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On the rotation groups and the restricted Lorentz group

Consider the n-dimensional rotations group

SO(n)={ReM, . (R)IRR"=1, det R=1|
On the rotations group we take the topology induced from the square real matrices space such that a
fundamental system of neighbourhoods of R,€SO(n) is (V.(R,)),., with

V.(R,)=[ReSO(n)||R;;— Ry, |<¢ for i, j=1,n]
Forany R=(Q;;); jESO(n+1) if Q,,#0 we consider

elf:(oll)i:m ’ ef_(aj 11)1 T,n+1 fOF j 2 k €; _(5 )I 1,n+1 fOF J k+]— n+]— and
fi=
p
f’;ﬂ—Vers(e';m—jz:1 (f5,ey5,)fy) for p=1,n—1
fr.=sign(Q,,)vers(ey, —> (f5,er )fY)
i=1
Then if Q,,#0 for Q*'=(f},); ;_;;; we have Q¥'€SO(n+1) and

Q"' R= 01 %fk’)’ =M™*) with
nx1
Keso(n)

where (.,.) denotes the euclidean scalar product and & the Kronecker symbol
We suppose as a induction hypothesis that we have a C” class mapping with

Ws(y), i mman? R(();)€S0(n)
pq) :n(n_l)
OY; Jpa.j 2
We take () _in-imeinpen Qs )sermr€S, where S, =({xeR"'[| x||=1} is the
n+1- dimensional sphere, a mapping of S..

We have Q¥ (%ﬂ A)wuh AeM,_(R), BeM, (R), CeM, . (R).

n(n—1)/2

, p,q=1,n, j=1,n(n-1)/2

W an open set of IR and rank

C
Q.
B=| - |and|”|hasaninverse SEM . 1n(R) S A =1,
. C C
Qpent
It follows
QT M= (OBM 22 ) (1) and we can consider now a mapping R™ such that
—_NKT 1 0 xn
((Q'U)s 1nn+1)/2) Q 0n><1 1§
(_) _:Q (( )5 n(n— 1)/2+1,n(n+1)/2>
R R((U’j), =1, n ) )
Since rank a—wll - =n with i=T,n+1 , s=n(n-1)/2+1,n(n+1)/2

and the mapping R has rank n(n—1)/2 and we have the inverse S for



n(n+1)/2 (k) p (k) -
(A it follows that if Z aj%:() with a,€R , j=1,n(n+1)/2
C j=1 T,Uj
o (k)
then o;=0 for j= 1,n(n+1)/2 and so rank Pq :n(n+1)
OY; Jpq.j 2

where p,q=1, n+1 , j=1,n(n+1)/2
The application @' S XS0(n)>S0O(n+1)
(I)(k)((on)i:m,R(k)):M(k)
is a local homeomorphism, defined in the neighbourhood of each
((Qi))i-trs1,R*') with Q,,#0 and so by induction we can define a smooth class C*
manifold structure on  SO(n+1) having dimension n(n+1)/2 that generates the same
topology on SO(n+1) as induced from M, . (R) .
Suppose now the induction assumption that forany R€SO(m), m<n exists
WeM_ _(R) suchthat W=—W" and R=exp(W)
For Q€SO(n+1) if Q invariates a subspace V of R™' (i.e. Q(V)=V )
then Q invariates also V
If A€C , XEM,,,,,,(C) , x£0 , Qx=Ax it follows AA=1, since Q Q" =I
(A the complex conjugate of A)
If further A€ C\IR taking U=R x , v=37 X we have
A=cos(0)+isin(0) , sin(6)#0 , v#0
Qu=ucos(6)—vsin(6) , Qv=usin(6)+vcos(6) and since QQ" =1 we will have
lulP=llull cos”(6)+[|v][*sin”(6) —2{u,v )sin (6)cos (6)
IvVIF=llull sin*(6) +[| v cos*( 6)+2(u,v )sin( 6)cos (6)
(u,v)=(|lulf~IIv|F)sin(6)cos(6)+(u,v)(cos*(6)—sin’(6))
(lulF=IIvIF)(cos (2 6)=1)=2(u,Vv)sin(2 6)=0
(lulP=llvIF)sin(2 6)+2(u,v)(cos(26)—1)=0
Therefore, since sin(6)#0 it follows (U,v)=0 , ||u||=||v]||#0
Q invariates Sp(u,v) and Sp(U,v)" and so we can find R€SO(n+1) such that

RQRT: B 02><(n—1)
0(n—1)><2 Q0
with Q,=exp(W,)€SO(n-1) , W,=—W;eM,_, -\ (R)
cos(0) —sin(6) -1
sin(6) cos(0) 0
0A 02><(n—1

B= —exp(HA) where A=

Taking W=R"

))R we obtain Q=exp(W)

(n—1)x2 0

If A€R we must have A€{—1,1]

Then if XeM,,,,.,(R), Qx=—Xx , x#0 since det Q=1 there it exists another

y#0 , ye{XJ such that Q y =—y and we will have

ReSO(n—1) with RQR" = e’gp(”A) 022;1 , Qu=exp(W,) , W,=—W]
(n—1)x2 0

and we can take Q=exp(W) with W=R" A 02X(”1))R:—WT€ M p1yinen)(R)

(n—1)x2 0
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If X€M,,,,1(R), Xx#0, Qx=x we will have R€SO(n+1) such that
RQRT:( L 1xn| where by induction assumption Q,=exp(W,),W,=—W]
nx1 0
ing W=R"| © “vn|R=—wTem, w
Taking W= W €M, 1x(ns)(R) we will have Q=exp (W)
nx1 0

Therefore , by induction we have proved that for any
QeSO(n) exists WeM,__(R) such that W=—W" and Q=exp(W)
Also it is obvious that if W=—W" then W W =W" W and so for Q=exp(W)
QQ =exp(W+WT')=1, QeO(n)

Moreover we have W= JS /™" where S is the Jordan normal form of W
n

detexp(W )=detexp(S)=] [ exp(4,) , where
i=1

n

det(W—-2AD=]](1-1)

i=1

For W=—W"eM__(R), Wx=Ax xeM,,Xl( ), A€ER we can take xeM__,(R)

andso X' Wx=x"W" x=—x"Wx=0, 0=x"W x=A|x|* and

all real eigenvalues of W must vanish and since W is real we can split the eigenvalues as
E={i€{1,..n}|A,eC\R}=E ,UE, , E,NE,=@ , cardE,=card E,
El—{ll,...,lk} , E,= {jl,...,jk} , A=A for s=1,k

Therefore it follows H exp(4;)>0 , Q=exp(W)eSO(n).

i=1

We will prove now that the function
o:M,_ . (R)»M, (R) with ®(W )=exp(W) forany WeM,  (R) satisfies

oD, . —
det| —24 #0 forany W=(t,;), . €M, ,(R) where i,j,p,qg=T,n (2
ij |pa.ij
_ (W
q)_(q)pq)p,q_(epq)p,q

(2) is equivalent to the fact that

forany W , BeM__ (RR) the relation aihexp(W+h/3’)& =0 implies =0 .
h=0

Suppose we have W,8eM___(IR) such that %exp(W+h[3’)

Since for any JeM, .(C) with det J#0 we have
Dexp(JW J " +h ) BJ )= ]|-Lexp(W+h )

an(

=0
h=0

J ' itis sufficient to prove (2) only for W

0 otherwise
We denote W, =y, for i=1,n

oh oh
having the upper triangular normal Jordan form
c, 0 . O
w=9 €~ Ol C, cells of the form C,=21_+N_, , 1.€C , s,€N’
.. .0
0o . 0 C,
1 if I=k+1,1<k<s,—1 —
N =(n )¢ isi» nk,:[ i~ for k,I=1,5,

Let W having the Jordan normal form and we have :
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o -y LZ W™ KE, W where E; (8,0, ) 1L (3)

For any KeNN | W is upper triangular and has diagonal coefficients

(W*);; =4 and therefore calculating the terms W™ ™'~ E,;W* it follows that
w

e
—Pi=0 if g<j or p>i.
ot
We consider for pq and ij pass the ordering (1n)(2n))...((n-1)n)(nn)(1(n-1))...(n(n-1))(1(n-2))......
(11D)((21)...((n-1)1)(n1) we find that the matrix
del
—k4 has an upper triangular form and so
ati j |pa.ij
oel
det| —22
oty
Calculation from (3) , with W having the Jordan normal form leads to
exp(u,)—exp(u,)

_ ﬁ 8ezvq

pa.ij p,q=1 0 tpq

iimz“lﬂ Sk ko 2y if up# iy
'm! = Ha= exp(u,)—1
—m, if u,=u,
del
and so det| —22 #0 forany WeM_ _(R) (3")
8tij pPq.ij

Let (/) s=inn-nn @system of linear independent generators for the antisymmetric real
matrices so that we have

W=-W"eM, (R)W=y,]J., y.€R (withEinstein summation convention for indexes

s=1,n(n-1)/2)
Because we have (3”), it follows that for

R,€SO(n) and y’=(1v), such that exp( . J)=R, we have an open neighbourhood

U, of 4’ , an open neighbourhood G, of R, and the injective function

®:U,»G, , ®(v)=exp(v.)o) . y=(us).
As we proved , we can choose G, such that we have a mapping

R:V,>G, of SO(n) from some open neighbourhood V, of ¢ such that ¢’=(¢,), and

oR _n(n-1) @

B( 0 — pq
R((p )—RO , rank —% s 5
Thus we have R(¢")=exp (. J,) and for p=R ‘o ®( 1) we have R(¢)=exp(y J,)

for any yeU, and the function R 'o®:U,~V, is continuous and injective
Therefore, since U, is open and Uy, V;, have the same dimension it follows that
R o®(U,)=W, is an open set and ¢’€ W, and we have a homeomorphism
R od:U,»W,
Since (4) , by the implicit function theorem we will have a C' class function
h:U,»V, with U, open neighbourhood of 1’ , V, open neighbourhood of ¢’ such that
R(h(y)=exp(y. J.) forany yeU,
and for any (¢, y)eV xU,:R(p)=exp(y, J) if and only if p=h(1)
Since (3’) we have that
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dexp(y; Jo)og| _n(n—1)
ay% pmk_ 2

g:V,» U, with U, open neighbourhood of #’ , V, open neighbourhood of ¢ such that
R(g)=exp(g,(¢)J,) forany g€V,
and for any (¢, y)eV,xU,:R(¢)=exp(y.J,) if and only if y=g(¢).
It follows (go h)(y)=vy , (h°g)(¢)= g forany (¢@,y)eV NV, xU,NU,

Therefore we can find U, V open neighbourhoods of 1’ respective ¢ such that
h(U)=V , g(V)=U, hl,=g"'|, . R(h(w)=exp(w. J,) , R(p)=exp(gq(9) J,)
for any (@, y)€eV xU.

Intermediating through the R mappings of the manifold structure SO (n) we obtain that
for any v° , y' with exp (2 J.)=exp(y. J.) there exist
W, an open neighbourhood of 3° and W, an open neighbourhood of ' anda C* class
function f : W = W, such that for any (v, v’ )eW xW,:
exp( vy, J.)=exp(y’,J.) if and only if 3’ =f(1) and so we have the same manifold structure
on SO(n) with topology induced from M, (IR) given by the mappings
(%s)s—inm=> exp (s ;) having the continuous surjective function

®:R""V2550(n) with @ (y)=exp(y, J.) and so we find SO(n) as a
n(n—1)/2- dimensional connected Lie group.

ank and we will have also a C! class function

Consider now the Minkowski space
R* identified with M, (R) having the pseudometric ( 7,4),,s With
Nep=0 if a#p, n;=—1 for i=1,3 , n,,=1
(we use greek characters for indexing from 0 to 3 and latin characters for indexing from 1 to 3)
We have the pseudo-scalar product R*XR*3(x,y)?x-y=y" nxeR
X , y as column vectors Xx=x“E, , (E,), Minkowski base with
E.=(6.4)s (as column vector) , E ,-E =1,
We remind that , as a consequence of the Cauchy-Bunyakowsky-Schwarz inequality, we have:
i) if x,yeR*and x#0, x' nx=0, y' nx=0 then y' ny <0
i) if x , yeR* and x#0 , X nx=0, y" nx=0 then exists AER with y=Ax.

For MeSO™(3,1) (see Chap. Representations of the rotations group and of the restricted
Lorentz group , Spin represgntations) we_»have : _
M:R(Q:n)B(X)q):M(H:%) where 6=6n ’ %:Xq > 9:(01)/ ’ %:(X/)i
R(e’n):<RO{ﬂ)(1,ﬁ H B(X’q):(Baﬁ)a,ﬁ >
R, == € Nisin(0)+(8,;—n;n;)cos(6)+n;n; , R,;=R,;=0 , Ry=1
B;j=8;;+(cosh(x)-1)g;q; , B,;=B;,=—q;sinh(x) , By,=cosh(x)
B is symmetric positive definite and so M=R B must be the polar decomposition of M ,
B=VM"M , R=M(VM"M) " and we can find k€(1,2,3] such that :
nzvers(eijk(Ri_éi)x(Rj_éj)) with R=(R;)), , 6=(5;),
. 1 1
sm(@):—EEI.j,nIR,j , cos(H)ZE(R”—l)
B.
— : _ 2 _ i0
COSh(%)—Boo ) 5mh(X>—VBoo_1 ) qi__\/m




Therefore we have a local homeomorphism :
R°>(6,%)»M (6, %)€SO"(3,1) when SO*(3,1) is considered with the topology
which is induced from M,,,(R) and a 6-dimensional connected Lie group structure on
SO*(3,1) given by the mappings (0,%)>M(0,%) .

Suppose now we have

(o) 5 (Be)€ER® such that 224_'_/3’(2_/\//_0 for a value of (6, %)
Xk

It follows :

0B, ik
0=Fc 77— GER =B\~ X quqk

sinh(x)— B, g, q,;cosh( x)

0B R
OZﬁkﬁZ/ﬁqusinh(x) and so we obtain 5,=0 for i=1,3

aR 1 " . _—
aka—HkZO with (R, ), ,=exp (6 J,) , (Ji)ij=—€;ji » for i, j,k=T,3 .

w

e
Since det| —24

#0 forany W=(t, ), ,€M,,,(R) as we have proven, it follows :
ij|pq.ij
anP(ijk)ij

rank 70,

) =3 and so we must have also ,=0 for kK=1,3.
il

oMy| .
81/}, aﬁ,l_

We remind that we rise or lower the indexes according to
a af af
V(Z: naﬁvﬂ b) V :77 /Vﬁ ’ (770(/3):(77 /})

Therefore taking (1,),_;s=(0,%) we have rank

Let €,4,, be the signature of the permutation a fpy o and we define
1 2
J Z’fs— “P¥* 1. We will have:
J'==1"==1;, J'=¢€; K, where j, , K are the Lorentz group generators

(./k)lj:_ ijk > (/k):o (jk)m (jk)oo s (Kk>ij:O ) (Kk)io:(Kk>oi:5io s (Kk>00:O
R(6,n)=exp(6n, J,) , B(x,q)=exp(—xq,K,).
We define also

aﬁ_l ap W__l afyge yp sk
jyé—ze o 2 € Eygapll obtaining

,/ijz_eijk Ji s JOIZ_Jio:_Ki

For a Lorentz coordinates transformation X “=A" x" , (A", ,=A€S0"(3,1)
we denote (A,”), ,=A"".
The relation A“, A" J=A""J*"A  (5)is equivalent to
A N AN JSh=T
Since A€SO*(3,1) we have A,)=A",1,;1,, and so (5) is equivalent to
A NGNS NS e P = e“”” which is true since det A=1
Also, since A€SO"(3,1) we have
€ N A 5= gy NN = €GN A,
Therefore, from (5) follows :
A A P=AT A (6)
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We will prove further that if MeSO™(3,1) then exists A€SO"(3,1) such that
M=A""exp(6 )5+ xK5) A or M=A""exp(a(J,+K,))A for some 6, x,a€ER .

If exists u€C\IR such that we have x€C*(x as a column vector ) x #0 with
M x=ux ,thenif X" nx =0 it follows, since M" yM =1 that x’=1 and because
u€C\R , we must have X" nx=0 and so
RX" R x=3Ix"n3Ix, Rx n3Ix=0 (7)
If also R XTUSRXZO , since 3 x#0( because u€R) we have A€ER with RX=A3 x .
This leads to (i+A)M 3 x=(i+2A)uJ x which again contradicts ugR .
Therefore we have U=RX , V=3 X , X=U+iV
u nu=v nv=0,u nv=0 (8)
X nx=u" nu+v’ nv=0 (9) which from M x=ux leadsto ufi=1 and a€R with
Mu=ucos(a)—Vsin(a)
Mv=usin(a)+V cos(a)

As a consequence of Cauchy-Bunyakowsky-Schwarz inequality, from (8) we obtain
u" nu=v' nv<0 and we can therefore consider u” nu=v" pv=—1 .
M invariates VV=Sp(u,v) and for V" ={weM, ,(R)lw’ nz=0 forany zeV},
M invariates also V* .
We can take A€SO*(3,1) suchthat A™'E,=u and A" E,=v .
For M=AM A~ we will have:
ME,=E cos(a)—E, (), ME,=E,sin(a)+E,cos(«) and that
M invariates Sp(E,,E,) and Sp(E,,E,)=Sp(E,,E,)".
Hence exist 6, y€R such that M=exp(6/,)exp(xK,)=exp(6J,+xK,)

M=A"exp(0J,+xK,) A

Therefore, to prove the statement we can further suppose that
if ueC , xeM,,(C) , x#0 , Mx=ux then ueR” and xeM,,,(R)
Let XxeM, (R), A€R" , x#0 , Mx=Ax
If X" 7x=0 we can choose x€M, ,(R) and take A€SO*(3,1) such that
A X=E where E=E+E, . Then for M=AMA™' , M invariates
[E}*=Sp(E,,E,,E)=V and we will have:
ME,=aE +BE,+yE
ME,=a’ E,+B E,+y E (10)

ME=ALE

Since MeSO " (3,1) we obtain:
O{2+/32=1 ’ O{’z+/3"2=1  ad +BE =0
a=cos(0) , p=sin(6) , a’=cos(0’), B'=sin(0') , 6— 0'=2k2+1 7,kez .

o

a o
Let S=|g B 0
y y A
After some calculus we find that solutions for the characteristic equation in  u are:
u=A and ,u:%(1+(—1)k+1i\/(1+(—1)k+1)cosz(6)+4(— 1))

If k=1(mod2) and cos’(#)#1 , S and therefore also M has an eigenvalue which is not real
and so we can consider that k=0(mod?2) if cos’(8)#1 .
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If k=0(mod?2) or cos’(#)#1 , M must have an eigenvalue u€R” , u#A , u’=1
My=uy , ME=AE , yeV=[E} =Sp(E,E,,E) .
M invariates Sp(y,E) and Sp(y,E)" =W having dimW=2 .
For zeW we have z' E=0 and as a consequence of the Cauchy-Bunyakowsky-Schwarz
inequality, for any z€W which is independent of E follows z' z<0 .
Let E'’eW E"nE’=—1 and we have 8" , a”€R , f7*=1 with
My=uy
ME =" E'+a’E (10"
ME=LE
y ' nE’'=0 ,E"nE=0,E ny=0,y ny=—1,E " nE'=—1,E " yE=0 (10”)
Sp(y,E",E)=Sp(E,,E,,E) and from (10), (10') follows

u 0 0
det(S—pl)=det(S —pl) forany p€C where S'=|0 S” 0| and so we must have
0 o A

(u=1and B"=—1) or (u=—1 and B"=1).
Because det M=1 , the characteristic equation in o , det(M—pl)=0 must have another

solution pz—% and since A€R we have /l;é—% and zeM, ,(R), z independent of

X such that Mz:—%z ,Mx=Ax ,z" nx=—2"nx=0 .

Hence because X' nx=0 , x cannot be independent of z , and so, when all eigenvalues of M are
real, as we can consider , we must suppose that we are in case a) or case b) described below:
a) forany A€C , xeM, ,(C), x#0 with M x=AX we can consider that
LER" , xeM, (R), x#0 , Mx=Ax , x' nx#0, A’=1
(the last equality in case a) follows because M is a Lorentz transformation)
b) there exist an eigenvalue A€IR™ such that the corresponding X , 6 , K which we
have for A satisfy X" nx=0 , cos’(0)=1 , k=1(mod?2)
In case a), taking X,€M,,,(R) with x,#0,4,ER" , M x,= 4, X, we have that
M invariates { X} and {x,]" and we can take successively x,€M, ,(R), x,#0 , ALER”
such that after eventually a permutation of indexes we have:
MX,=A X, , Ao=1, XonXz=n,, for a , p=0,3 .
Then we can find ¢,€{1,—1} , A€SO*(3,1) with A"'E =¢,x,, .
In the basis (E,,E,,E,E,) the transformation M'=AMA ™" has the diagonal form
A’l
& N and since M’€SO"(3,1) we have A,=1 .
3 AO
If A,=—1 it follows A,A,=—1 and we can take Q€ SO*(3,1) with Q'=Q",
QM’' Q" =exp(mJ,+0K,) .If A,=1 it follows A, A,=1 and also we can take Q€SO*(3,1)

with Q"=Q™' , QM’' Q" €lexp(7J,+0K,) , exp(0 J,+0K,)]

In case b) we must have u=p"=cos(6)€{+1} and the characteristic equation has another

solution p:% , det(M—pl)=0.
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If p”# A , taking z=E "+ E we obtain:

”

My=uy ,Mz=uz , ME=AE ,
y ' nz=0,y ny=z"nz=—1,E€ly,z]" and we find A€SO"(3,1) with
e€(+1], peR* , AE,=y ,A"'E,=ez , N 'E=pE .
For M'=AMA™" we obtain M"E,=uE, , M'E,=uE,, M'E=AE
SinceM'€S0O"(3,1) it follows A>0 , M’ invariates Sp(E,,E,)=H and Sp(E,,E,)=H"
We will have therefore :

M’ =exp(6J,+xK,) , 6€{0, x| , cosh(y)+sinh(y)e

1
’“7]
If A’#1 we have obviously 8" #A and so we have now left the case
A*=1, "= A having now the situation:
u=A=p"=cos(0)e{x1} , k=1(mod2) , sin(H)=cos (0 )=0 , sin(0")=cos(6)
ME,=uE +yE , ME,=uE,+y E , ME=uE and so in the basis (E,E,,E,,E,):

u 0 o6 =90
M=| Y Ho & 7% and MeSO*(3,1) leading to:
Yy Yy p u—p
Y Y @ u—¢
)/:—(5, )/,:—8, Au<p_(p):]' ’M(52+€2>:_2¢’Au2(p+1

If u<0 it will follow =0 , =1 and so we must have u=1, p=¢+1 , S+&=—2¢

Q 0y . _ COS(C) Sin(é)
0 with Q= “ein(£) cos(2) €S0(2) where

Z€R , dcos(&)+esin(&)=0 we have that QM Q' has the form:
0
1

Taking Q=

1 0 0

0 a —a
0 —a 1-da/2 o2
0 —a —a’l2 1+a’/2
After some calculus we find out that S(a+a’)=S(a)S(a’) forany a,a’€R and so

dS_dS \_ _
=S 0)=-5(),+K,) , Sla)=exp(al/,+K,)

Thus the statement is completely proved :
Forany MeSO" (3,1) exist A€SO"(3,1), 0, x,a€R such that

M=A"exp(6 Js+xK;)A or M=A""exp(a(J,+K,))A
In conclusion, for any MeSO™(3,1) exist A€SO™(3,1)w=(w,4), €M, ,(R)
with o=—aw' , M=A""exp(w,;J") A
Above we have already proven that
A_lj“ﬁ/\:A(LAﬁvj” and so, taking @=A" wA we obtain:
@ == , M=exp(®,,)"")
For any MeSO* (3,1) exists weM,,,(R) such that o=— " and M=exp(w,;J*)

S(a)= with a€R.

Let 0=(,p), ;€M,,,(R) with w=—w" and we suppose det w#0 . (11)

For A€SO*(3,1) wehave A ' noA=nA" oA , AToA=nA "'noA . (12)
If x,yeM, ,(C) and x,y+#0 , u, AEC such that:

noX=AX , nwy=uy then, because of (11) we have:



Page 10 of 12

A, u#0 and )7T wX= )L)_/T nx, —)7T wxzﬁ)_/T 1nX . (the overline means that we are taking the
complex conjugate) Therefore, if ¥’ 77X #0 we must have A=—p .

Since we have also nowX=AX it follows that if X’ 7x#0 then A=—1 (13)

and if X" nx#0 then A=—1 .

Because we assumed det w#0 we must have X' nx=0

for any x#0 with xeM,,,(C), AeC , nox=AxX

Let XeM, (C), x#0 , A€C with nwx=Ax and consider the case X' nx=0

Since XTnXZO ,for u=R x , v=3 x it follows uTnusznVZO , uTnVZO and so:

U=CV or v=Cc’'U, €,Cc €R and we can consider xeM,,(R) , AER"

We have det( w—An)=det(w" —A n)=det(w+A 1) and therefore

we can take y€M,  (R) with y#0 , noy=—1y

Supposing yT ny #0 it follows A=—A=0 which cannot be since we assumed det( w)#0
Hence, in the considered case we have :

X,Y€M,, (R) linear independent each of other with

AeR* |y ny=x"nx=0, nox=AX , noy=—ALy

Taking U=X+Yy , V=X—y we obtain U’ nv=0, u' nu=—v' nv.
Since x and y are independent, u and v are independent too and so we cannot have

u' nu=—v' pv=0 .

Hence we can take U,veM, ,(R) with u" nv=0 , u" nu=1, v yv=—1 and

noU=AvV , noV=AU

no invariates Sp(U,V).

If no invariates the subspace V=M, (R) ,forany zeV~ we have

Zz' nw=0 forany weV andso (nwz) nw=—z" ow=—2z" nw’=0 for some w’eV

Since det (7 w)#0 weobtain that e« invariates also V *

So nw invariates Sp(u,v)*.

In the case X" nX+#0 wehave A=iu , u€R”™ and we take U=R X , V=3 X

We obtain: noUu=—uv , nov=uu , U nu=v' nv£0, u' nv=0

where we can take U’ nusz nv=—1, U , v being independent since u+#0.
Therefore we have two Minkowski-orthogonal subspaces , in both considered cases,

Sp(u,,v,) and Sp(u,,V,) invariated by 5 with u] nv,=0, i=1,2 one and only

one of them having a vector, say v, with VI nv,=1 the other u,,v,; having the
Minkowski norm equal to -1.
So we have :

noU,=AV,, noV,=AU, , noU,=—uV, , noV,=ul, , A,ucR”
ul nv;=0 for i,j=1,2;u] nu,=0, v] nv;=0 for i#j ,i,j=1,2

UZT nu2=v2T 17V2=U1T nu,=—1, VlT nv,=1 and we can choose U, V; such that v,,>0.

Then we can take A€SO " (3,1) with:

AE =¢u,, AE,=¢v,, AE,=¢u, , AE,=Vv,, c€(£1].

For p=A"'nwA we will have:
@E,=—uE, , pE,=uE, , pE,=¢AE,, pE,=¢AE, and in the basis (E,,E,,E,,E,),

we have the matrix form :
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0 —u 0 0
0 0
AT oA=ne=|"
PAZNT=0 0 0 —en
0 0 &1 0

exp( o) P)=Aexp (@ A JPA)AT = Aexp (0, A% A ) ) AT =

=Aexp(2u J,—2eAK A"

Since J, commutes with K, we will have exp(a,;J*’)€SO"(3,1),

if as we assumed w=—w €M4X4( ) with det w#0 .

If we have w=— €M4X4( ) and det @=0 we observe that the set

A={weM, ,(R)wo=—ao" , det w#0] is dense in [weM, ,(R)lo=—aw"}=A .

The function M, ,(R)> w>exp(w,, J*’)€M,,,(R) being continuous,

since SO*(3,1) is closed in M,,,(R) it follows exp(@,;J“)€SO*(3,1) for any w€A

The above proven results lead to the following three facts:
i) We have 6 independent matrices {H,,_; ¢ where

__ 1 ij _ 0k 5
Hk__E ijkjlj—jk » Hey=—J" for k=1,3
ii) We have a surjective C” class function

®:RR°»>S0*(3,1), ®((1,),)=exp(y,.H,) such that rank

0Pp| .
O Yk Jpg.k
with p,q=0,3, k=1,6
w
e L
—Fk9 #0,p,q,i,j=0,3

pa.ij

iii) @ is local injective (Since det

ij

forany WeM, ,(R), W= (t,,>: i)

As we proved for the rotation group SO(n) we conclude that the manifold structure
on SO (3,1)( with the topology induced from M,_,(RR)) is equivalent to a structure given by

the mappings  ((y);)> exp(y,Hy).
Having the continuous surjective function @ we find SO*(3,1) as a 6-dimensional connected
Lie group (as well as by the mapping (8, %) exp(8])exp(%K) ).

For UeM, . (C), n€EIN" we denote U" the conjugate transpose of U .

Let SU(n)={UeM,_,(C)lU*U=I, detU=1}

Consider M, ,(C) as its natural complex Hilbert space .

Then if X€M,,,, ), (n.1)(C) , AEC , U€SU(n+1) with Ux=Ax we will have that

U invariates Sp(x) and also Sp(x)* and AZ=1 .
Therefore we can obviously prove by induction ( in a sampler way as we did for SO(n) ) that for
any UeSU(n) exists HEM,  (C) with H =H , U=exp(iH). (14)

Since tr(H)=tr(JH J ') , detU= forany J€M,  (C) with det J#0 |, taking H in the normal

Jordan form, from (14) we deduce for H that trH=0 .
From the way we proved it it is obvious that the relation (3”) works even for complex W.
Therefore are no difficulties in proving that we have a surjective and local injective mapping

W:R>SU(n), W(g)=exp(ip,T,) where o=(¢,),_r7 , r=n"-1,
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(T ,), is a basis of the real vector space S={HeM,_,(C)IH*=H , trH=0|
For n=2 we can take (T ,),=(0;);_5 the Pauli matrices (see Chap. Representations of the

rotations group and the restricted Lorentz group. Spin representations).

Let M=exp(w,,J"") with o=—w'eM,_,(R)
Then,as we proved above, if det w#0 we can find A€SO” (3 s 1) such that
AT wA=0", o ;=0 for (a,f)2((1,2),(2,1),(0,3),(3,0)} and (15)
A 'MA=exp(=20',, J;=2 0 ;K,)

We have the representation

S$:507(3,1)»M,.,(C) such that forany MeSO*(3,1) , S=S(M) satisfies

S'y'S=M Y for u=0,3 (16) (see Chap. Representations of the rotations group and the
restricted Lorentz group. Spin representations).

S(exp(6),))=cos D)t+sin (£)  y'=esp (217, )
S(exp (xK,))=cosh (£)1+sinh(£)y y'=exp (X[, 1)) (17)

where [A,B]=AB—BA denotes the commutator of A and B

We denote o*”:é[y“, Y] .

Since [ J5,K5]=0 and [0, 6”]=0 , from (15) and (17) , after some calculus we obtain:
S(M):exp(éZ w’lzs(A)a”S(A)Héz ' ;S(A)0”S(A)Y) . (18)

From (16) we can deduce S(A)™ 0"'S(A)=A",A";0“” and so (15) and (18) will lead to:
S(M)zexp(éwaﬁoaﬁ) if as we assumed det w#0

If det =0 we have w=lim w, with w,=—w €M, ,(R) , detw,#0 and
n->w

since the representation S is continuous, for M ,=exp (wnaﬁ J“*) we have

lim S(M,)=S (M) deducing S(M):exp(éa)aﬁa“ﬁ) for any w=—w' €M, ,(R)

n-=ow

The Dirac spinorial function y=(,),(X) (as a column 4x1 matrix ),
x=(x“), space-time coordinates, which satisfies the Dirac equation
Iy'0,y—muy=0
transforms under a Lorentz coordinates transformation
x"=M,,x" according to y'=S(M)y and considering
M=exp(w,;)*), y=v" ¥ with " the complex conjugate transpose of
we have for the transformation of the conserved current, J“=7%y"y , the expression:

J "=yt ST (M) Y'S(M)y=y expl—5 0,,0"")y Y'exp (5 0,0y

2
We have 0"=3’ 6’ y° and so we obtain:

ru + / of 1 / af + - L — .V .
J'=y" yY'exp(—5 0,07) Y exp(5 0,07 ) =y Y S(M) T Y S(M) =M, y"y

Therefore, the conserved current transforms like a contravariant Lorentz vector.



