \cos(\alpha)$

As a consequence of Cauchy-Bunyakowsky-Schwarz inequality, from (8) we obtain $u^T \eta u = v^T \eta v < 0$ and we can therefore consider $u^T \eta u = v^T \eta v = -1$.

M invariates $V = \operatorname{Sp}(u, v)$ and for $V^{\perp} = \{w \in M_{4 \times 1}(\mathbb{R}) | w^{T} \eta z = 0 \text{ for any } z \in V\}$,

M invariates also V^{\perp}

We can take $\Lambda \in SO^+(3,1)$ such that $\Lambda^{-1}E_1 = u$ and $\Lambda^{-1}E_2 = v$.

For $\overline{M} = \Lambda M \Lambda^{-1}$ we will have:

 $\overline{M}E_1 = E_1 \cos(\alpha) - E_{\sin}(\alpha)$, $\overline{M}E_2 = E_1 \sin(\alpha) + E_2 \cos(\alpha)$ and that

 \overline{M} invariates $Sp(E_1, E_2)$ and $Sp(E_3, E_0) = Sp(E_1, E_2)^{\perp}$.

Hence exist θ , $\chi \in \mathbb{R}$ such that $\overline{M} = \exp(\theta J_3) \exp(\chi K_3) = \exp(\theta J_3 + \chi K_3)$

$$M = \Lambda^{-1} \exp(\theta J_3 + \chi K_3) \Lambda$$

Therefore, to prove the statement we can further suppose that

if $\mu \in \mathbb{C}$, $x \in M_{4 \times 1}(\mathbb{C})$, $x \neq 0$, $Mx = \mu x$ then $\mu \in \mathbb{R}^*$ and $x \in M_{4 \times 1}(\mathbb{R})$

Let $X \in M_{4\times 1}(\mathbb{R})$, $\lambda \in \mathbb{R}^*$, $x \neq 0$, $Mx = \lambda x$

If $\mathbf{x}^T \eta \mathbf{x} = 0$ we can choose $\mathbf{x} \in M_{4 \times 1}(\mathbb{R})$ and take $\Lambda \in SO^+(3,1)$ such that

 $\Lambda X = E$ where $E = E_3 + E_0$. Then for $\overline{M} = \Lambda M \Lambda^{-1}$, \overline{M} invariates

 $\{E\}^{\perp} = \operatorname{Sp}(E_1, E_2, E) = V$ and we will have:

 $\overline{M} E_1 = \alpha E_1 + \beta E_2 + \gamma E$

 $\overline{M}E_2 = \alpha' E_1 + \beta' E_2 + \gamma' E \quad (10)$

 $\overline{M}E = \lambda E$

Since $\overline{M} \in SO^+(3,1)$ we obtain:

 $\alpha^2 + \beta^2 = 1$, $\alpha'^2 + \beta'^2 = 1$, $\alpha \alpha' + \beta \beta' = 0$

 $\alpha = \cos\left(\theta\right) \text{ , } \beta = \sin\left(\theta\right) \text{ , } \alpha' = \cos\left(\theta'\right) \text{ , } \beta' = \sin\left(\theta'\right) \text{ , } \theta - \theta' = \frac{2\,k + 1}{2}\pi \text{ , } k \in \mathbb{Z} \text{ .}$

Let $S = \begin{pmatrix} \alpha & \alpha' & 0 \\ \beta & \beta' & 0 \\ \gamma & \gamma' & \lambda \end{pmatrix}$

After some calculus we find that solutions for the characteristic equation in μ are:

$$\mu = \lambda$$
 and $\mu = \frac{1}{2} (1 + (-1)^{k+1} \pm \sqrt{(1 + (-1)^{k+1}) \cos^2(\theta) + 4(-1)^k})$

If $k \equiv 1 \pmod{2}$ and $\cos^2(\theta) \neq 1$, S and therefore also M has an eigenvalue which is not real and so we can consider that $k \equiv 0 \pmod{2}$ if $\cos^2(\theta) \neq 1$.

If $k \equiv 0 \pmod{2}$ or $\cos^2(\theta) \neq 1$, \overline{M} must have an eigenvalue $\mu \in \mathbb{R}^*$, $\mu \neq \lambda$, $\mu^2 = 1$. $\overline{M} y = \mu y$, $\overline{M} E = \lambda E$, $y \in V = \{E\}^\perp = \operatorname{Sp}(E_1, E_2, E)$.

 \overline{M} invariates Sp(y,E) and $Sp(y,E)^{\perp} = W$ having dim W = 2.

For $z \in W$ we have $z^T \eta E = 0$ and as a consequence of the Cauchy-Bunyakowsky-Schwarz inequality, for any $z \in W$ which is independent of E follows $z^T \eta z < 0$.

Let $\underline{E}' \in W$, $E'^T \eta E' = -1$ and we have β'' , $\alpha'' \in \mathbb{R}$, $\beta''^2 = 1$ with

 $\overline{M} y = \mu y$

 $\overline{\mathbf{M}} E' = \beta'' E' + \alpha'' E \quad (10')$

 $\overline{M}E = \lambda E$

 $y^{T} \eta E' = 0$, $E'^{T} \eta E = 0$, $E^{T} \eta y = 0$, $y^{T} \eta y = -1$, $E'^{T} \eta E' = -1$, $E^{T} \eta E = 0$ (10'') $Sp(y, E', E) = Sp(E_1, E_2, E)$ and from (10), (10') follows

 $\det(S - \rho \mathbf{I}) = \det(S' - \rho \mathbf{I}) \text{ for any } \rho \in \mathbb{C} \text{ where } S' = \begin{pmatrix} \mu & 0 & 0 \\ 0 & \beta'' & 0 \\ 0 & \alpha'' & \lambda \end{pmatrix} \text{ and so we must have }$

 $(\mu=1 \text{ and } \beta''=-1) \text{ or } (\mu=-1 \text{ and } \beta''=1).$

Because $\det M=1$, the characteristic equation in ρ , $\det(M-\rho \mathbb{I})=0$ must have another solution $\rho=-\frac{1}{\lambda}$ and since $\lambda\in\mathbb{R}$ we have $\lambda\neq-\frac{1}{\lambda}$ and $z\in M_{4\times 1}(\mathbb{R})$, z independent of

$$x$$
 such that $Mz = -\frac{1}{\lambda}z$, $Mx = \lambda x$, $z^T \eta x = -z^T \eta x = 0$.

Hence because $x^T \eta x = 0$, x cannot be independent of z, and so, when all eigenvalues of M are real, as we can consider, we must suppose that we are in case a) or case b) described below:

a) for any $\lambda \in \mathbb{C}$, $x \in M_{4 \times 1}(\mathbb{C})$, $x \neq 0$ with $Mx = \lambda x$ we can consider that

$$\lambda \in \mathbb{R}^*$$
 , $x \in M_{4 \times 1}(\mathbb{R})$, $x \neq 0$, $Mx = \lambda x$, $x^T \eta x \neq 0$, $\lambda^2 = 1$

(the last equality in case a) follows because M is a Lorentz transformation)

b) there exist an eigenvalue $\lambda \in \mathbb{R}^*$ such that the corresponding x, θ , k which we have for λ satisfy $x^T \eta x = 0$, $\cos^2(\theta) = 1$, $k \equiv 1 \pmod{2}$

In case a), taking $X_0 \in M_{4\times 1}(\mathbb{R})$ with $X_0 \neq 0$, $\lambda_0 \in \mathbb{R}^*$, $MX_0 = \lambda_0 X_0$ we have that

M invariates $\{X_0\}$ and $\{X_0\}^{\perp}$ and we can take successively $X_i \in M_{4 \times 1}(\mathbb{R})$, $X_i \neq 0$, $\lambda_i \in \mathbb{R}^*$ such that after eventually a permutation of indexes we have:

$$M x_{\alpha} = \lambda_{\alpha} x_{\alpha}$$
, $\lambda_{\alpha}^{2} = 1$, $x_{\alpha}^{T} \eta x_{\beta} = \eta_{\alpha\beta}$ for α , $\beta = \overline{0.3}$.

Then we can find $\varepsilon_{\alpha} \in \{1, -1\}$, $\Lambda \in SO^+(3, 1)$ with $\Lambda^{-1}E_{\alpha} = \varepsilon_{\alpha} X_{\alpha}$.

In the basis (E_1, E_2, E_3, E_0) the transformation $\overline{M}' = \Lambda M \Lambda^{-1}$ has the diagonal form

If $\lambda_3 = -1$ it follows $\lambda_1 \lambda_2 = -1$ and we can take $Q \in SO^+(3,1)$ with $Q^T = Q^{-1}$, $Q\overline{M}'Q^T = \exp(\pi J_3 + 0K_3)$. If $\lambda_3 = 1$ it follows $\lambda_1 \lambda_2 = 1$ and also we can take $Q \in SO^+(3,1)$ with $Q^T = Q^{-1}$, $Q\overline{M}'Q^T \in \{\exp(\pi J_3 + 0K_3), \exp(0J_3 + 0K_3)\}$

In case b) we must have $\mu = \beta'' = \cos(\theta) \in \{\pm 1\}$ and the characteristic equation has another solution $\rho = \frac{1}{\lambda}$, $\det(M - \rho I) = 0$.

If
$$\beta'' \neq \lambda$$
, taking $z = E' + \frac{\alpha''}{\beta'' - \lambda} E$ we obtain:
 $\overline{M} y = \mu y$, $\overline{M} z = \mu z$, $\overline{M} E = \lambda E$,

$$y^T \eta z = 0$$
, $y^T \eta y = z^T \eta z = -1$, $E \in \{y, z\}^{\perp}$ and we find $\Lambda \in SO^+(3, 1)$ with $\varepsilon \in \{\pm 1\}$, $\rho \in \mathbb{R}^*$, $\Lambda^{-1}E_1 = y$, $\Lambda^{-1}E_2 = \varepsilon z$, $\Lambda^{-1}E = \rho E$.

For $M' = \Lambda \overline{M} \Lambda^{-1}$ we obtain $M' E_1 = \mu E_1$, $M' E_2 = \mu E_2$, $M' E = \lambda E$

Since $M' \in SO^+(3,1)$ it follows $\lambda > 0$, M' invariates $Sp(E_1, E_2) = H$ and $Sp(E_3, E_0) = H^\perp$

We will have therefore:

$$M' = \exp(\theta J_3 + \chi K_3)$$
, $\theta \in [0, \pi]$, $\cosh(\chi) + \sinh(\chi) \in [\lambda, \frac{1}{\lambda}]$

If $\lambda^2 \neq 1$ we have obviously $\beta'' \neq \lambda$ and so we have now left the case

 $\lambda^2 = 1$, $\beta'' = \lambda$ having now the situation:

$$\underline{\mu} = \lambda = \beta'' = \cos(\theta) \in \{\pm 1\} , k \equiv 1 \pmod{2}, \sin(\theta) = \cos(\theta') = 0, \sin(\theta') = \cos(\theta)$$

 $\overline{M}E_1 = \mu E_1 + \gamma E$, $\overline{M}E_2 = \mu E_2 + \gamma' E$, $\overline{M}E = \mu E$ and so in the basis (E_1, E_2, E_3, E_0) :

$$\overline{M} = \begin{pmatrix} \mu & 0 & \delta & -\delta \\ 0 & \mu & \varepsilon & -\varepsilon \\ \gamma & \gamma' & \rho & \mu - \rho \\ \gamma & \gamma' & \varphi & \mu - \varphi \end{pmatrix} \text{ and } \overline{M} \in SO^+(3,1) \text{ leading to:}$$

$$V = -\delta \quad \chi' = -\delta \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\rho - \varphi) = 1 \quad \mu(\delta^2 + \epsilon^2) = -2 \cdot \varphi \quad \mu(\delta$$

$$y=-\delta$$
 , $y'=-\varepsilon$, $\mu(\rho-\varphi)=1$, $\mu(\delta^2+\varepsilon^2)=-2\,\varphi$, $\mu\geq\varphi+1$

If
$$\mu$$
<0 it will follow $\varphi \ge 0$, $\mu \ge 1$ and so we must have $\mu = 1$, $\rho = \varphi + 1$, $\delta^2 + \varepsilon^2 = -2\varphi$
Taking $\overline{Q} = \begin{pmatrix} Q & 0_{2 \times 2} \\ 0_{2 \times 2} & \blacksquare_2 \end{pmatrix}$ with $Q = \begin{pmatrix} \cos(\zeta) & \sin(\zeta) \\ -\sin(\zeta) & \cos(\zeta) \end{pmatrix} \in SO(2)$ where

 $\zeta \in \mathbb{R}$, $\delta \cos(\zeta) + \varepsilon \sin(\zeta) = 0$ we have that $\overline{Q} \overline{M} \overline{Q}^T$ has the form:

$$S(\alpha) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \alpha & -\alpha \\ 0 & -\alpha & 1 - \alpha^2/2 & \alpha^2/2 \\ 0 & -\alpha & -\alpha^2/2 & 1 + \alpha^2/2 \end{vmatrix} \text{ with } \alpha \in \mathbb{R}.$$

After some calculus we find out that $S(\alpha+\alpha')=S(\alpha)S(\alpha')$ for any $\alpha,\alpha'\in\mathbb{R}$ and so

$$\frac{dS}{d\alpha} = S\frac{dS}{d\alpha}(0) = -S(J_1 + K_2), S(\alpha) = \exp(-\alpha(J_1 + K_2))$$

Thus the statement is completely proved:

For any $M \in SO^+(3,1)$ exist $\Lambda \in SO^+(3,1)$, $\theta, \chi, \alpha \in \mathbb{R}$ such that

$$M = \Lambda^{-1} \exp(\theta J_3 + \chi K_3) \Lambda$$
 or $M = \Lambda^{-1} \exp(\alpha (J_1 + K_2)) \Lambda$

In conclusion, for any $M \in SO^+(3,1)$ exist $\Lambda \in SO^+(3,1)\omega = (\omega_{\alpha\beta})_{\alpha\beta} \in M_{4\times 4}(\mathbb{R})$

with
$$\omega = -\omega^T$$
, $\mathbf{M} = \Lambda^{-1} \exp(\omega_{\alpha\beta} \mathbf{J}^{\alpha\beta}) \Lambda$

Above we have already proven that

$$\Lambda^{-1} J^{\alpha\beta} \Lambda = \Lambda^{\alpha}_{\mu} \Lambda^{\beta}_{\nu} J^{\mu\nu}$$
 and so, taking $\overline{\omega} = \Lambda^{T} \omega \Lambda$ we obtain:

$$\overline{\omega}^T = -\overline{\omega}$$
 , $M = \exp(\overline{\omega}_{\mu\nu} J^{\mu\nu})$

For any $M \in SO^+(3,1)$ exists $\omega \in M_{4\times 4}(\mathbb{R})$ such that $\omega = -\omega^T$ and $M = \exp(\omega_{\alpha\beta}J^{\alpha\beta})$

Let
$$\omega = (\omega_{\alpha\beta})_{\alpha,\beta} \in M_{4\times 4}(\mathbb{R})$$
 with $\omega = -\omega^T$ and we suppose $\det \omega \neq 0$. (11)

For
$$\Lambda \in SO^+(3,1)$$
 we have $\Lambda^{-1} \eta \omega \Lambda = \eta \Lambda^T \omega \Lambda$, $\Lambda^T \omega \Lambda = \eta \Lambda^{-1} \eta \omega \Lambda$. (12)

If $x, y \in M_{4\times 1}(\mathbb{C})$ and $x, y \neq 0$, $\mu, \lambda \in \mathbb{C}$ such that:

 $\eta \omega X = \lambda X$, $\eta \omega Y = \mu Y$ then, because of (11) we have:

```
\lambda, \mu \neq 0 and \overline{y}^T \omega X = \lambda \overline{y}^T \eta X, -\overline{y}^T \omega X = \overline{\mu} \overline{y}^T \eta X. (the overline means that we are taking the
complex conjugate) Therefore, if \overline{y}^T \eta x \neq 0 we must have \lambda = -\overline{\mu}.
   Since we have also \eta \omega \overline{X} = \overline{\lambda} \overline{X} it follows that if \overline{X}^T \eta X \neq 0 then \lambda = -\overline{\lambda} (13)
   and if \mathbf{X}^T \eta \mathbf{X} \neq 0 then \lambda = -\lambda.
   Because we assumed det \omega \neq 0 we must have x^T \eta x = 0
   for any x \neq 0 with x \in M_{4\times 1}(\mathbb{C}), \lambda \in \mathbb{C}, \eta \omega x = \lambda x
   Let X \in M_{4 \times 1}(\mathbb{C}), X \neq 0, \lambda \in \mathbb{C} with \eta \omega X = \lambda X and consider the case \overline{X}^T \eta X = 0
   Since x^T \eta x = 0, for u = \Re x, v = \Im x it follows u^T \eta u = v^T \eta v = 0, u^T \eta v = 0 and so:
  u=cv or v=c'u, c,c'\in\mathbb{R} and we can consider x\in M_{4\times 1}(\mathbb{R}), \lambda\in\mathbb{R}^*
   We have \det(\omega - \lambda \eta) = \det(\omega^T - \lambda \eta) = \det(\omega + \lambda \eta) and therefore
   we can take y \in M_{4\times 1}(\mathbb{R}) with y \neq 0, \eta \omega y = -\lambda y
    Supposing y^T \eta y \neq 0 it follows \lambda = -\lambda = 0 which cannot be since we assumed \det(\eta \omega) \neq 0
Hence, in the considered case we have:
     X, y \in M_{4\times 1}(\mathbb{R}) linear independent each of other with
  \lambda \in \mathbb{R}^*, y^T \eta y = x^T \eta x = 0, \eta \omega x = \lambda x, \eta \omega y = -\lambda y
   Taking u = x + y, v = x - y we obtain u^{T} \eta v = 0, u^{T} \eta u = -v^{T} \eta v.
Since x and y are independent, u and v are independent too and so we cannot have
  u^T \eta u = -v^T \eta v = 0.
   Hence we can take u, v \in M_{4\times 1}(\mathbb{R}) with u^T \eta v = 0, u^T \eta u = 1, v^T \eta v = -1 and
  \eta \omega \mathbf{U} = \lambda \mathbf{V} , \eta \omega \mathbf{V} = \lambda \mathbf{U} .
   \eta \omega invariates Sp(u,v).
   If \eta \omega invariates the subspace V \subset M_{4 \times 1}(\mathbb{R}), for any z \in V^{\perp} we have
  z^{T} \eta w = 0 for any w \in V and so (\eta \omega z)^{T} \eta w = -z^{T} \omega w = -z^{T} \eta w' = 0 for some w' \in V
   Since \det(\eta \omega) \neq 0 we obtain that \eta \omega invariates also V^{\perp}.
   So \eta \omega invariates Sp(u,v)^{\perp}.
   In the case \overline{X}^T \eta X \neq 0 we have \lambda = i \mu, \mu \in \mathbb{R}^* and we take u = \Re X, v = \Im X.
   We obtain: \eta \omega u = -\mu v, \eta \omega v = \mu u, u^T \eta u = v^T \eta v \neq 0, u^T \eta v = 0
   where we can take u^T \eta u = v^T \eta v = -1, u, v being independent since \mu \neq 0.
Therefore we have two Minkowski-orthogonal subspaces, in both considered cases,
  \operatorname{Sp}(u_1, v_1) and \operatorname{Sp}(u_2, v_2) invariated by \eta \omega with u_i^T \eta v_i = 0, i = 1, 2 one and only
   one of them having a vector, say V_1 with V_1^T \eta V_1 = 1 the other U_i, V_i having the
Minkowski norm equal to -1.
So we have:
               \eta \omega U_1 = \lambda V_1, \eta \omega V_1 = \lambda U_1, \eta \omega U_2 = -\mu V_2, \eta \omega V_2 = \mu U_2, \lambda, \mu \in \mathbb{R}^*
                u_i^T \eta v_i = 0 \text{ for } i, j = 1, 2; u_i^T \eta u_i = 0, v_i^T \eta v_i = 0 \text{ for } i \neq j, i, j = 1, 2
  u_2^T \eta u_2 = v_2^T \eta v_2 = u_1^T \eta u_1 = -1, v_1^T \eta v_1 = 1 and we can choose u_i, v_i such that v_{10} > 0.
   Then we can take \Lambda \in SO^+(3,1) with:
  \Lambda E_1 = \varepsilon u_2 \text{ , } \Lambda E_2 = \varepsilon v_2 \text{ , } \Lambda E_3 = \varepsilon u_1 \text{ , } \Lambda E_0 = v_1 \text{ , } \varepsilon \in \{\pm 1\}.
   For \varphi = \Lambda^{-1} \eta \omega \Lambda we will have:
  \varphi E_1 = -\mu E_2, \varphi E_2 = \mu E_1, \varphi E_3 = \varepsilon \lambda E_0, \varphi E_0 = \varepsilon \lambda E_3 and in the basis (E_1, E_2, E_3, E_0),
```

we have the matrix form:

$$\Lambda^{T} \omega \Lambda = \eta \varphi = \begin{vmatrix} 0 & -\mu & 0 & 0 \\ \mu & 0 & 0 & 0 \\ 0 & 0 & 0 & -\varepsilon \lambda \\ 0 & 0 & \varepsilon \lambda & 0 \end{vmatrix}$$

$$\begin{split} &\exp(\omega_{\alpha\beta}\boldsymbol{J}^{\alpha\beta}) = \boldsymbol{\Lambda} \exp(\omega_{\alpha\beta}\boldsymbol{\Lambda}^{-1}\boldsymbol{J}^{\alpha\beta}\boldsymbol{\Lambda})\boldsymbol{\Lambda}^{-1} = \boldsymbol{\Lambda} \exp(\omega_{\alpha\beta}\boldsymbol{\Lambda}^{\alpha}_{\ \boldsymbol{\gamma}}\boldsymbol{\Lambda}^{\beta}_{\ \delta}\boldsymbol{J}^{\boldsymbol{\gamma}\delta})\boldsymbol{\Lambda}^{-1} = \\ &= \boldsymbol{\Lambda} \exp(2\mu\boldsymbol{J}_{3} - 2\,\varepsilon\,\lambda\boldsymbol{K}_{3})\boldsymbol{\Lambda}^{-1} \end{split}$$

Since J_3 commutes with K_3 we will have $\exp(\omega_{\alpha\beta}J^{\alpha\beta}) \in SO^+(3,1)$,

if as we assumed $\omega = -\omega^T \in M_{4\times 4}(\mathbb{R})$ with det $\omega \neq 0$

If we have $\overline{\omega} = -\overline{\omega}^T \in M_{4\times 4}(\mathbb{R})$ and det $\overline{\omega} = 0$ we observe that the set

$$\boldsymbol{A} \!=\! \{\boldsymbol{\omega} \!\in\! \boldsymbol{M}_{4 \times 4}(\mathbb{R}) | \boldsymbol{\omega} \!=\! -\boldsymbol{\omega}^T \text{ , det } \boldsymbol{\omega} \!\neq\! 0\} \text{ is dense in } \{\boldsymbol{\omega} \!\in\! \boldsymbol{M}_{4 \times 4}(\mathbb{R}) | \boldsymbol{\omega} \!=\! -\boldsymbol{\omega}^T\} \!=\! \overline{\boldsymbol{A}} \quad .$$

The function $M_{4\times4}(\mathbb{R})\ni\omega\rightarrow\exp(\omega_{\alpha\beta}J^{\alpha\beta})\in M_{4\times4}(\mathbb{R})$ being continuous,

since
$$SO^+(3,1)$$
 is closed in $M_{4\times 4}(\mathbb{R})$ it follows $\exp(\overline{\omega}_{\alpha\beta}J^{\alpha\beta}) \in SO^+(3,1)$ for any $\overline{\omega} \in \overline{A}$

The above proven results lead to the following three facts:

i) We have 6 independent matrices $\{H_k\}_{k=\overline{1,6}}$ where

$$H_k = -\frac{1}{2} \epsilon_{ijk} J^{ij} = J_k$$
, $H_{k+3} = -J^{0k}$ for $k = \overline{1,3}$

ii) We have a surjective C^{∞} class function

$$\Phi: \mathbb{R}^6 \rightarrow SO^+(3,1)$$
, $\Phi((\psi_s)_s) = \exp(\psi_s H_s)$ such that $\operatorname{rank} \left(\frac{\partial \Phi_{pq}}{\partial \psi_k}\right)_{pq,k} = 6$ with $p, q = \overline{0,3}$, $k = \overline{1,6}$

iii)
$$\Phi$$
 is local injective (Since $\det \left(\frac{\partial e_{pq}^W}{\partial t_{ij}} \right)_{pq,ij} \neq 0$, $p,q,i,j = \overline{0,3}$ for any $W \in M_{A \times A}(\mathbb{R})$, $W = (t_{ij})_{ij}$)

As we proved for the rotation group SO(n) we conclude that the manifold structure on $SO^+(3,1)$ (with the topology induced from M, $\mathcal{A}(\mathbb{R})$) is equivalent to a structure

on $SO^+(3,1)($ with the topology induced from $M_{4\times 4}(\mathbb{R}))$ is equivalent to a structure given by the mappings $((\psi_s)_s) \rightarrow \exp(\psi_s H_s)$.

Having the continuous surjective function Φ we find $SO^+(3,1)$ as a 6-dimensional connected Lie group (as well as by the mapping $(\vec{\theta}, \vec{\chi}) \rightarrow \exp(\vec{\theta} \vec{J}) \exp(\vec{\chi} \vec{K})$).

For $U \in M_{n \times n}(\mathbb{C})$, $n \in \mathbb{N}^*$ we denote U^+ the conjugate transpose of U.

Let
$$SU(n) = \{U \in M_{4\times 4}(\mathbb{C}) | U^+U = \mathbb{I} \text{, det } U = 1\}$$

Consider $M_{n \times n}(\mathbb{C})$ as its natural complex Hilbert space .

Then if $x \in M_{(n+1)\times(n+1)}(\mathbb{C})$, $\lambda \in \mathbb{C}$, $U \in SU(n+1)$ with $U \times = \lambda \times X$ we will have that U invariates Sp(x) and also $Sp(x)^{\perp}$ and $\lambda \overline{\lambda} = 1$.

Therefore we can obviously prove by induction (in a sampler way as we did for SO(n)) that for any $U \in SU(n)$ exists $H \in M_{n \times n}(\mathbb{C})$ with $H^+ = H$, $U = \exp(iH)$. (14)

Since $\operatorname{tr}(H) = \operatorname{tr}(JHJ^{-1})$, $\det U = \text{ for any } J \in M_{n \times n}(\mathbb{C})$ with $\det J \neq 0$, taking H in the normal Jordan form, from (14) we deduce for H that $\operatorname{tr} H = 0$.

From the way we proved it, it is obvious that the relation (3') works even for complex W.

Therefore are no difficulties in proving that we have a surjective and local injective mapping

$$\Psi: \mathbb{R}^r \to SU(n)$$
, $\Psi(\varphi) = \exp(i \varphi_a T_a)$ where $\varphi = (\varphi_a)_{a=\overline{1,r}}$, $r = n^2 - 1$,

 $(T_a)_a$ is a basis of the real vector space $S = \{H \in M_{4\times 4}(\mathbb{C}) | H^+ = H \text{ , } \text{tr } H = 0\}$.

For n=2 we can take $(T_a)_a = (\sigma_i)_{i=\overline{1,3}}$ the Pauli matrices (see Chap. Representations of the rotations group and the restricted Lorentz group. Spin representations).

Let $M = \exp(\omega_{uv} J^{\mu v})$ with $\omega = -\omega^T \in M_{4\times 4}(\mathbb{R})$

Then, as we proved above, if det $\omega \neq 0$ we can find $\Lambda \in SO^+(3,1)$ such that

$$\Lambda^{T} \omega \Lambda = \omega'$$
, $\omega'_{\alpha\beta} = 0$ for $(\alpha, \beta) \notin \{(1, 2), (2, 1), (0, 3), (3, 0)\}$ and $\Lambda^{-1} M \Lambda = \exp(-2 \omega'_{12} J_3 - 2 \omega'_{03} K_3)$ (15)

We have the representation

 $S:SO^+(3,1) \to M_{4\times 4}(\mathbb{C})$ such that for any $M \in SO^+(3,1)$, S=S(M) satisfies

 $S^{-1} \gamma^{\mu} S = M_{\mu\nu} \gamma^{\nu}$ for $\mu = \overline{0,3}$ (16) (see Chap. Representations of the rotations group and the restricted Lorentz group. Spin representations).

$$S(\exp(\theta J_3)) = \cos(\frac{\theta}{2}) \mathbf{I} + \sin(\frac{\theta}{2}) \gamma^1 \gamma^2 = \exp(\frac{\theta}{4} [\gamma^1, \gamma^2])$$

$$S(\exp(\chi K_3)) = \cosh(\frac{\chi}{2}) \mathbf{I} + \sinh(\frac{\chi}{2}) \gamma^0 \gamma^3 = \exp(\frac{\chi}{4} [\gamma^0, \gamma^3])$$
 (17)

where [A,B]=AB-BA denotes the commutator of A and B

We denote $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$.

Since $[J_3, K_3] = 0$ and $[\sigma^{12}, \sigma^{03}] = 0$, from (15) and (17), after some calculus we obtain:

$$S(M) = \exp(\frac{i}{2} 2 \omega'_{12} S(\Lambda) \sigma^{12} S(\Lambda)^{-1} + \frac{i}{2} 2 \omega'_{03} S(\Lambda) \sigma^{03} S(\Lambda)^{-1}) . (18)$$

From (16) we can deduce $S(\Lambda)^{-1} \sigma^{\mu\nu} S(\Lambda) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} \sigma^{\alpha\beta}$ and so (15) and (18) will lead to:

$$S(M) = \exp(\frac{i}{2}\omega_{\alpha\beta}\sigma^{\alpha\beta})$$
 if as we assumed $\det \omega \neq 0$

If $\det \omega = 0$ we have $\omega = \lim_{n \to \infty} \omega_n$ with $\omega_n = -\omega_n^T \in M_{4 \times 4}(\mathbb{R})$, $\det \omega_n \neq 0$ and

since the representation S is continuous, for $M_n = \exp(\omega_{n\alpha\beta} J^{\alpha\beta})$ we have

$$\lim_{n\to\infty} S(M_n) = S(M) \text{ deducing } S(M) = \exp(\frac{i}{2}\omega_{\alpha\beta}\sigma^{\alpha\beta}) \text{ for any } \omega = -\omega^T \in M_{4\times 4}(\mathbb{R})$$

The Dirac spinorial function $\,\psi\!\!=\!\!(\psi_{\alpha})_{\alpha}(x)\,$ (as a column 4x1 matrix) ,

 $\mathbf{x} = (\mathbf{x}^{\alpha})_{\alpha}$ space-time coordinates, which satisfies the Dirac equation

$$i y^{\mu} \partial_{\mu} \psi - m \psi = 0$$

transforms under a Lorentz coordinates transformation

 $\mathbf{X}'^{\mu} = \mathbf{M}_{\mu\nu} \mathbf{X}^{\nu}$ according to $\psi' = \mathbf{S}(\mathbf{M}) \psi$ and considering

 $\pmb{M}\!=\!\exp\!\left(\,\omega_{lphaeta}\pmb{J}^{lphaeta}
ight)$, $\overline{\psi}\!=\!\psi^{\!\scriptscriptstyle{+}}\,y^{\!\scriptscriptstyle{0}}$ with $\psi^{\scriptscriptstyle{+}}$ the complex conjugate transpose of ψ

we have for the transformation of the conserved current, $J^{\mu} = \overline{\psi} \gamma^{\mu} \psi$, the expression:

$$J^{\prime\mu} = \psi^{+} S^{+}(\mathbf{M}) \gamma^{0} \gamma^{\mu} S(\mathbf{M}) \psi = \psi^{+} \exp\left(-\frac{i}{2} \omega_{\alpha\beta} \sigma^{+\alpha\beta}\right) \gamma^{0} \gamma^{\mu} \exp\left(\frac{i}{2} \omega_{\alpha\beta} \sigma^{\alpha\beta}\right) \psi$$

We have $\sigma^{+\alpha\beta} = \gamma^0 \sigma^{\alpha\beta} \gamma^0$ and so we obtain:

$$J^{\prime\mu} = \psi^{+} \gamma^{0} \exp\left(-\frac{i}{2} \omega_{\alpha\beta} \sigma^{\alpha\beta}\right) \gamma^{\mu} \exp\left(\frac{i}{2} \omega_{\alpha\beta} \sigma^{\alpha\beta}\right) \psi = \psi^{+} \gamma^{0} S(\mathbf{M})^{-1} \gamma^{\mu} S(\mathbf{M}) \psi = \mathbf{M}_{\mu\nu} \overline{\psi} \gamma^{\nu} \psi$$

Therefore, the conserved current transforms like a contravariant Lorentz vector.