
               Feynman amplitudes and lattice gauge theory

 We consider, (by suitable choosing of length, time and charge units) that the reduced 
Planck constant and the speed of light in vacuum constant are equal to 1.
ℏ=1  , c=1

For a quantum field system described by field operator functions
φ̂=φ̂(t , x⃗ )       (x=(t , x⃗ )=(xα)α=0 ,3  space-time coordinates ) in the Minkowski 

space with signature ( + , - , - , - ) ,  η=(η
α β
)α ,β=0 ,3 Minkowski metric coefficients 

and a Lagrangian density
ℒ=ℒ(φ ,∂φ)  with φ=(φ i)i    the action is 

S(φ)=∫ℒ(φ ,∂φ)d4 x  and we can have S(φ)=∫(1
2
φiM i jφ j−V (φ))d 4 x

 where Mi j is a differential operator and we use Einstein summation convention.
We can make a discretization of the quantum field in the form
q(t )=(qk

(t ))k=1 ,M=(φ(t ,an1,an2 ,an3))n1 ,n2 ,n3∈ℤ

The momentum field operator function is 

π̂=
∂ ℒ̂

∂(∂0φ)
 and corresponds in discretization to the momentum coordinates 

p(t)=(π(t ,an1 ,an2 ,an3))n 1,n 2, n3∈ℤ  of a discretized phase space evolution 
(p(t) ,q(t ))  with a Hamiltonian operator given by the discretized correspondent 

of the expression
Ĥ (t)=∫( π̂ (t , x⃗)∂0 φ̂ (t , x⃗ )−ℒ (φ̂ ,∂φ̂)(t , x⃗ ))d3 x⃗ which we denote

Ĥ=Ĥ(p̂ , q̂).
As we know, (see Chap. Quantum statistical ensemble) for any observable A = A(t) 
for the expectation value ⟨A⟩t=tr (ρ A)   (ρ  the density operator ) we have an 
evolution equation
d
d t

⟨A⟩t=i ⟨[Ĥ , A]⟩t+⟨∂0A⟩t    ([Ĥ ,A]=Ĥ A−AĤ  the commutator )

Since p̂  , q̂ not depend explicitly on time we can consider evolution equations for
p̂  , q̂  observables functions A(p̂)  , A(q̂)  like 
d
d t

A(p̂)(t)=i [Ĥ ,A(p̂)](t)  ; 
d
d t

A(q̂)(t)=i [Ĥ , A(q̂)](t )

and so A(p̂)  , A(q̂)  evolve like 
A(q̂)(t )=exp( i Ĥ t )A(q̂)(0)exp(−i Ĥ t)  ; 

A(p̂)(t)=exp(i
^̂
Ht)A(p̂)(0)exp(−i Ĥ t)

 (1)

Therefore in the continuum limit of the discretization (a→0) we have an evolution 
of operators :
A(φ̂)(t)=exp(i Ĥ t)A(φ̂)(0)exp(−i Ĥ t )

Given the final and initial states φF=φF( x⃗ )  , φI=φI( x⃗ ) corresponding in the 
discretization to qF  respective qI we have the transition amplitude for the system 
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from state φI  at t=0  to state φF  at t=T  : ⟨φF
|exp (−i Ĥ t)|φI⟩=A (do not confuse

with the observable A)
|A|2 is the probability for the system to be in state φF  at time t=T  if at time 
t=0  it was measured in state φI  , since from state  φI  the system evolves 

according to Schroedinger equation like
exp(−i Ĥ t)|φI⟩

Considering a normalization of p and q states in which 
⟨q ′|q⟩=δ(q ′−q)  , ⟨q|p⟩=exp( i pq)  and 

∫|q ⟩ ⟨q|dMq=I  and ∫|p ⟩ ⟨p|
dMp
(2π)M

=I

 and taking δt=
T
N

 we have for t 1∈[ lδt ,(l+1)δ t ], if we consider that 

Ĥ=
p̂2

2m
+V (q̂)  the following relations : 

⟨qF
|exp(−i Ĥ t)A(q̂)(t 1)|q I⟩=(∏

j=1

N−1

∫dq
j )⟨qF

|exp(−i Ĥδ t)|qN−1⟩ ⟨qN−1|

exp(−Ĥδt|qN−2)⟩ ... ⟨ql+1
|exp(−i Ĥ δt )A(q̂)(0)|ql ⟩ ... ⟨q1|exp(−i Ĥδ t)|q I⟩

⟨q l+1
|exp(−i((p̂2

/2m)+V (q̂))δt )|A(q̂)(0)|ql⟩=

∫d
Mp

(2π)M
exp(−i δ t ((p2

/2m)+V (ql )))A(ql)⟨ql+1|p⟩⟨p|ql ⟩=

(−im2πδt )
M /2

A(q l)exp((i m(ql+1−ql)
2
/2δt )−i V (ql)δ t)  and so 

 

⟨qF|exp(−i Ĥ T )A(q̂)(t 1)|qI⟩=

(−im2πδ t )
MN /2

(∏
k=1

N−1

dqk)exp (i δt (∑
j=0

N

(m/2)((q j +1−q j)/δt )
2
)−V (q j ))A(ql)=

C∫Dq(t)exp( i∫
0

T

((1/2)mq̇2
−V (q))d t)A(q(t 1))=

C∫Dq(t )exp(i S(q))A(q(t1))

 (2)

 where Dq(t )  stands for integration over all paths q=q(t )  with 
q(0)=qI  , q (T )=qF

(In deriving (2) we  used the Fresnel integrals :

∫
0

∞

cos (x2
)dx=∫

0

∞

sin (x 2
)dx=1

2 √
π
2

)

Therefore in the same way, for 
Ai=Ai(φ̂)  , i=1,n  operatorial functions, we will have : 

⟨φF|exp(−i ĤT )T (A1(t1 , x⃗1)... An(tn , x⃗n))|φI⟩=

C∫Dφ exp( i S (φ))T (A1(φ(t 1 , x⃗ 1)) ...An(φ(tn , x⃗n)))
(3)

where C is a (discretization dependent) constant and Dφ  stands for integration  
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over all paths φ=φ(t )  with φ(0)=φI  and φ(T )=φF   ,  φ(t)=φ(t , .)  and if 

(qi
)i=1 ,M=(φ(an0 ,an1 ,an2,an3))n0 ,n1,n2 ,n3∈ℤ

is a discretization of the field,

we define :

∫Dφ ...=∫∏
i=1

M

dq i ...   and also:  

T (A1(φ̂ (t1 , x⃗1)) ... An(φ̂(tn , x⃗n)))=

∑
σ∈Sn

(∏
j=1

n−1

θ(tσ( j)−tσ( j+1)))A1(φ̂(tσ(1), ⃗xσ(1))) ...An(φ̂ (tσ(n) , ⃗xσ(n)))

 with θ  the Heaviside function θ(t)={1  for t>0
0  for t<0

In the formula above, we take the 0 argument value of the Heaviside function to be 1 
and divide the right side of the identity for every case of k times occurrence of the 
same value of tj by k! .

The Euler – Lagrange equations

dμ

∂ℒ

∂(∂μφ)
−
∂ℒ
∂φ

=0  and the commutation rules [ p̂k ,q̂ j ]=i δ j k

which commutation rules translated to the continuum limit become

[ π̂
k
(t , x⃗ ), φ̂ j

(t , x⃗ )]=δ
3
( x⃗ )δk j  with π̂k=

∂̂ℒ

∂(∂0φ)
 lead to:

 a) φ̂(t , x⃗ )= 1
(2π)3/2∫

1
(2ωk)

1/2 (a(k⃗ )exp(−i(ωk t−k⃗ x⃗))+

b +
(k⃗ )exp( i (ωk t−k⃗ x⃗)))d

3 k⃗

 (4a)

for a complex boson free field theory with :

ℒ(φ ,∂φ)=(∂φ
+
)(∂φ)−m2

φ
+
φ  , ωk=√k⃗2

+m2  ; a ,a+  and b ,b+

annihilation and creation operators for the particle respective the antiparticle of the 
field satisfying commutation relations :
[a(k⃗ ) ,a+

(k⃗ ′)]=[b( k⃗ ),b +
(k⃗ ′)]=δ

3
(k⃗−k⃗ ′)   ,  [a(k⃗ ) ,b( k⃗ ′)]=0

 b) Âμ(t , x⃗ )=∑
s

1

(2π)3 /2
∫

1

(2ωk )
1 /2 (εμ(k⃗ ,s)a(k⃗ ,s)exp(−i (ωk t−k⃗ x⃗))+

εμ( k⃗ ,s)a+
(k⃗ ,s)exp( i (ωk t−k⃗ x⃗ )))d

3 k⃗

 (4b)

 where (εμ(k⃗ ,s))μ  are the polarization vectors s=1, 3  for m≠0  and s=1, 2

for m = 0 . Also we have [a(k⃗ , s),a+
( k⃗ ′ ,s ′)]=δ

3
(k⃗−k⃗ ′ )δs s ′

 For m≠0  in the rest frame k=(m ,0 , 0, 0)  we have ε( 0⃗ ,s)=(0 ,(δi s)i)  
               By Lorentz invariance it follows that :
kμ

εμ=0   ,  εμ(k⃗ ,s)εμ(k⃗ ,s ′)=−δs s ′  and ∑
s
εμ(k⃗ , s)ελ (k⃗ ,s)=Kμλ  with (4)
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Kμ λ=−ημλ+(kμk λ /m
2
)  if m≠0

Ifm=0 , for Kμλ  to be well determined by k  we give to the massless bosons
 a hypothetical mass and compute with tending to 0 mass value.

The b) case is the case of  a gauge vector boson free field theory
The gauge bosons free field Lagrangian density is ( see Chap. Non-abelian gauge 
theory ) given by :

ℒ((Aμ
a ,∂Aμ

a
)a ,μ)=−

1
4
(∂μAν

a
−∂ν Aμ

a
)(∂

μ Aa ν
−∂

ν Aaμ
)−

−
1
2
g(∂μ Aν

a
−∂νAμ

a
)f abc Abμ Ac ν

−

−
1
4
g2 f abcf adeAμ

b Aν
c Adμ Aeν

+
1
2
Ma

2 Aμ
a Aaμ

Ma  are the gauge bosons masses and f abc  are the structure coefficients of 
the gauge group Lie algebra , having normalized generators

(Ta
)a  with [T b ,Tc

]=i f abcT a  , tr(T aTb
)=

1
2
δab  and Ta  hermitian traceless. 

c) For spin ½  fermions in a free field theory the Lagrangian density is the Dirac 
Lagrangian density :
ℒ(ψ,∂ψ)=ψ(i γμ

∂μ−m)ψ  with γμ  the gamma matrices,  ψ=ψ
+
γ

0

ψ=(ψα)α=0 ,3(t , x⃗ )  Dirac spinor field. 

ψ̂α(t , x⃗ )= 1

(2π)3 /2∫
1

(Ep /m)
1/2 (∑s

uα(p ,s)b(p ,s)exp(−i p x)+

vα(p ,s)d +
(p ,s)exp(i p x ))d3 p⃗

 (4c)

 where s=1, 2  and p=(pμ)μ=0 ,3=(p0 , p⃗)  , p x=pμ x
μ  , E p=p0=√ p⃗2

+m2

(i γμ
∂μ−m)ψ=0  and (p−m)u(p ,s)=0  , (p+m)v (p , s)=0 (4’)

since by Euler – Lagrange equations , the spinor field satisfies the Dirac equations
with p=γ

μ pμ

The annihilation and creation operators for particles respective antiparticles
b ,b+  respective d ,d + satisfy anti-commutation relations :
{b(p ,s) ,b+

(p ′ ,s ′)}={d (p ,s) ,d +
(p ′ ,s ′)}=δs s ′δ

3
(p⃗−p⃗ ′) (4’’)

{b(p ,s) ,d (p ′ ,s ′)}={b(p ,s) ,b (p ′ ,s ′)}={d (p ,s),d (p ′ ,s ′)}=0 (4’’)
 with {A ,B}=AB+B A  , the anti-commutator 

The normalized u and v functions are so that in the rest frame 
p=(m , 0, 0, 0) ,u(p, 1)=(1 ,0 , 0, 0) ,u (p, 2)=(0,1, 0, 0) ,v (p ,1)=(0 ,0 ,1 ,0)
v (p , 2)=(0 ,0, 0 ,1)  as column vectors and by Lorentz invariance we will have: 
u(p ,s)u(p , s ′)=δs s ′  , v (p ,s)v (p ,s ′)=−δs s ′

u (p , s)v (p , s ′ )=v (p ,s)u(p ,s ′)=0

 

                                                 /                                        / 

 

             /
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and ∑
s
uα(p ,s)uβ(p ,s)=(p+m2m )

αβ

(4’’’)

and ∑
s
vα(p ,s)vβ (p ,s)=( p−m2m )

αβ

(4’’’)

Considering  a perturbed by sources J= J(t , x⃗ )  Lagrangian density 
ℒ=ℒ(φ ,∂φ)+ Jφ   , in the discretization we may have

S(φ)=∫(1
2
φiM i jφ j+ Jiφi)d4 x=1

2
qT Aq+ JTq  with A a symmetric real non-

singular matrix.
1
2
qT Aq+ JTq=1

2
(qT

+ JT A−1
)A(q+A−1 J)−1

2
JT A−1 J      (5)  and so 

Z ( J)=∫Dφ exp(i S(φ))=C (∫d
Mqexp ((i /2)qT Aq))exp(−(i /2) JT A−1 J) .

Diagonalizing A and considering the already mentioned Fresnel integrals we obtain

∫d
Mqexp((i /2)qT Aq)=( (2π i )

M

det A )
1/2

A−1  corresponds to the propagator D=D(x−y)  which in the continuum limit 
 satisfies M i jD j k (x )=δi k δ

4
(x )    (6)

and we have Z ( J)=Z ( J=0)exp((−i /2)∫ J j (x )D j k (x−y ) Jk (y )d
4 xd4 y )

The ground state corresponds to the state with lowest energy possible , no 
perturbations in the field ( only vacuum fluctuations ) : φ≡0  and we denote it 
|0 ⟩ . Taking φF=φI=|0 ⟩  , according to (3) we will have: 

⟨0|exp(−i ĤT )T (φ(x1) ...φ(xn))|0⟩=

C∫Dφexp (i∫ℒ(φ ,∂φ)d4 x)φ(x 1)...φ(xn)=

( δ
n

δ i J(x1) ...δ i J(xn)
C∫Dφ exp(i∫ℒ(φ ,∂φ)+ Jφd 4 x))|J=0

=Z ( J=0)

( δ
n

δ i J (x1) ...δ i J(xn)
exp((−i /2)∫ Jk (x )Dk l(x−y ) Jl(y )d

4 xd4 y ))|J=0

 

 where δ
δ i J(xk)

 must be understood as a partial derivative with respect to

i J(x k)d
4 x .

  
In the case of  fermion fields Lagrangian density ℒ=ℒ(ψ ,∂ψ) , because the 
spinor fields are complex we have ψ  and ψ  as independent integration variables 
and a perturbed Lagrangian density form by spinor sources η  and η  as below: 

ℒ(ψ,∂ψ)+ψη+ηψ     and the path integral: 

                                         /

                                                /
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Z (η ,η)=∫DψDψexp(i∫(ℒ(ψ ,∂ψ)+ψη+ηψ)d4 x) (7)

We have:  ℒ(ψ,∂ψ)=ψK ψ  , K=i∂−m
ℒ(ψ,∂ψ)+ηψ+ψη=(ψ+ηK−1

)K (ψ+K−1
η)−ηK−1

η (8)
The propagator S=(i ∂−m)

−1  , S=(Sαβ(x))α ,β=0 ,3

S = D fer ,fermion propagator,
satisfies (i∂−m)S (x )=δ

4
(x )

and  we  have  therefore S(x )=∫
1

(2π)4 exp(−i p x )
p+m

p2
−m2

+i ε
d4p (8’)

 with ε>0  , ε→0 . Using residues theorem in the integration above over p0 
integration variable we obtain :

i S(x )= 1
(2π)3∫(2Ep)

−1 (θ(x0
)(p+m)exp(−i p x )−

−θ(−x 0
)(p−m)exp(i p x ))d3 p⃗ (8’’)

 where in the above expression we take E p=p0=√ p⃗2
+m2

Considering the (4’’) anti-commutation relations we can take therefore the 
(ψα (x ))α ,x  and (ψα (x ))α ,x  integration variables as two sets of independent 

Grassmann integration variables. Grassmann numbers are defined such that if
η  and ξ  belong to the same set of Grassmann numbers then ηξ=−ξη.

Therefore the most general function of a Grassmann number is
f=f (η)=a+bη  with a  , b  ordinary numbers .
 Since for η  , ξ  Grassmann variables we must have ∫dηf (η+ξ)=∫d ηf (η)
 and so ∫dηbξ=0  for any ξ  and we have ∫d η=0  for η Grassmann integration

variable.
 Since given three Grassmann variables χ ,η ,ξ  we have χ(ηξ)=(ηξ)χ we 

conclude that the product of two Grassmann numbers must be an ordinary number 
and thus the integral ∫ηd η  is an ordinary number which is taken to be equal 
to a normalization constant.

 Therefore, if η=(η1 , ... ,ηN)  and η=(η1 , ... ,ηN) are sets of independent 
Grassmann variables and s=(s1 , ...sN) ,r=(r 1 , ... , rN)  not depend on η  , η ,
A is a N x N matrix then we can derive 
∫d ηd ηexp((η+s)A(η+r ))=∫dηdηexp(ηAη)=C det A  with C a 

normalization constant.   (8’’’)
Hence, considering (8) the relation (7) becomes
Z (η ,η)=Z (η=0)exp(−i∫ηα(x )Sαβ(x−y) ηβ(y)d

4 x d4 y )

 

                                                                          /
 

                                            / 

                        /                        

                                                                                                             /

 
                                                                / 

                         /
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and we have Z (η=0)=C det (i∂−m) ,
 with γ5

=iγ0
γ

1
γ

2
γ

3  we will have also: 

det (i∂−m)=exp( tr ln(i∂−m))

tr ln( i∂−m)=tr ln(γ5
(i∂−m) γ

5
)=tr ln (−i∂−m)=(1 /2)4 tr ln(∂2

+m2
)

The factor of 4 appears because at the left member we have the trace of a 4x4 matrix.
 Recall that Z (η=0)=∫DψDψexp( i∫ℒ(ψ ,∂ψ)d 4 x)=⟨0|exp(−i Ĥ T )|0⟩ (9) 

 (  with T→∞  understood so that we integrate over all of spacetime in (9) )
 and so if E=⟨0|Ĥ|0⟩  is the energy of the vacuum we will have:
i E T=−2 tr ln(∂2

+m2
)+AV T=−2∫d4 x ⟨x|ln (∂2

+m2
)|x ⟩+AV T=

−2∫d 4 x∫
d4k

(2π)4∫
d4q

(2π)4 ⟨x|k ⟩ ⟨k|ln(∂
2
+m2

)|q⟩ ⟨q|x ⟩+AV T

 Since in the momentum space normalization ⟨k|q ⟩=(2π)4δ
4
(k−q)=V T

( V  space volume , T time interval of the considered field domain ) we obtain

i
E
V
=−2∫

d 4k

(2π)4 ln (k2
−m2

+i ε)+A ′ where A , A’ are infinite constants 

corresponding to the multiplicative factor C ( and changing the sign under the 
logarithm  )

 Let 
A ′
2
=∫

d4k
(2π)4 ln(k2

−m ′2+i ε) and we will have

E
V
=2 i∫

d3 k⃗
(2π)3

∫
dω
2π

ln(
ω

2
−ωk

2
+i ε

ω
2
−ω ′k

2
+i ε )

 We treat the (convergent) integral over ω  by integrating by parts and then by 
residues theorem, obtaining:

E
V
=−2 i∫

d3 k⃗
(2π)3

∫
dω
2π (

2ωk
2

ω
2
−ωk

2
+i ε

−
2ω ′k

2

ω
2
−ω ′k

2
+i ε )=

=∫
d3k⃗
(2π)3 (−2(ωk−ω ′k))

(  where we defined ωk=√k⃗2
+m2 ,ω ′k

2
=√k⃗ 2

+m ′2)
Restoring the Planck constant through dimensional analysis we have

E0=−∫
d ³ x⃗ d3 p⃗

h
∑
s

2(1
2
Ep)  with Ep=√ p⃗2c2

+m2c4

The infinite additive term E0 is precisely the analogue of the zero point energy of the 
quantum harmonic oscillator but for the Dirac field , as we see , comes with a 
peculiar minus sign. For each spin and for the electron and positron separately (hence
the factor of 2) we have an energy (- 1 / 2) Ep in each unit-size phase-space cell
(1 / h3) d3 x d3p  .

                                                     /

 

             /                               /
 

               /                            /                                /
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To compute a Feynman amplitude for all modulo time ordering equivalence classes 
of Feynman diagrams with

(x i
a
)i=1 , s  outgoing legs end vertices and          

(x i
b
)i=1 ,n  incoming legs end vertices and          

(x i )i=1 ,m interaction vertices,(pi )i=1 ,s outgoing momenta and

(qi)i=1 ,n incoming momenta, considering that Ĥ|0 ⟩=V0|0 ⟩
with V0 constant vacuum energy, which by measuring energy at this level can be 
considered to be equal to 0, we have to compute

∫P((x
a
) ,(x ) ,(xb

))(∏
j=1

s

exp(i p j x j
a
)d4 x j

a
)(∏
k=1

n

exp (−i qk xk
b
)d4 xk

b
)(∏

l=1

m

d4 x l)

where P((xa
),(x) ,(xb

))=⟨0|T ((∏
j=1

s

φ̂(x j
a
))(∏

l
φ̂(x l))(∏

k=1

n

φ̂ (xk
b
)))|0⟩

and “amputate” the external legs  ,(i . e. multiply with 

(∏
j=1

s

(p j
2
−m2

+iε))(∏
k=1

n

(qk
2
−m2

+ iε)) , the incoming and respective outgoing 

particles being considered on mass shell).
Notice that the interaction vertices must not be all distinct and so we will integrate 
over the set of distinct x l  , l=1,m  and ∏

l
φ̂(x l) represents the product of a 

exponential expansion coefficient and the taken interaction vertices terms from the 
expression of the interaction Lagrangian density
~
ℒ(φ ,∂φ)=ℒ(φ ,∂φ)+  interaction terms 

As we derived above , for
P ((xa

) ,(x) ,(xb
))  we have a Wick contraction computation from the expression

~
C ( δ

n+s+m

δ i J (x1
a
)...δ i J(x l )...δ i J(xn

b
)
exp ((

−i
2
)∫ J (x )D(x−y) J(y )d4 xd4 y ))|J=0

 with 
~
C=Z ( J=0)  constant . (9’) 

For a Lagrangian density of fermion fields ( quarks and leptons ) interacting with 
gauge boson fields we have :

~
ℒ((ψ

α ,∂ψα
)α ,(Aa ,∂ Aa

)a)=ψ
α
(i δαβγ

μ
∂μ−mα δαβ)ψ

β
+

+∑
g

(gψα
γ
μAμ

aT αβ
a
ψ

β
−(1 /4)(∂μAν

a
−∂ν Aμ

a
)(∂

μ Aaν
−∂

ν Aaμ
)−

−(1 /2)g(∂μ Aν
a
−∂ν Aμ

a
)f abc AbμAc ν

−

−(1/ 4)g2 f abcf adeAμ
b Aν

c Adμ Aeν
+(1 /2)Ma

2 Aμ
aAaμ )

 (10) 

In the electroweak SU(2)xU(1) or in the unified electroweak+chromodynamics
SU(3)xSU(2)xU(1) theory for any g coupling we have a corresponding set of gauge 
bosons and respective gauge group generators defined coefficients :

((Aμ
a
)μ ,(Tα β

a
)αβ)a  with μ  - Lorentz index 

α ,β  - colour, flavour , lepton sort index 

Page 8 of 43



In quantum chromodynamics SU(3) or in the grand unified SU(5) theory we have an 
unique coupling constant g with the set of gauge bosons and gauge group generators.

We have following Feynman rules to compute Feynman amplitudes of fermion and 
gauge boson (gluon) particle transition processes for a perturbation theory approach 
(which is relevant in the case of a weak couplings like in electroweak theory or 
asymptotic freedom of quantum chromodynamics):
(The considered process has q1,…,qn incoming fermions momenta, p1,…,ps outgoing 
fermions momenta and k1,…,kh outgoing bosons momenta and the Feynman diagram 
is with
x1
a ,... , x s

a  outgoing fermions legs end vertices, 

x1
b ,... , xn

b  incoming fermions legs end vertices, 
x1 , ... ,xr  fermion interaction vertices, 

y1, ... ,yk  cubic gluon interaction vertices, 

z1 ,... , zq  quartic gluon interaction vertices, 

y1
a , ... ,yh

a  outgoing boson legs end vertices, 
(x1 l , x2 l)l=1 ,m  internal lines). 

1.  For each interaction vertex write (2π)4δ
4
(∑
k∈A

k−∑
k∈B

k )

(where A is the set of incoming to the vertex  momenta and B is the set of outgoing 
from the vertex momenta)
and write the coupling: a) i g γμ  for x l  vertices; 

b)gf abc(ημ ν
(r1−r 2)

λ
+η

νλ
(r 2−r 3)

μ
+η

λμ
(r 3−r 1)

ν
)  where r1 , r2 , r3  label the 

incoming to the cubic gluon interaction vertex respective a ,b ,c  gluon momenta
(do not confuse the gluon indices a , b, c with the notations with a , b upper index for 
outgoing respective incoming legs)  for y l  vertices. 

c)−i g2 (f abcf ade(ημλ
η
νϵ
−η

μϵ
η
ν λ
)+ f adcf abe(ημλ

η
ν ϵ
−η

λ ϵ
η
μν
)+

+ f abd f ace(ηνμ
η
λ ϵ
−η

ν ϵ
η
μλ
))  for z l  vertices. 

2.  For each internal line write the propagator : 

a) 
i (p+m)

p2
−m2

+i ε
 for a mass m  fermion line labeled with p  momentum 

b)

i(−ημ ν+
kμk ν

M2 ) 1

k2
−M2

+iε
 for a mass M  boson line labeled with kmomentum.

c)For massless bosons we will consider a hypothetical tending to 0 non-vanishing 
mass in computations that are confronted with lattice method computations which 
will be further presented. In that case, the kμk ν/M

2 term in the propagator 
disappears in computations because the masses of the two fermions linked in the 
amplitude expression to the propagator of a massless boson as the  photon or the 
SU(3) bosons in SU(3)xSU(2)xU(1) theory or in quantum chromodynamics  are 

                /
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equal (flavour changing occurs only through the W bosons which are massive) and 
we can use (4’) , (8’) , (4’’’). Otherwise we can have an additional ghost action by 
Fadeev-Popov method with gauge parameter leading to a propagator
i(−ημ ν+(1−ξ)(kμk ν/k

2
))/k2  where we can take the gauge parameter ξ=1.

For example we have in an amplitude expression the factor 
iDαβ

fer
(p)γβϵ

μ iDμν
bos

(r ) iDϵδ
fer
(q)δ4

(p−q−r )  which contains 

u(p) γμu (q)(−ημν+(rμ r ν)/M
2
)δ

4
(p−q−r )=

=(−u(p) γνu(q)+((p−q)ν (m−m)u(p)u(q)/M2
))δ

4
(p−q−r )

and as we can see the term containing the hypothetical mass disappears since the 
involved fermions masses are equal.

3.  Write u(p j ,s)  for outgoing fermions, u(q j ,s)  for incoming fermions, 

write v (q j , s)  for incoming antifermions, v (p j ,s)  for outgoing antifermions, 
 write εμ(k j ,s)  for outgoing or incoming bosons. 

4. Multiply the written factors and multiply the result with a (-1) factor for each 
closed fermion cycle.

5.Momenta k associated with internal lines are to be integrated over with
d 4k
(2π)4

measure.
6. The external legs are “amputated” since according to rule 2. we write the 
propagators only for internal lines. The particles are on mass shell (i.e. we have
p j

2
−m2

=0  , q j
2
−m2

=0  , k j
2
−M2

=0 where m and M take the respective values of
the corresponding particles).

 The amplitude has the form (2π)4Mδ
4
(∑
j=1

s

p j+∑
j=1

h

k j−∑
j=1

n

q j)  with M an 

invariant Feynman amplitude.

Since the fermion field operators anti-commute, for a set (φ̂i)i=1 ,m  of operators in 
which φ̂i 1, ... , φ̂i r  with i1<i2<...<ir  anti-commute each with other and the 
remaining {1, ... ,m}∖{i1 , ... , ir}∋i , φ̂i  operators commute with any of the operators
in the set we define :

T (∏
i=1

m

φ̂i (x i ))= ∑
σ∈Sm

ε(~σ)(∏
i=1

m−1

θ(xσ(i)
0

−x σ(i+1)
0

))(∏
i=1

m

φ̂σ(i)(xσ( i)))   where

~σ=σ |
{i 1 , ..., ir }

   and ε(~σ)=sgn ∏
1≤k< l≤r

(σ( il)−σ(ik))

In the above definition for T we take θ(0)=1  and divide rhe right member by k!
for every   k  times occurence of the same value of x i

0.
Also, considering that for a fermion lines closed cycle with ( x1 , … , xr+1) , x1= xr+1 
interaction vertices , from 
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ψ(x1) γ
μAμ(x1)ψ(x1)ψ(x2) γ

ν Aν(x2)ψ(x2) ...γ
λ Aλ(x r)ψ(xr) , in order to 

obtain the proper r vertices fermion cycle factor of the amplitude,
tr (S(x r−x1)γ

μS (x1−x2) γ
ν ...S(x r−1−xr )γ

λ
) we must anti-commute to

ψl (xr)ψ(x1) γ
μ ... γλ Aλ(xr )     (for the d +  of ψ̂(xr )  meet the d  of ψ̂(x1))

( The xi variables are obviously to be integrated over in the final amplitude 
expression ). Thus we will have the extra (-) sign for each closed fermion cycle of the
Feynman diagram and on the cycle we must have an anti-fermion propagating 
backwards in time.
To compute the total amplitude for the Feynman diagrams with the given outgoing 
and incoming momenta of fermions / anti-fermions and bosons and given numbers of 
fermion interaction vertices, cubic and quartic gluon interaction vertices we have to 
deal with the expression of amplitude A as follows :

A=cf ∫
1

s!h!n! ⟨0|( ∑σ∈Ss ε(σ)∏i=1

s ~
b(pσ( i))) ∑

σ∈Sh
∏
j=1

h
~a(kσ( j))T (R((x) ,(y ) ,(z)))

( ∑
σ∈Sn

ε(σ)∏
l=1

n
~
b + (qσ( l)))|0⟩(∏i=1

r

d4 x i)(∏
i=1

k

d4 y i)(∏
i=1

q

d4 z i)

where cf is a coefficient from the exponential expansion carried by the interaction 
terms product we consider in the Feynman diagram and R((x ),(y) ,(z )) has the 
form :

(∏
l=1

r

ψ̂α (x l) i g γ
μ Âμ

a(x l)T αβ
a
ψ̂β)(∏

j=1

k

i K̂ c(y j ))(∏
j=1

q

i K̂q (z j ))  , where

K c(y j)=−(1/2)gf abd(∂μ Aν
a
−∂ν Aμ

a
)Abμ Ad ν

(y j)  and 

K q(z j)=−(1/ 4)g2 f abcf adeAμ
b Aν

c Adμ Aeν
(z j).

and for normalization we have taken :

(~a ,
~
b ,

~
d )=((2π)

3

V )
1/2

(a ,b ,d)

Suppressing the spin and polarization indices in u(p ,s) ,u(q , s)  and ε(k ,s) ,
considering summation over them, we have:

A=cf∫ ⟨0|T ((∏j=1

s

exp(i p j x j
a
)u(p j) ψ̂(x j

a
))(∏

j=1

h

exp(i k j y j
a
)(−ε

λ
(k j))

Âλ(y j
a
)))R ((x ) ,(y ) ,(z ))T (∏

j=1

n

exp (−i q j x j
b
)u(q j )ψ̂(x j

b
))|0⟩

V−(s+h+n) /2
(∏
j=1

s

(Ep j /m)
1/2
)(∏

j=1

h

(2ωkj)
1/2
)(∏

j=1

n

(Eq j /m)
1/2
)

(∏
j=1

s

d3 x⃗ j
a
)(∏

j=1

h

d3 y⃗ j
a
)(∏

j=1

n

d3 x⃗ j
b
)(∏

j=1

r

d4 x j)(∏
j=1

k

d 4 y j)(∏
j=1

q

d4 z j )

  (11) 
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 In (11) we have taken x i
a0
=y j

a0
=T ;x l

b 0
=0  and any space or time integration

is on [0,T ]  time interval and a volume V  spatial domain. 

We understand also that the incoming and outgoing fermions or bosons can have 
different boson sort or flavour indices which we have suppressed in the above 
expression.  

 The ψ̂  and Â  operator functions in (10) are the same as given in (4c) and (4b) 
because we consider in the perturbation theory approach of Feynman diagrams the 
relations of type (3) with the not gauged free theory Lagrangian density from (10) 
(having g = 0).
Considering type (3) and (9’) relations we will have  (12) :

A= ∑
diagrams

~
CSFV

−(s+h+n)/2∫ ((∏
j=1

s

(Epj /m)
1/2 exp(i p j x j

a
)u(p j) iD

fer
(x j

a
−x1 l j))

(∏
j=1

h

(2ωk j)
1 /2exp( i k j y j

a
)(−ε(k j)) iD

bos
(y j

a
−y l j ))

(∏
j=1

n

(Eq j /m)
1/2 exp(−i q j x j

b
) iDfer

(x2 l j−x j
b
)u (q j))

(∏ ( internal lines propagators and couplings )) )

(∏
j=1

r

d4 x j)(∏
j=1

k

d4 y j )(∏
j=1

q

d4 z j)(∏
j=1

s

d3 x⃗ j
a
)(∏

j=1

h

d3 y⃗ j
a
)(∏

j=1

n

d3 x⃗ j
b
)

with 
~
C=Z (η=0 ,g=0)  and SF a symmetry factor. 

As established,  we integrate over 0<x1 l j
0
<T=x j

a0 in the diagrams of the (12) sum
and considering (4’’’) and (8’’) we have:
∫(Ep j /m)

1 /2 exp(i p jx j
a
)u(p j)D

fer
(x j

a
−x1 l j)d

3 x⃗ j
a
=

=(E p j /m)
−1 /2u(p j)exp(i p j x1 l j)

 (13)

and similar :

∫(Eq j /m)
1/2 exp(−i q j x j

b
) iDfer

(x2 l j−x j
b
)u(q j)d

3 x⃗ j
b
=

=exp(−i q j x 2l j)u(q j)(Eq j)
−1 /2

 (14)

and also we will have :
∫(2ωk j )

1 /2exp (i k j y j
a
)(−ε(k j )) iD

bos
(y j

a
−y l j)d

3 y⃗ j
a
=

=(2ωk j)
−1 /2

ε(k j)exp(i k jy l j)
 (15)

To prove (15) we integrate over k0  using the residues theorem in the boson 
propagator expression 

∫exp(−i k (y j
a
−y l j))

−ημλ+(kμkλ /M
2
)

k2
−M2

+iε
d4k  and for that the integral over the 

semicircle {k 0
=Rexp (iθ)} , θ∈[−π , 0 ] must be considered. The only case in 

which the integral not vanishes for R→∞  is when λ=μ=0 and the remaining not 
vanishing term is (  with y=y j

a
−y l j) :
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lim
R→∞

∫
−π

0 exp (−i Rei θy0
+i k⃗ y⃗ )R3 cos(3θ)

R2e2 i θ
−k⃗ 2

−M2
+i ε

d θ

 Since cos (3θ)=cos(θ)(1−2 sin2
(θ))−2sin2

(θ)cos (θ) we will have the only not 
vanishing remaining term (after some calculus) :

B=∫
0

R exp(−i R √1−(x /R)2 y0
+i k⃗ y⃗−x y0

)

R2
(1−2(x /R)2

)+2 i R x √1−(x /R)2−k⃗2
−M2

+iε
R2d x+

+∫
R

0 exp(i R√1−(x /R)2 y0
+k⃗ y⃗−x y0

)

R2
(1−2(x /R)2

)−2 i R x √1−(x /R)2
−k⃗ 2

−M2
+i ε

R2d x

(16)

The integrands in (16) are dominated by the absolutely integrable function 
exp(−x y0

)  for x∈(0,∞)  and so taking a cut-off for integration over k  with 

|k0|<R  and large R  we have B=−2 i
sin(Ry0

)

y0 exp(i k⃗ y⃗ )=P (y0
)exp (i k⃗ y⃗)

which integrated over k⃗  leads to P(y0
)(2π)3δ3

( y⃗ j
a
− y⃗ l j ).

In order to have external legs for the gauge bosons , we integrate the 
y⃗ j
a  and y⃗ l j  variables on a set ‖y⃗ j

a−y⃗ l j‖≥ε  and so,after d3 y⃗ j
ad4 y l j integration, 

the non-vanishing term left by applying the residues theorem on the boson propagator
expression disappears and we can use (15) in the computation of the amplitude.
Note that for an outgoing anti-particle with momentum
p j  we must take exp (i p j x j

a
)ψ̂(x j

a
)v (p j)  instead of exp(i p j x j

a
)u(p j)ψ̂(x j

a
)

and for an incoming antiparticle with momentum
q j  we take exp(−i q j x j

b
)v (q j) ψ̂(x j

b
)  instead of exp (−i q j x j

b
)ψ̂(x j

b
)u(q j)

in the (11) expression.
The final and initial states of the considered process, which are

⟨0|
~
b (p1)...

~
b (ps)

~a(k 1)...
~a(k h)|= ⟨0|ψF  and 

~
b + (q1) ...

~
b + (qn)|0 ⟩=|ψI ⟩

have to be normalized for computing the effective process amplitude A and the 
transition probability |A|2  such that ⟨ψF|ψF⟩=⟨ψI|ψI⟩=1.   

We can prove that if [R ,~a(q)]=0  then ⟨0|R~al
(q)~al+

(q)R +|0⟩=l!⟨0|RR +
|0⟩ .

Using this , and the fact that a state of many fermions of the same sort vanishes if 
there are two fermions with the same momentum ( this is in fact the Pauli exclusion 
principle and follows from the anti-commutation relations ) it follows that we must 

 normalize with a factor of 1 /√l!  for each occurrence of l   identical bosons with 
the same momentum and the corresponding transition probability will be adjusted by 
a statistical factor (eliminating double counting of events) 

S=∏
i

1
li!

 with  l i  the number of occurrences  of a boson with the same 

momentum.
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Considering the way we calculate Feynman amplitudes (amputating external legs), 
the relations (12) , (13), (14), (15) and the symmetry factor that comes out to be the 
same from the many ways in which we can associate a Feynman diagram to an (11) 
expression we can conclude that the relation between the transition amplitude and the
total  amplitude for all Feynman diagrams of a given couplings order and given 
outgoing and incoming momenta of given respective fermions and respective bosons 
is :

A=V−(s+h+n)/2
(∏
j=1

s

(
Ep j

m )
−1/2

)(∏
j=1

n

(
Eq j

m )
−1 /2

)(∏
j=1

h

(2ωk j)
−1/2

)AF    where 

AF=(2π)
4Mδ

4
(∑

1

s

p j+∑
1

h

k i−∑
1

n

ql )  is the total Feynman amplitude. 

The u(p ,s)  , v (p , s)  , ε(p ,s)  which are needed in the amplitude computation 
are determined by theirs normalization values in the rest frame.

 For a decay process we have n=1  and since 

(δ
4
(q1−∑

1

h

k i−∑
1

s

p j ))
2
=

δ
4
(q1−∑

1

h

k i−∑
1

s

p j )V T

(2π)4  and momentum space d3 p⃗

 contains 
V

(2π)3d
3 p⃗  states, we can compute a differential decay rate 

|A|2

T
 ,

dΓ=
(2π)4m
Eq1

(∏j=1

h d3 k⃗ j

(2π)3 2ωk j
)(∏j=1

s md3 p⃗ j

(2π)3E p j
)|M|

2
δ

4
(q1−∑

1

h

k i−∑
1

s

p j)

For a two fermion scattering process we have n=2  , v⃗1  , v⃗ 2  velocities 
 of the incoming particles, n=1/V  concentration of a incoming particle, 

 we compute a differential effective cross section 
|A|2

T n|⃗v1−v⃗2|
 , dσ  =

(2π)4m1m2

|⃗v1−v⃗ 2|Eq1Eq2
(∏j=1

h d3k⃗ j

(2π)32ωk j
)(∏j=1

s md3 p⃗ j

(2π)3Ep j
)|M|

2
δ

4
(∑

1

2

ql−∑
1

h

k i−∑
1

s

p j )

(*)

Obviously we have 
((2π)4δ

4
(p−p ′))2=(2π)4δ

4
(p−p ′)∫ exp(−i(p−p ′)x)d4 x=

=(2π)4
δ

4
(p−p ′)V T   and so taking in discretization δ4

(p−p ′)=C δpp ′

 we obtain δ4
(p−p ′)=

V T
(2π)4 δpp ′

In the same way we have:

δ
3
(p⃗−p⃗ ′)=

V
(2π)3

δp⃗ p⃗ ′  and ((2π)3δ3
(p⃗−p⃗ ′))2=(2π)3

δ
3
(p⃗−p⃗ ′)V
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Also , to be able to count states, we enclose our system in a box, say a cube with 
length L on each side with L much larger than the characteristic size of our system, 
having V = L3 . With periodic boundary conditions , the allowed plane wave states

exp(i p⃗ x⃗ )  carry momentum p⃗=2π
L
(n1,n2 ,n3)  where ni∈ℤ .

The allowed values of momentum form a lattice of points with spacing
2π/L  between points. Experimentalists measure momentum with finite resolution,

small but much larger than 2π/L .  Thus an infinitesimal volume d3 p⃗ in 
momentum space contains d3 p⃗ /(2π/L)3=V d3 p⃗ /(2π)3  states. 

In some cases we can split a process in small distance effects, as scattering 
q1 ,... ,qn  incoming fermions momenta into k1 ,... ,kh  outgoing bosons 

 momenta and p1 , ... ,ps ,qn+1 ,... ,qn+r  outgoing fermions momenta, 
 with qn+1 ,... ,qn+r  internal fermion lines momenta which in the large distance 

 effects decay respective into external kh+i  boson momenta and ps+i

 fermion momenta (i=1, r )
Since the Dαβ

fer
(qn+ i)  Fourier transform of the fermion propagator can be 

 written as 
2muα (qn+i)uβ(qn+i)

qn+i
2
−m2

+i ε
 and in the amplitude computation we must

 take qn+i=k h+i+ps+i  we have the process amplitude factorization: 

AF(q ,
~
k ,~p)=AF(q ,k ,p)∏

j=1

r
2mi

(kh+ j+ps+ j)
2
−m2

+iε
M(k h+ j+ps+ j ,k h+ j ,ps+ j )

where q=(qi)i=1 ,n  , 
~
k=(k i)i=1 ,h+r  , ~p=(pi)i=1 ,s+r  and 

p=(p1 , ... ,ps ,k h+1+ps+1 ,... ,kh+r+ps+r )  and AF(a ,b ,c)  is the Feynman 
 amplitude for a  incoming fermions, b  outgoing bosons,c  outgoing
 fermions momenta and AF=(2π)

4Mδ
4
((∑ a)−(∑ b)−(∑ c))

We notice that the amplitude has a pike when the k h+ j+ps+ j=qn+ j  are on 
mass shell and so we can describe the transition probability of the process by the 
transition probability derived from the squared absolute value of the small distance 
effects  amplitude which corresponds to an (a ,b ,c)=(q ,k ,p)process. 

In the case of quantum electrodynamics U(1) or electroweak SU(2)xU(1) theory, the 
renormalized couplings g, in a range of momentum are relatively small and so the 
higher order terms in g from the expansion of 

exp(i∫
~
ℒ(ψ ,∂ψ ,A ,∂ A)d4 x )  can be neglected, allowing a perturbation theory 

approach of the q1 ,... ,qn ,k1 ,... ,kh ,p1 ,... ,ps transition process, in which we take 
in consideration only the low order Feynman diagrams for the process.
In the case of quantum chromodynamics SU(3) , or unified SU(3)xSU(2)xU(1) or 
grand unified SU(5) theories the renormalized couplings go to zero when the 
momentum range goes to infinity and so we can have a perturbation theory approach

Page 15 of 43



only for a high momentum range (asymptotic freedom). For a lower momentum 
range we must take the amplitudes defined by following relation (17):

A=V−(s+h+n) /2
∫((∏

j=1

s

(Ep j /m)
1/2 exp(i p j x j

a
))(∏

j=1

h

(2ωk j )
1 /2exp (i k j y j

a
))

(∏
j=1

n

(Eq j /m)1 /2exp (−i q j x j
b
))S ((x a

) ,(ya
),(xb

)))(∏
j=1

s

d3 x⃗a)(∏
j=1

h

d3 y⃗ a)(∏
j=1

n

d3 x⃗b)

where 

S ((xa
) ,(ya

),(xb
))=⟨0|T ((∏j=1

s

uα(p j)ψ̂α(x j
a
))(∏

j=1

h

(−ε
λ
(k j)) Âλ (y j

a
))

(∏
j=1

n

ψ̂β(x j
b
)uβ(q j)))|0⟩=(∏j=1

s

uα(p j))(∏
j=1

h

(−ε
λ
(k j)))(∏

j=1

n

uβ(q j))C∫D ADψDψ

exp(i∫ ~
ℒ(ψ ,∂ψ ,A ,∂ A)d4 x )(∏

j=1

s

ψα(x j
a
))(∏

j=1

h

Aλ(y j
a
))(∏

j=1

n

ψβ(x j
b
))

 considering ~ℒ(ψ,∂ψ, A ,∂ A)  as in (10) with all interaction terms within 
 and according to a type (3) relation C  is a discretisation dependent constant. 
 Also we take x j

a
=T ,y j

a
=T , x j

b
=0  with [0 ,T ]  the interaction process time 

interval and V , the space volume for the fields interaction process.
Notice that the ψ̂  , Â  operators are no more defined by (4c) , (4b) relations, 
because we consider all Feynman diagrams associated with the process and take 
therefore all interaction terms products, which means that we consider the type (3) 
relation with the whole gauged Lagrangian density from (10).
Since the high order Feynman diagrams count (due to strong couplings), we expect 
that the quarks participate in interactions in groups (confinement) and so we have to 
consider that hadrons (groups of quarks and antiquarks of various colour indexes 
confined by gluon fields) will be forming.
The colour charge of a quark/antiquark defined by (ψi)i=1,3 with i  colour index ,    
ψi  Dirac spinors,is defined by: 

ρ
a
=ψi

1
2
λi j
a
ψ j  and there are 8 colour charges, one for each (λi j

a
)i , j self-adjoint 

traceless 3x3 Gell-Mann matrix of the SU(3) colour gauge group generators:

λ
1
=(

0 1 0
1 0 0
0 0 0)  , λ

2
=(

0 −i 0
i 0 0
0 0 0)  , λ3

=(
1 0 0
0 −1 0
0 0 0)  , λ4

=(
0 0 1
0 0 0
1 0 0)  , 

λ
5
=(

0 0 −i
0 0 0
i 0 0 )  , λ6

=(
0 0 0
0 0 1
0 1 0)  , λ7

=(
0 0 0
0 0 −i
0 i 0 )  , λ8

=
1

√3 (
1 0 0
0 1 0
0 0 −2).
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The ρ̂a  observables with ⟨φ|ρ̂a|ψ⟩=(1 /2)λ i j
a
⟨φi|ψ j ⟩  are hermitean but not   

commute, so we choose a maximal subset of commuting colour charge operators 
which is
{(1/2)λ3 ,(1 /2)λ8} ,to define a colour charge observable: ρ̂3 e⃗3+ρ̂

8e⃗8 .

 For a=3,8  ,if ψc=γ
2
ψ

∗  with ψ∗  the complex conjugate of ψ , corresponds to 

the antiparticle to ψ  we have: ψc iλi j
a
ψc j=ψi

T
γ

2+
γ

0
λi j
a
γ

2
ψ j

∗
=−ψiλi j

a
ψ j , 

because
λ
aT
=λ

a  for a=3 ,8.
Therefore the antiquarks carry the opposite colour charges to the quarks colour 
charges.
The forming hadrons must be colour charge singlets and so they can be the tensorial 
products of wave functions as mesons ( quark- antiquark pairs ) :

ψM(t , x1 , x2)=∑
i=1

3 1

√3
ψc i(t ,x1)ψi(t , x2)  or as three quark/antiquark baryons: 

ψB(t , x1 , x2 , x3)=∑
1

√6
ϵi j kψi (t , x1)ψ j(t , x2)ψk(t , x3)

ψcB(t , x1 ,x2 , x3)=∑
1

√6
ϵi j kψc i (t , x1)ψc j(t , x2)ψck (t , x3)

In the amplitude expressions they appear as
∑ψiγ

μ
ψi=ψM

μ  vector meson, 

∑ ψiψi=ψM         scalar meson,

(∑ ϵi j kψiαψ jβψk γ)=(ψB
αβγ

)  baryon, 

(∑ ϵi j k ψiαψ jβψk γ)=(ψB
αβγ

)  antibaryon 

 The common eigenvectors (colour eigenstates) of ρ̂3  , ρ̂8  are 

ψr=(
1
0
0)⊗ψ= r⃗⊗ψ  ; ψg=(

0
1
0)⊗ψ=g⃗⊗ψ  ; ψb=(

0
0
1)⊗ψ=b⃗⊗ψ  with ψ  a Dirac 

spinor function ,having colour charges respectively 

q⃗r=
1
2
e⃗3+

1
2√3

e⃗8  ; q⃗g=−
1
2
e⃗3+

1
2√3

e⃗8  ; q⃗b=−
1
√3

e⃗8 .

 We have q⃗r+q⃗g+q⃗b=0.  The mesons and baryons have neutral colour charge. 
The mesons are integer spin particles (0 – scalar , 1 – vector ) and the baryons are 
half integer spin particles.

 For example the proton is ∑
1
√6

ϵab cu
aubdc  with a ,b ,c  colour indices 

u  up-quark, d  down-quark, where two of the quarks ua ,ub ,dc  carry opposite 
secondary spin quantum numbers (if the ua , ub , dc are spin eigenvectors). The proton 
is a spin ½  particle. The same way spin ½  combination udd gives the other nucleon, 
known as the neutron.
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For a three quark baryon for example,  with ψ̂1 , ψ̂2 , ψ̂3 respective the three quark 
operator functions, the process with p1,p2,p3  outgoing four-momenta and 
q1 ,q2 ,q3  incoming four-momenta, having pi=qi , i=1,3  on mass shell will have 

an amplitude defined by the following relation (18):

A( p⃗1 , p⃗2 , p⃗3)=∫
1
6
V−3

(∏
l=1

3

exp(i pl(x l
a
−x l

b
))ui lα l

l
(pl )u j lβ l

l
(pl )(Ep l /ml))

ϵi 1i 2 i 3ϵ j 1 j 2 j3 ⟨0|ψ̂i 1α1
1

(x1
a
)ψ̂i 2α2

2
(x 2

a
) ψ̂i 3α3

3
(x3

a
) ψ̂ j 1β 1

1
(x1

b
)ψ̂ j2β2

2
(x2

b
) ψ̂ j 3β3

3
(x3

b
)|0⟩

∏
k=1

3

d3 x⃗k
ad3 x⃗k

b

 where we use Einstein summation convention for i l , j l ,α l ,β l  indices 

 and take x l
a0
=T , x l

b0
=0  , pl

0
=Epl=√ p⃗l

2
+ml

2

il , jl  are colour indices from 1 to 3 and α l ,β l  are Dirac indices from 0 to 3 .

 Therefore, a  energy  eigenstate wave function ψ0B=ψ0B( x⃗1 , x⃗2, x⃗3) for the 
baryon can be derived, taking
ψ0B=∫(1 /(2π)

9)exp(i p⃗l x⃗ l)A(p⃗1, p⃗2, p⃗3)d
3 p⃗1d

3 p⃗2d
3 p⃗3 (19).

As we mentioned , for an antiparticle occurring instead of a particle in the 
composition of the baryon in the A(p1 ,p2 ,p3)  expression we will take 

vα(p) ψ̂α(x
a
)  instead of uα (p) ψ̂α (x

a
)  and 

vβ(p)ψ̂β(x
b
)  instead of uβ(p) ψ̂β(x

b
)

Also we have:
⟨0|ψ̂α

1
(x1

a
)ψ̂β

2
(x2

a
)ψ̂γ

3
(x3

a
) ψ̂δ

1
(x1

b
)ψ̂ε

2
(x2

b
) ψ̂φ

3
(x3

b
)|0⟩=

=C∫D ADψDψ (exp( i∫ ~
ℒ(ψ ,∂ψ, A ,∂ A)d4 x )

ψα
1
(x1

a
)ψβ

2
(x2

a
)ψγ

3
(x3

a
)ψδ

1
(x 1

b
)ψε

2
(x2

b
)ψφ

3
(x 3

b
))

(18’)

It follows that for making computed theoretical predictions and comparisons of 
different processes , we must be able to compute (by making a suitable discretization)
path integrals of the form
∫DADψDψexp ( ~ℒ (ψ,∂ψ ,A ,∂ A)d4 x)O(A ,ψ ,ψ)
 where O  is a function operator depending on the fields A ,ψ,ψ and can be for 

example :

O(A ,ψ ,ψ)=∫((∏
j=1

s

exp( i p j x j
a
))(∏

j=1

h

exp(i k j y j
a
))(∏

j=1

n

exp(−i q j x j
b
))

(∏
j=1

s

ψμ j
α j
(x j

a
))(∏

j=1

h

Aλ j
a j
(y j

a
))(∏

j=1

n

ψν j
β j (x j

b
)))(∏

j=1

s

d3 x⃗ j
a)(∏

j=1

h

d3 y⃗ j
a)(∏

j=1

n

d3 x⃗ j
b)

(18’’)

 where α j ,β j ,a j  are quark/lepton/gluon sort and colour indices  
 and μ j ,ν j  respective λ j  are Dirac and Lorentz indices. 
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Consider now a hadron with momentum k=(k0 ,k⃗ )  and the light-cone 

 coordinates x +
=(x 0

+ x⃗⋅vers k⃗ )/√2  , x −
=(x0

− x⃗⋅vers k⃗ ) /√2

x⃗ ⊥= x⃗−( x⃗⋅vers k⃗ )vers k⃗  , x⃗∥=( x⃗⋅vers k⃗ )vers k⃗  . 
The quark constituents of the hadron have momenta kj  (j = 1 , 2 for mesons and 
j = 1 , 2 , 3 for baryons) with fractions xj and relations
k j

+
=x jk

+  , ∑ x j=1  , ∑ k⃗ j⊥=0  , 2k j
+ k j

−
−k⃗ j⊥

2
=m j

2  , k⃗ j⊥⋅versk=0

x j∈[0, 1]  , k j
0
=

1

√2 (x jk
+
+
k⃗ j⊥

2
+m j

2

2x jk
+ )

k + k −
=M2  where M  is the effective mass of the hadron, 

k0
=

1

√2 (k
+
+
M2

2k + )  , k⃗ j=k⃗ j⊥+
1

√2 (x jk
+
−
k⃗ j⊥

2
+m j

2

2 x jk
+ )vers k⃗  . 

Thus we have a functional dependence k j=k j(x j ,k⃗ j⊥ , k⃗ ) (20).
 With the constituents momenta (k j )j  in the place of (p j)j  momenta in 

(18) ,(19)  like relations, we can change the variables (k j) j  to variables 

((x j) j=1 ,m−1 ,(k j⊥
1 ,k j⊥

2
)j=1 ,m−1 , k⃗ )=(~x ,

~
k ⊥ ,k⃗ )

 where k j⊥
l
=k⃗ j⊥⋅el  , el⋅ei=δi l  , ei⋅⃗k=0  ; i , l=1, 2

and m is the hadron’s number of quark constituents and so we have the hadron 
momentum space wave function and the hadron energy eigenstate wave function 
computable according to (18) , (18’) respective (19) like relations in the form
A((k j)j=1 ,m)=

~
DA(~x ,

~
k ⊥ , k⃗ )

ψ0H(( x⃗ j) j=1 ,m)=∫B(
~x ,

~
k ⊥ , k⃗ ,( x⃗ j) j=1 ,m)d

m−1~xd2m−2~k ⊥ d
3 k⃗ (21).

The distribution amplitude us defined as :

DA(~x , k⃗ )=∫
~
DA(~x ,

~
k ⊥ , k⃗ )d2m−2~k ⊥  and taking W=∫|DA (~x , k⃗ )|

2
dm−1~x

we have that 1
W

|DA (~x , k⃗ )|
2
dm−1~x describes the probability of finding the 

constituents in state of (x j) j=1 ,m  fraction values of k +  at hadron momentum k⃗ .   
 (The location variables in (21), x⃗ j  and the momentum fractions x j should 

obviously not be mixed up!)

With the relations (20), an amplitude for a process of (p1 , … , ps) outgoing fermions 
momenta, which are grouping themselves as outgoing hadrons (k1 , … , km) having 
fraction values for constituents respectively
((x i l)l=1,mi)i=1 ,m  taking ~x i=(x i l)l=1 ,mi−1  , ~x=(~x i)i=1 ,m ,

(q1 , … , qn) incoming fermions momenta, which are grouping themselves as 
incoming hadrons(k’1 , … , k’m’) having fraction values for constituents respectively
((x ′i l)l=1 ,m ′ i)  taking ~x ′i=(x ′i l)l=1 ,m ′ i−1  , ~x ′=(~x ′i)i=1 ,m ′ ,

(r1 , … , rh) outgoing bosons momenta , can be described as a function of the 
constituents fractions and normal momentum components for the hadrons , and of the
momenta of the hadrons:
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A(q , r ,p)=AH(
~x ,

~
k ⊥ ,~x ′ ,

~
k ′ ⊥ ,k⃗ , k⃗ ′ , r )  .

To compute decay rates or cross sections we need the transition probabilities |A|2.
 Integrating |AH|

2  over the ~x ,
~
k ⊥ ,~x ′  , 

~
k ′⊥  variables with the weight   

(∏i=1

m |~DAi (
~x i ,

~
k i⊥ , k⃗ i)|

2

W i
)(∏i=1

m ′ |~DA ′i(
~x ′i ,

~
k ′i⊥ ,k⃗ ′i)|

2

W ′i ) , where

W i=∫|
~DAi(

~x i ,
~
k i⊥ ,k⃗ i)|

2
dmi−1 ~x id

2mi−2~k i⊥

W ′i=∫|
~
DA ′i(

~x ′i ,
~
k ′i⊥ ,k⃗ i)|

2
dm ′ i−1~x ′id

2m ′ i−2~k ′i⊥  , 
we obtain a transition probability in terms of the momenta of the hadrons:

|
~
AH|

2
=|

~
AH|

2
(k⃗ , k⃗ ′ , r ) .

Let for i=1,m  , qi
=(q l

i
)l=1,mi  the momenta of the quarks/antiquarks which 

are constituents of the outgoing hadron with  four-momentum k i .

As we noticed we have the bijective correspondence (ql
i
)l=(ql

i
)l (
~x i ,

~
k i⊥ ,k⃗ i) .

The number of qi states (on mass shell) corresponding to a hyper-volume 
dw=dmi−1~x id

2mi−2~k i⊥d
3 k⃗ i  located at (~xi ,

~
k i⊥ , k⃗ i)  is 

dw=( V
(2π)3 )

mi

|det
D((ql

i
)l)

D(~x i ,
~
k i⊥ , k⃗ i)

|dmi−1~x id
2mi−2~k i⊥d

3 k⃗ i

and therefore the number of ki states (on mass shell) corresponding to a volume

d3 k⃗ i  located at k⃗ i  is ( V
(2π)3 )

mi
~
W i(k⃗ i)d

3k⃗ i  where 

~W i(k⃗ i)=∫|det
D((ql

i
)l)

D(~x i ,
~
k i⊥ , k⃗ i)

|dmi−1 ~xid
2mi−2~k i⊥

with integration on [0,1] for the momentum fractions variables and a certain bounded 
range of momentum for the normal momenta variables.
Thus we obtain computable differential decay rates and differential cross sections for 
a hadron decay or a two hadrons scattering to a number of outgoing hadrons 
processes:

dΓ=
|
~
AH|

2

T
∏
i=1

m

(
V

(2π)3 )
mi ~
W i(k⃗ i)d

3 k⃗ i      (22)

dσ  =
|
~
AH|

2

|v⃗1−v⃗2|
V
T
∏
i=1

m

( V
(2π)3 )

mi
~
W i(k⃗ i)d

3k⃗ i          (23)

 where |AH|
2
=|AH|

2
((k⃗ i)i=1 ,m  , k⃗ ′1)  for a hadron decay and 

|AH|
2
=|AH|

2
((k⃗ i)i=1 ,m  , k⃗ ′1 , k⃗ ′2)  for a two hadrons scattering .

Obviously , also leptons or bosons can appear as outgoing particles. We simply 
include their momenta in the outgoing momenta list and do the calculations as they 
have no constituents as well and so if such a particle is listed under index j  and so the
list of its constituents is void and mj= 0.
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k i  are the outgoing momenta, k ′i  are the incoming momenta and

v⃗1 ,v⃗2  are the velocities of the scattering hadrons V ,T  are spatial volume 
and respective time interval for the process action.
V, T are constants part of the lattice simulation we consider and the discretization and 
fermion Grassmann variables normalization constants which appear as coefficients in 
a lattice simulation computation are to be setup by measurements performed in one of
any known physical process from the computing of which we can extract the 
coefficient and it will have the same value for any other process we further consider 
for computation.

Consider  now the scattering process corresponding to the Feynman diagram in fig.1

                                           p1

                  q1                  k           p3

                             q1+q2

                q2                                        p2

                       fig.1

q1 , q2  are the incoming fermions, p1 , p2 are outgoing fermions , p3 is an outgoing 
boson four-momentum end legs lines labels and q1 + q2 labels as four-momentum an 
internal boson line, k labels as four-momentum an internal fermion line.
As we shown above we can factorize the fig.1 process through the decay of the k 
particle to p1 and p3 particles obtaining for the Feynman amplitudes the relation:

~AF=AF ((q1 ,q2) ,(p3) ,(p1,p2))=

=AF((q1,q2) ,ϕ ,(p2 ,p1+p3))
2mi

(p1+p3)
2
−m2

+i ε
M((p1+p3) ,(p3),(p1))

(24)

where ϕ  stands for an empty list of bosons four-momenta. 
In the mass centre frame of the incoming particles (which are supposed to be on mass
shell) we can consider
q⃗1=(q ,0 , 0)  , q⃗2=(−q , 0, 0)  and also q⃗i

2=qi
02  , qi

0
=q because we neglect the 

incoming fermions masses.
Momentum conservation leads to 
k=p1+p3  , ∑

i
pi

0
=2q  , ∑

i
p⃗i=q⃗1+q⃗2=0  and we take the fractions relations: 

pi
0
=x iq  , ∑

i
xi=2  and neglecting fermion and boson masses we have also  

‖p⃗i‖=x iq  since the particles are supposed to be on mass shell. 

 Let 
p⃗ i⋅p⃗ j

‖p⃗ i‖ ‖p⃗ j‖
=cos(θi j) .
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From the momentum conservation follows now
2(1−x1)=x2 x3(1−cos(θ23))

2(1−x2)=x1 x3(1−cos(θ13))

2(1−x3)=x1 x2(1−cos(θ12))

Using Feynman rules with the convention that Greek indices are Dirac spinor indices 
and Latin indices are fermion / boson designating indices , (24) becomes:

~
AF=−(2π)4 2mcg

2

4q2
(1−x2)

uα
c
(p1+p3)Tcd

a
γαβ
μ vβ

d
(p2)

1
r 2 (ημ λ

−
rμ r λ
Ma

2 )γρε
λ vρ

c ′
(q1)

uε
d ′
(q2)T c ′d ′

a uβ
c
(p1+p3) γδβ

ν uδ
e
(p1)Tec

a ′
εν
a ′
(p3)δ

4
(p1+p2+p3−q1−q2)

(25)

 where r=q1+q2 .
Considering the (4’) relations we have
vρ
c ′
(q1) γρε

λ
(q1+q2)λuε

d ′
(q2)=(−mc ′+md ′)vε

c ′
(q1)uε

d ′  and since we have taken 

mc ′≈md ′≈0  we can drop the 
rμ r λ
Ma

2  term in (25) .

 Taking 
~
AF=(2π)4 ~Mδ

4
(p1+p2+p3−q1−q2)  and considering (4) , (4’’’) 

relations, with summation over (averaged) spin polarizations, we will have 

a |~M|
2
=

g4

16q4
(1−x2)

2|Tec
a ′ Tcd

a Tc ′d ′
a |

2
4mc

2 tr(
p1+p3+mc

2mc

γ
μ p2−md

2md

γ
μ ′)

 tr (
q1−mc ′

2mc ′

γ
λ q2+md ′

2md ′

γ
λ ′) η

μλ
η
μ ′ λ ′

((q1+q2)
2)2

tr(
p1+me

2me

γ
ν p1+p3+mc

2mc

γ
ν ′)

(−η
νν ′
+
p3νp3ν ′

Ma ′
2 )            (26)

We have

 tr (
p1+me

2me

γ
ν p1+p3+mc

2mc

γ
ν ′)p3νp3ν ′=

 =uα
e
(p1)uβ

e
(p1)p3β γuγ

c
(p1+p3)uδ

c
(p1+p3)p3δα  and 

ue(p1)p3u
c
(p1+p3)=(−me+mc)u

e (p1)u
c
(p1+p3)≈0

(since we take me≈mc≈0 ) .

 Therefore we can drop the 
p3νp3ν ′

Ma ′
2  term in the (26) expression for |

~
M|

2
.

We can verify that
tr γν

γ
μ
=4ημ ν  , tr γμ

γ
ν
γ
λ
γ
σ
=4(ημ ν

η
λ σ
−η

μλ
η
νσ
+η

μσ
η
ν λ
)  and that the 

traces of a product of an odd number of gamma matrices vanish.
It follows :

                                                                  /     /              /

        /               /                                       /              /     /

        /               /    /

                            /                                     /
              /
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tr ((r 1+m1)γ

μ
(r 2+m2) γ

ν
)=4 (r1

μ r 2
ν
+r νr 2

μ
−η

μνr 1⋅r2+η
μ νm1m2)

and so for Bλ λ ′=tr (
q1−mc ′

2mc ′

γ
λ q2+md ′

2md ′

γ
λ ′)  we obtain                                            

Bλ λ ′={
η
λ λ ′(1− 2q2

mc ′md ′
) for λ ,λ ′≠0, 1

0 for {λ ,λ ′}={0 ,1}

η
λ λ ′ for λ=λ ′∈{0 ,1}

 (27)                                                 

and also, after some calculus:

tr (
p1+me

2me

γ
ν p1+p3+mc

2mc

γ
ν ′)ην ν ′

=4(1− q2

memc

(1−x2))   (28) 

In the cross section expression we have , according to a (*) relation ,we will have a 

partial factor 
mc ′md ′

q2  and since we approximate mc ′≈md ′≈0 , from the (27) 

factor, in the cross section expression we must keep only
−2ηλ λ ′q2  with λ ,λ ′=2, 3  having further: 

tr (
p1+p3+mc

2mc

γ
μ p2−md

2md

γ
μ ′)(−2ηλ λ ′

)η
μλ
η
μ ′λ ′

=

=−2− 1
mcmd

(2p21
2
+2(2−x2)x2q

2
)       (29)

Since in the cross section expression we have also a partial factor 
mdme

x1 x2q
2  and 

we approximate md≈me≈0  we must keep from the (28) factor only 

−
4
mc

(1−x 2)q
2  and from the (29) factor, only −2(p21

2
+(2−x2)x2q

2
)  . 

Thus the differential cross section is , after some calculus

dσ  =
f
q9

p21
2
+(2−x2)x2q

2

(1−x2)x1 x2 x3

d3 p⃗1d
3 p⃗2d

3 p⃗3δ
4
(q1+q2−p1−p2−p3)=

=
f
q7

x2
2 cos2

(θ2)+(2−x2)x2

(1−x2)x1 x2 x3

sin(θ1)sin(θ2)x1
2 x2

2q6d x1d x 2d θ1d θ2dφ1dφ2

δ(2q−q(x1+x2+x3))d
3 p⃗3δ

3
(q⃗1+q⃗2− p⃗1− p⃗2− p⃗3)

where f=|Tec
a ′ Tcd

a Tc ′d ′
a |

2 1
8(2π)9

g4

|v⃗ 1−v⃗2|
(in the mass centre of the incoming 

particles  frame).
 Integrating over (θi ,φi)∈(0,π)×(0 ,2π)  , i=1, 2  and p⃗3  we obtain  

 

        /               /
 

                                   /                  /

        /               /    /

       /     /              /
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dσ  =
32
3
f π2 x1 x2

2
(3−x 2)

q(1−x2)(2−x−1−x2)
δ(2q−q(x1+x 2+x3))=

=F
2x2

2
(3−x2)

x3
2
(1−cos (θ13))

d x1d x2

 where F=16
3
f T
q

π      and T  is the process time interval  .

(the Dirac distribution factor is over the 0 component of the four momentum, which 

is conjugated to time variable and we have therefore δ(q ′−q ″)=
T
2π

δq ′q ″ )

 The differential cross section has a pike at x3=0  and at cos(θ1 3)=1 .

In both cases it follows x 2=1  and (p1+p3)
2
=q2

((2−x2)
2
−x2

2
)=4q2

(1−x2)=0.
Therefore, since we neglected the fermion mass, the k = p1+p3 fermion can be 
considered on mass shell and p⃗1  , p⃗3  are collinear. 

Let us choose the x3  axis close to the direction k⃗= p⃗1+ p⃗3  and with orientation 
opposite to p⃗2  orientation, so that the light-cone frame coordinates are 

x +
=(x3

+x 0
)/√2  , x −

=(x 0
−x3

)/√2  , x⃗ ⊥=(x1 , x2 ,0)

Then k⃗ ⊥≈0⃗  , k +
=(p1

0
+p3

0
+‖p⃗2‖)/√2=((2−x2)q+x2q)/√2=√2q  .

In the scattering experiments, 2 q is very large (it is the energy at which the particles 
collide in the mass centre frame).
Since the k particle is on mass shell when the cross section reaches the piked 
significant value, we have k −

=(k⃗ ⊥
2
+mc

2
)/(2k +

) .

Therefore, since k⃗ ⊥ ,≈0⃗  , mc≈0  and k +  is very large, k−  must be very small 

and so k3
=(k +

−k −
) /√2  is also very large. 

The k particle on mass shell propagates from the q1+q2 boson decay location 
0⃗  to the location x⃗  where decays into the p1  fermion and the p3  boson and

 because k⃗ ⊥≈0⃗  we can assume x⃗ ⊥≈0⃗

 We have k⃗=
mc v⃗

√1−v⃗2
 , the propagation time is T=x0

 and Lorentz invariance leads to k x=mcT √1−v⃗ 2.  Also because v⃗ T= x⃗

and k0
=

mc

√1−v⃗2
 we obtain k0 x3

≈k3 x0  , k + x −
≈k − x + .

 Hence k x=k + x−
+k − x +

−k⃗ ⊥ x⃗ ⊥≈2k + x−
≈2k − x + .

 Because k +  is very large and k−  is very small (obviously as an absolute value) 
 it follows that x⃗≈(0 ,0 , x3

)  must be very large as an absolute value. 
The scattering cross section goes to infinity when
p0

3
≈0   ( x3=0  ) and so we can call the fig.1 diagram not infrared safe.

Since x3 is very large, the decay of the k emergent particle into a p1 fermion and a 
p3 boson occurs at a large distance from the q1,q2 fermions scattering point and
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therefore we can reduce a scattering process through factorization, as exposed, to the 
small distance effects ( in the fig.1 case the scattering to k and p2 fermions on mass 
shell ) which will be infrared safe.

Consider now a quark-antiquark meson. The constituents quark and antiquark 
constantly change colour due to strong interaction such that when a colour 
α  quark is at location r⃗ 1  an anticolour α  antiquark is at location r⃗2  with 
α∈{r,g,b}.  For the quark-gluon-antiquark interaction within the meson, the gluon 

fields change much faster than the quark and antiquark fields an so we can consider a 
potential energy of the quark-antiquark pair which is V (r⃗ )=E (r )  where 
r⃗= r⃗1− r⃗2  , r=‖⃗r‖ and E (r )  is the energy of the gluons intermediating the quark-

antiquark interaction.
During the gluon fields interaction time T, while the quark and antiquark are 
respectively  at location r⃗ 1  and r⃗ 2  we have a quark colour charge current 

J1
aμ
(t , x⃗ )=gψαTTαβ

a
ψ

β
ψ1 γ

μ
ψ1(t , x⃗ )  and an antiquark colour charge current 

J2
aμ
(t , x⃗ )=−gψαTTα β

a
ψ

β
ψ2c γ

μ
ψ2c(t , x⃗ ) , where we have a minus sign since the 

quark and antiquark carry opposite colour charges and the notations correspond to :

Ta
=

1
2
λ
a  , the ψα  is one of the three colour charge eigenvectors 

(1, 0, 0)  , (0 ,1, 0)  , (0 ,0 , 1)  and ψc=γ
2
ψ

∗  noticing that ψc γ
μ
ψc=ψγ

μ
ψ

 with ψi  a Dirac spinor. 
Considering the location of the quark and antiquark during the faster changing gluon 
fields intermediated interaction we can take
(ψ1 γ

μ
ψ1)μ=(δ

3
( x⃗−r⃗1), 0 ,0 , 0)  and (ψ2 γ

μ
ψ2)μ=(δ

3
( x⃗− r⃗2), 0 ,0 , 0)  .

Not considering the cubic and quartic gluon interactions the gluon fields Lagrangian 
density is :

ℒ((Aa ,∂ Aa
)a)=−

1
4
(∂μAν

a
−∂ν Aμ

a
)(∂

μ Aaν
−∂

ν Aaμ
)+

1
2
Ma

2 Aμ
a Aaμ

+( J1
aμ
+ J2

aμ
)Aμ

a

We have :
Z ( J)=exp(−i E (r )T )=Z ( J=0)exp (−(i /2)∫ Ja(x )Da

(x−y ) Ja(y )d4 xd4 y)

 where Dμν
a
(x−y)=∫−

1
(2π)4

exp(−i k (x−y))
k2
−Ma

2
+i ε (ημ ν

−
kμk ν

Ma
2 )d4k is the gluon 

propagator.
Excluding the vacuum energy (that is excluding Z (J = 0)) we can take

E (r )T=∫(12 ( J1
a
(x)Da

(x−y ) J1
a
(y )+ J2

a
(x)Da

(x−y ) J2
a
(y))+

+ J1
aDa

(x−y ) J2
a
(y))d4 x d4 y=∫d4k∫d x0d y0 exp(−i k0

(x0
−y 0

))

−1+k0 2
/Ma

2

k2
−Ma

2
+i ε

Sαa
g2

(2π)4 (1−exp(k⃗ r⃗ ))=T g2

(2π)3
Sαa∫(1−exp(i k⃗ r⃗ )

k⃗ 2
+Ma

2 )d3 k⃗

(30)
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 where Sαa=0  for a∉{3 ,8} , Sα3=
1
4

 , Sα8=
1

12
 for α∈{r,g} , Sb3=0  , Sb8=

1
3

and in (30) we take the summation over a index.
Taking M3=M8=0  we have: 

E (r )=E0−
g2

3(2π)3
∫

exp (i k⃗ r⃗ )

k⃗2
d3 k⃗

∫
exp(i k⃗ r⃗ )

k⃗2
d3k⃗=2π∫∫

0

π

exp(i k r cos (θ))sin (θ)dθdk=4 π∫
0

∞ sin (k r )
k r

d k

We integrate over a range of momentum k=‖k⃗‖ for which k r≪1  so that we 
have quark confinement ( the SU(3) chromodynamics coupling is strong at low 
energy ). 

 Let ‖k⃗‖<a .  Hence with ar≪1  we will have: 

E (r )=E0−
g2

3(2π)3 4π∫
0

ar
1
r τ

sin (τ)d τ≈

≈E0−
g2

6π2 r
∫
0

ar

(1−1
6
τ

2)d τ=E0−g
2 a
6π2+Br

2

 where B=
g2a3

108π2  and we take V ( r⃗ )=Br 2 the potential energy of the quark-

antiquark system.
The wave function of the meson, ψ(t , r⃗ 1 , r⃗ 2)=exp (−i Ĥ t)ψM(r⃗ 1, r⃗ 2)

 taking m  as the effective mass of the meson, satisfies the time-independent
Schroedinger equation :

EψM(r⃗ 1 , r⃗ 2)=−
1

2m
∇ r⃗1 , r⃗ 2

2
ψM(r⃗ 1 , r⃗ 2)+V ( r⃗ )ψM(r⃗ 1 , r⃗ 2)             (31)

where E  is the energy level of the meson. 

Searching for ψM(r⃗ 1 , r⃗ 2)=
1
m
x−3 /4F (x )  , G(x )=F (bx )  , x=‖r⃗ 1−r⃗ 2‖

2

 te equation (31) becomes 
d2G
d x2 (x)+(−mBb2

4
+
mbE

4 x
+

3

16 x2 )G(x )=0  (32)

 We choose b  such that mBb2
=1  and take κ  =

mbE
4

 , μ= 1
4

 and so 

 the (32) equation for G  is the Whittaker function equation 

d2G
d x2 +(− 1

4
+ κ
x
+

1 /4−μ
2

x2 )G=0          (33).

The equation (33) , with parameters
κ  , μ  has a fundamental system of solutions Mκ ,μ  , Wκ ,μ

Page 26 of 43



Mκ ,μ(z )=z
1
2
+μ

exp(−1
2
z )(1+∑

p=1

∞ (12+μ−κ) ...(1
2
+μ−κ+p−1)

p!(2μ+1) ...(2μ+p)
z p)

Wκ ,μ(z )=
Γ(−2μ)

Γ(
1
2
−μ−κ)

Mκ ,μ(z)+
Γ(2μ)

Γ(
1
2
+μ−κ)

Mκ,−μ(z )

For κ  =μ−
1
2
+n  , n∈ℕ∗  we have that Mκ ,μ(z )=z

1
2 exp (−

1
2
z )P(z )  where P

is a polynomial of degree n−1.

Therefore, for energy levels En  , En=(4n−1)√
B
m

 , n∈ℕ∗  the energy 

eigenstates are polynomial defined by the relations :

ψMn(r⃗ 1 , r⃗ 2)=
1
m
x−3 /4Mκn ,1/ 4(x /b)=

=
b−3/4

m
exp (−

x
2b

)(1+∑
p=1

n−1

(−1)p
(n−1)...(n−p)
p!1⋅3... (2p+1)

2p( xb )
p

)
κn=n−

1
4

 , x=‖r⃗1− r⃗2‖ , b=(mB)−1 /2

    (34)

 Since a wave function ψ0M( r⃗1 , r⃗2) is computable for the meson in a lattice 
simulation (as in (19) for the baryon example) equating this function with the (34) 
relation function we should be able to determine the constants B , b , g2a3in the range 
of momentum given by a.

Consider now a three quark baryon consisting of three quarks with masses 
m1, m2 , m3  and having different colours at a time.
As above , in this case we will have three colour charge currents

J1
aμ
(t , x⃗ )=gδr α

1
2
λαβ
a
δr βδ

3
( x⃗− r⃗1)δμ0

J2
aμ
(t , x⃗ )=gδgα

1
2
λαβ
a
δgβ δ

3
( x⃗−r⃗ 2)δμ0

J3
aμ
(t , x⃗)=gδbα

1
2
λαβ
a
δbβδ

3
( x⃗−r⃗ 3)δμ0

where r⃗1 , r⃗ 2 , r⃗ 3  are the position vectors of the three quarks during the faster
changing gluon fields intermediated interaction in which we must consider all 
possible permutation of colour index values over the 1 , 2 , 3 positions in the 
interaction time interval of length T.

 For d1=‖r⃗ 2−r⃗ 3‖ , d2=‖r⃗ 3−r⃗ 1‖ , d3=‖r⃗ 1−r⃗ 2‖ , the potential energy of the three 
quark system is V (r⃗ 1, r⃗ 2, r⃗3)=E (d1 ,d2 ,d3)  and satisfies: 
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ET=E0 ′T+∑
a
∫ ( J1

a
(x)Da

(x−y ) J2
a
(y )+ J2

a
(x )Da

(x−y ) J3
a
(y)+

+ J3
a
(x)Da

(x−y ) J1
a
(y))d4 xd 4 y

where in the sum over a we  consider an average over all permutations of the colour 
index values over the 1 , 2, 3 positions.
Following steps as in the calculation for the meson case it follows that we can take

V (r⃗ 1 , r⃗ 2 , r⃗3)=B∑
i=1

3

d i
2  with B=

g2a3

216 π2  for ad i≪1  , a  the range of momentum. 

The energy eigenstates of the baryon system satisfy the time independent 
Schroedinger equation :

E ψB( r⃗1 , r⃗2 , r⃗3)=V (r⃗1 , r⃗2 , r⃗3)ψB(r⃗ 1, r⃗ 2, r⃗ 3)+∑
i=1

3

−
1

2m i

∇ r⃗i

2
ψB(r⃗ 1, r⃗ 2, r⃗ 3)

 which for x i=d i
2  , i=1,3  , ψB(r⃗ 1 , r⃗ 2 , r⃗ 3)=ψ(x1 ,x2 , x3)  becomes: 

E ψ=(x1+x 2+x3)Bψ+∑
1
m1 (2

∂
2
ψ

∂x 2
2 x2+2

∂
2
ψ

∂x3
2 x3+3

∂ψ

∂ x2

+3
∂ψ

∂x3 )
where the sum is taken over all circular permutations of (1 , 2 , 3).

 We have solutions in the form ψ(x1 ,x 2, x3)=ψ1(x1)ψ2(x2)ψ3(x3)  , 

E=E1+E2+E3  with E iψi (x )=−
1
mi

(2ψ ″ (x )x+3ψi (x ))+Bψi(x )x

where 1
m1

=
1
m2

+
1
m3

 with circular permutations over (1, 2, 3) 

(35)

In the same way as for the meson wave function we obtain polynomial defined 
solutions

ψi n (x )=
bi
−3 /4

mi

exp(−
x

2bi

)(1+∑p=1

n−1

(−1)p
(n−1)...(n−p)
p!1⋅3...⋅(2p+1)

2p(
x
bi )

p

)
 with bi=(2miB)

−1/2  for partial energy level E i n=(4n−1)√
B

2m i

.

The corresponding energy levels areEn1n2n3=E1n 1+E2n2+E3n 3 with eigenstates

 defined by ψn1n2n3(x1 , x2 ,x 3)=ψn1(x 1)ψn2(x2)ψn3(x3)  , ni∈ℕ
∗  , i=1,3  .

So we have the (lowest level) eigenstate ψ0B and with (19) we can recover the hadron 
momentum space wave function, needed in distribution amplitude calculations, by
a Fourier transform.
As we mentioned we must be able to compute path integrals having the form
∫DADψDψexp (i∫

~
ℒ(ψ,∂ψ ,A ,∂ A)d4 x)O(ψ ,ψ)     (36)

 where O(ψ ,ψ)  can have for example the expression: 

O(ψ ,ψ)=(∏
i=1

s

ψβi
α i
(x i))(∏

j=1

n

ψδ j
γ j (x j ′))  with 

α i , γ j  colour and fermion sort indices and β i ,δ j  Dirac spinor indices. 
 Since the Lagrangian density ~ℒ  has a expression like in (10) , the path integral 
 over DψDψ  , where ψ,ψ  can be considered independent sets of Grassmann 

Page 28 of 43



variables, can be computed as a sum of Wick contraction terms, as shown for the (9’)
relation (with η ,η  variables conjugated to ψ  respective ψ  on the sides of the 
propagator, which is D (x-y) in the (9’) relation ) and so for the (36) integral not 
vanish ,we must have s = n .
To compute (36) we perform first a Wick rotation to imaginary time t→i t=tE and 
formulate the theory on a hyper-cubic lattice in 4-dimensional (Wick rotated 
Minkowski space-time (t , x⃗ )→(tE , x⃗ ) ) Euclidean space-time, Λ=

{(nμa)μ}nμ∈ℤ  , μ=0 ,3  , ψ(t , x⃗)=0  if |t|>T  or exists k∈{1 ,2 ,3} such that |xk|>L .
As the lattice spacing a goes to 0, we expect to recover 4-dimensional rotational
invariance and (by Wick rotation) Lorentz invariance.
The relativistic relation
E2

/c2
−p⃗2=m2c2   with E  energy, p⃗  momentum, m  rest mass becomes by Wick

rotation to imaginary time:
E ′2/c ′2−p⃗ ′2=m2c ′2  with c ′=−i c .

 For ℏ=1  , c=1  and E ′=i ∂
∂ i t

 , p ′k=−i
∂

∂x k  as translation generators, 

we will have −∂
2
/∂tE

2
−∂k∂k=m

2.
Therefore the corresponding Dirac equation for the Wick rotated space-time must be

(γ
0 ∂
∂tE

+ iγk
∂k−im)ψ=0 and the Euclidean Lagrangian for a free fermion 

theory is

ℒ E (ψ,∂ψ)=ψ(i γ
0 ∂
∂tE

+γk∂k+m)ψ  and so exp(i∫ℒ(ψ ,∂ψ)d4 x)  which 

occurs in the theory path integral formalism, becomes in the Wick rotated space-time
exp(i∫ℒE (ψ ,∂ψ)d i t d3 x⃗ )=exp(−SE (ψ ,ψ))  where 

SE (ψ,ψ)=∫ψ(i γ
0 ∂
∂ it

+γk∂k+m)ψd t d
3 x⃗=∫ψ(γμ∂μ+m)ψd td3 x⃗ is the 

euclidean action.
On each link, say the one going from x∈Λ  to one of its nearest neighbours 
x+a μ̂∈Λ  where μ̂=(δαμ)α=0 ,3 we associate an N by N unitary simple matrix, 

parallel transporter Uμ(x )∈SU(N)  with N  the number of colour x flavour/ 
lepton sort indices:

Uμ(x )=exp(−i ∫
x

x+aμ̂

∑
g
gAμ

bT bd xμ
)

the Tb areN×N  hermitian traceless matrices, (Aμ
b
)b  are real gauge boson fields

 which we can normalize such that tr(TcTb
)=

1
2
δcb  , trT b

=0.

 the (T b
)b  are the generators of the gauge group representation. For each g

 coupling we have a set (Aa ,T a
)a  of gauge bosons and generators .

 We have Uμ(x )=I−i∑
g

ag Aμ
b
(x)T b

+O(a2
)
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Obviously we used Einstein summation convention for the b index. 
Considering the form of the euclidean free fermion theory in a fermions interacting 
gauged theory we will take a discretized euclidean fermion action
SF(ψ ,ψ)=a4

∑
x∈Λ

ψ(x )(D+m)ψ(x )

 where ψ=(ψ
α
)α  , ψα  Dirac spinor, m=diag (mα)α  , α colour x flavour/lepton 

sort index , mα  mass of the α  fermion ,
D=γμ(∂μ−i∑

g
g Aμ

b
(x )T b

)

(where obviously we used the discretization of the ∂μ  operator )

∂μf (x)=
f (x+aμ̂)−f (x )

a
.

We have also the gluon fields discretized euclidean action SG(U) we must establish. 
Consider the square P(x), known as a plaquette, bounded b the corners
x  , x+a μ̂  , x+a μ̂+a ν̂  , x+a ν̂  with x∈Λ .

For each plaquette P(x) we consider the expression:
Pμν (x )=Uμ(x )Uν(x+aμ̂)Uμ

+
(x+a ν̂)Uν

+
(x ) .

 Since [T b ,Tc
]=i f dbcTd  , tr (TbT c

)=
1
2
δbc  , trTb

=0  we have :

tr Pμν=tr exp(−i a2∑
g

Fμν
b T b

+O(a3
))

 where Fμ ν
b
=g (∂μAν

b
−∂ν Aμ

b
)+g2f bcd Aμ

cAν
d

Under a gauge transformation ψ(x )→Ω(x )ψ(x )  , Ω(x)∈SU (N)  , 
 the Uμ  fields transform like Uμ(x )→Ω(x )Uμ(x )Ω

+
(x+a μ̂)

We take the lattice plaquette gauge invariant euclidean action
S(P )=∑

g
∑
μ ν

(1 /g2
)ℜ tr(I−Pμ ν)=(1 /4)∑

g

(a4
/g2

)ℜ tr(Fμν
b Fμ ν

b
)+O(a6

)

The lattice euclidean gluon fields discretized action will be:
SG[U]=∑

x∈Λ

(S (P)(x )+a4
∑
μ ,b
Mb

2 Aμ

b2
(x )) , where

Mb  is the mass of the b  boson and Aμ
b
(x )=(2 /(ga)) tr( i(Uμ(x )−I)T

b
) .

 Further we will take ∇μ
s
ψ(x )=

Uμ(x )ψ(x+a μ̂)−Uμ

+
(x )ψ(x−a μ̂)

2a
and under a gauge transformation ψ(x)→Ω(x )ψ(x)  it will folow 

∇μ
s
ψ(x )→Ω(x)∇μ

s
ψ(x )+O(a)  . 

We have also :

∇μ
s
ψ(x )=

Uμ(x)+Uμ
+

2
∂μψ(x )+

Uμ(x )−Uμ
+
(x)

2a
ψ(x)=

=(∂μ−i∑
g
g Aμ

b
(x)T b

)ψ(x )+O(a)

 

                                 /

 

  /
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 Taking SF [U](ψ ,ψ)=a4
∑
x∈Λ

ψ(x )(γμ∇μ
s
+m)ψ(x)  it follows that in the a→0

 continuum limit, SF [U]  is gauge invariant and equal to the lattice euclidean 
fermion action.
Therefore, the (36) path integral can be computed by Wick rotation as

∫DADψDψexp(−∫ ~
ℒ E (ψ,∂ψ, A ,∂ A)d t d3 x⃗ )O(ψ ,ψ)=

=∫D Aexp (−SG[U ])∫DψDψexp (−SF[U](ψ ,ψ))O(ψ ,ψ)
(37)

 We can write −SF [U](ψ ,ψ)=ψDW [U]ψ  where DW [U]  is a matrix acting 

on the (ψ(x ))x∈Λ  space. 
 Since ψ  , ψ  can be considered as independent sets of Grassmann variables, with 

(8) , (8’’’) relations, we have:
Z (η,η)=∫DψDψexp (−SF[U](ψ ,ψ)+ηψ+ψη)=

=C det (DW [U ])exp(−ηDW
−1
[U]η)       with C  a normalization, discretization 

dependent constant and so we can compute:

∫DψDψexp(−SF[U](ψ ,ψ))O(ψ,ψ)=

=C det (DW [U])
∂
s+n

(∏
i=1

s

∂ ηβ i
α i
(x i))(∏

j=1

n

ηδ j
γ j
(x ′ j))

exp(−ηDW
−1
[U ]η)|

 
 
η=η=0

=

=C ⟨O⟩F[U]|det(DW [U])|

 (37’)

If,as in (18'') the O(ψ ,ψ)  requires integration over ( x⃗ i)i  , ( x⃗ ′ j) j  we can 

 include that in the ⟨O⟩F[U]  factor. 
Therefore the calculation of (36), (37) integral reduces to computation of
C∫D [U ] ⟨O⟩F [U]exp(−SG[U])|det(DW [U])| where ∫D [U] ... means 

integration over the
(Aμ

b
(x ))x∈Λ ,b ,μ  variables, with C  a normalization , discretization dependent 

constant.

 For the free theory, (Uμ(x)=I)  the ∇μ
s  operator becomes ∂μ

s ,

∂μ
s f (x )=

f (x+aμ̂)−f (x−aμ̂)
2a

 and so 

−SF [U](ψ ,ψ)=−∫ψ(γμ∂μ

s
+m)ψd4 x

The Fourier transform on the momentum space of −(γμ∂μ
s
+m)ψ  is 

−( ia γμ sin(apμ)+m)ℱ ψ   and the propagator DW
−1  satisfies 
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−(γμ∂μ
s
+m)DW

−1
(x )=δ

4
(x)  and so on the momentum space we have 

ℱ DW
−1
(p)=

i a−1
γμ sin (apμ)−m

m2
+a−2

(sin2
(ap0)−∑

j

sin2
(a pμ))

The momentum space propagator has a pole at p2
=−m2  when a→0 but has more 

poles, known as doublers , when sin2
(ap0)−∑

j
sin2

(ap j)=m
2a2  .

Doublers can interact with each other via loop corrections and in computations we 
remove them by perturbing slightly the γμ∇μ

s
+m  operator, taking 

SF[U](ψ ,ψ)=−ψDW [U]ψ=a
4
∑
x∈Λ

ψ(γμ∇μ
s
+m−

a
2
∇μ

s+
∇ μ

s)ψ .

Monte-Carlo sampling method

 Let P : [0 ,L]M→ℝ +  with P  continuous and ∫P(x )d
M x=W<∞

Then we have a probability on [0,L ]M  given by 

P (A)=∫
A

P (x)
W

dM x  for any measurable set in [0,L ]M  .

For n=(ni)i∈{0, ... ,q−1}M  we denote Cn=∏
i=1

M

[niL /q ,(ni+1)L /q]

and take a sample (xk)k=1 ,S  , x k∈[0,L ]M  , S=qM+1  such that: 
card {k=1,S|xk∈Cn}=⌊SP (Cn)⌋

We consider also the measures on [0 ,L]M  defined by: 

εk (A)={1  if x k∈A
0  else 

 , μS=
1
s
∑
k=1

S

εk

Then for any Borel set A of [0 , L]M  with P (∂ A)=0  we can show that (∗):
lim
q→∞

μS (A)=P(A)  and so for any continuous F :[0 ,L]M→ℝ  we have 

∫F (x)P (x )dM x=W∫FdP(x )=lim
q→∞

W∫FdμS(x )=lim
q→∞

W
S
∑
k=1

S

F (xk)

 Now we demonstrate (∗ ):
By compactness of A=A∪∂ A  , measure definition and density of rational 
 fractions, for large enough q∈ℕ  we find (n j)j  , n j∈{0, ... ,q−1}M  , 

n j≠nl  for j≠l  such that |P(j Cn j)−P(A)|<ε  , 

|P(j
Cn j)−μS(

j
Cn j)|<

qM

S
≤

1
q

|μS (
j
Cn j )−μS (A)|<ε  with arbitrary positive ε  and the result follows. 
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In a lattice simulation we do the space-time integrations on a bounded hypercube of 
time interval length T and space volume V so that we can consider that Λ is a finite 
set of lattice points. We can use Monte-Carlo sampling method to compute the (37) 
integral.

Let M  be the dimension of the (Aμ
b
(x))x∈Λ ,b ,μ  space,

 taking A=(Aμ
b
(x ))x∈Λ ,b ,μ∈[−L /2,L /2 ]M  , 

Cn=∏
i=1

M

[ni δ−L /2,(ni+1)δ]  for n=(ni)i∈{0 ,... ,q−1}M  , δ=L /q   .

Then we take samples:
A(k )

∈[−L /2,L /2]M  , k=1,S  , S=qM+1  , Uμ
(k )
(x)=I−i∑

g
ag Aμ

(k)b
(x)T b

such that for any multi-index n we have
card {k=1,S|A(k)

∈Cn}=⌊SP(Cn)⌋  ; P  is a probability on [−L /2,L /2 ]M  space 

 defined by the density 
1
W

exp(−SG[U ])|det(DW [U])|

 with W=∫ exp(−SG[U])|det (DW [U])|d
MA

 

According to above considerations , the (37) integral can be determined as

C lim
q→∞

W
S
∑
k=1

S

⟨O⟩F [U
(k )
] .

Meson and baryon masses

A scalar meson appears as a combination ψM(x1 , x2)=ψ
a
(x1)ψ

a
(x2)  with no 

summation over the colour index a=1,3  since at a location x⃗ the quark and 
antiquark have one colour (anti-colour), taking x i=(t , x⃗ i)=(t , x⃗ )  for i=1 ,2 .
For the scalar meson we consider an equivalent scalar field of a spin 0 particle having
an effective mass m  , φ̂=φ̂(t , x⃗ )  as in (4a) and the equivalent propagator

 from (0, x⃗ )  to (t , x⃗ )  , t>0  which is −i ⟨0|φ̂(t , x⃗ )φ̂ + (0 , x⃗ )|0⟩ .(38)
Therefore , taking F̂ (t )=ψ̂M((t , x⃗ ),(t , x⃗ ))  for a given location x⃗ , the (38) 

propagator must be similar to Lorentz invariant −i ⟨ F̂ (t) F̂ (0)⟩ .
After some calculus, according to above established results we derive

C (t )=∫D[U] ⟨O⟩F [U ]exp (−SG[U ])|det (DW [U ])|=K∫
exp(−√k⃗2

+m2 t)

√k⃗2
+m2

d3 k⃗

 with K  a t  , m  independent constant and 
O(ψ,ψ)=(ψ

a
(t , x⃗ )ψa

(t , x⃗ ))(ψa
(0 , x⃗ )ψa

(0 , x⃗ ))
A baryon appears as ψB(x1 ,x 2 ,x3)=(ψα

a
(x1)ψβ

b
(x2)ψγ

c
(x3))αβγ  , a≠b≠c≠a

colour indices, taking x i=(t , x⃗ i)=(t , x⃗ )  , i=1 ,3  at given location x⃗ .
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We consider for a spin ½ baryon an equivalent Dirac spinor field having an effective 
mass m  , ψ̂=ψ̂(t , x⃗ )  as in (4c) and the equivalent propagator trace from 
(0 , x⃗ )  to (t , x⃗ )   : −i ⟨0|ψ̂α(t , x⃗) ψ̂α(0 , x⃗ )|0⟩ .

Thus similar to above we derive 

C (t )=∫D[U] ⟨O⟩F [U ]exp (−SG[U ])|detDW [U]|=Km∫
exp (−√k⃗ 2

+m2t )

√k⃗ 2
+m2

d3 k⃗

 with K  a t ,m  independent constant and the Lorentz invariant 
O(ψ ,ψ)=ψα

a
(t , x⃗)ψβ

b
(t , x⃗ )ψγ

c
(t , x⃗ )ψα

a
(0, x⃗ )ψβ

b
(0 , x⃗ )ψγ

c
(0 , x⃗)

Focussing on the baryon case, integrating in spherical coordinates and then by parts 
we obtain, after a variable changing:

C (t)=
4πK m
t 2 ∫

0

∞

exp (−√k 2
+m2 t 2

)dk  and so for G(t)=t C (t )  we have 

G(t )=4πKm2P (mt)  where P(z )=
1
z
∫
0

∞

exp(−√k2
+z2

)   ,  z=mt  , 

G ′(t )=4πKm3P ′(z)  , 
G ′(t )
G(t)

=m
P ′(z )
P (z)

=−m( 1
z
+H(z ))  with 

H(z )=(∫0
∞ z exp(−√k2

+z2
)

√k 2
+z2

dk )(∫0
∞

exp(−√k2
+z2

)dk)
−1

=

=(∫0
∞ uexp(−√1+k2

/u)

√1+k2
dk )(∫0

∞

uexp (−√1+k 2
/u)dk)

−1
  with  z= 1

u

 Variable changing to s=exp(−√1+k2
/u)  leads to 

∫
0

∞

uexp(−√1+k2
/u)dk=∫

1

∞

exp(−τ/u) τ /√τ2
−1d τ  =

=∫
1

∞

u√τ2
−1exp (−τ/u)d τ  =∫

0

h

u√u2 ln2
(s)−1ds

∫
0

∞ uexp(−√1+k2
/u)

√1+k2
dk=∫

0

h u2

√u2 ln2
(s)−1

d s   where h=exp(−z ) .

Hence after some calculus we obtain:

H (z)=(∫0
1 |ln (h)|1/2

(ln2
(s)+2 ln(s) ln(h))1/2 d s)(∫0

1
(ln2

(s)+2 ln(s) ln(h))1/2

|ln(h)|1 /2
d s)

−1

.

We can verify that for s∈(0 ,1)  we have: 

|ln(h)|1/2

(ln2
(s)+2 ln(s) ln(h))1/2

<
1

√2|ln(s)|
 , 

∫
0

1
1

√|ln (s)|
d s=∫

0

∞

τ
−1/2 exp(−τ)d τ  =Γ(1 /2)  and for z>1  also 
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(ln2
(s)+2 ln(s) ln(h))1/2

|ln(h)|1 /2
<(1+√2)|ln(s)| , 

∫
0

1

|ln (s)|d s=∫
0

∞

τ exp(−τ)d τ<∞  and so by dominated convergenge for z→∞  ,

it follows that

lim
z→∞

H (z )=(∫
0

1

(2|ln(s)|)−1 /2d s)(∫
0

1

(2|ln (s)|)1/2ds)
−1

=

=
1
2 (∫0

∞

s−1 /2exp (−s)d s)(∫0
∞

s1/2 exp(−s)ds)
−1

=(1/2)Γ(1 /2)(Γ(3 /2))−1
=1   .

 Therefore lim
t→∞

−
G ′(t )
G(t)

=m  and so for large t  we can consider that 

lnC (t )−lnC (t+a)
a

=m  , ma=ln ( C (t )
C (t+a))           (39)

In the same way , the (39) relation results valid also for the meson case.
Notice that in the ψM , ψB expressions we have supressed flavour differences between 
the various ψ factors, so that we can have mesons made from an up-quark and a 
down-antiquark for example or baryons made from two up-quarks and one down-
quark like the proton for example. Also we make the location variables 
x⃗ i  equal to the same x⃗  only after computing ⟨O⟩F [U]  according to (37’)  Wick 

contraction relation, since otherwise, because we consider the quark fields variables 
as Grassmann variables in the integration, we would have a vanishing 
O(ψ ,ψ)  operator value due to appearing of squared Grassmann variables in the 
expression of O(ψ ,ψ) . The locations of the quarks / antiquarks in a many-quark  

system as a meson or a baryon can be considered to be approximatively the same 
(due to quark confinement), but however not identically the same.

Consider the SU(3) quantum chromodynamics theory with two degenerate quark 
flavours , the up-quark and the down-quark with equal masses m = mu = md . The 
boson masses are vanishing , Ma = 0.
The lattice action depends on two free parameters:
- the quark mass m;
- the value of the strong interaction coupling g (which can be absorbed into the A 
integration variable).
Then we can compute (in dependence of m) , for a lattice spacing a the masses of the 
π meson (made of an up-quark and a down-antiquark) and the proton p (made of two 
up-quarks and a down-quark): only the dimensionless quantities  amπ  and amp  can be
computed, according to (39).
From experiments we can determine the fraction (mπ/mp)exp and so we can tune the 
quark mass m such that the lattice simulation computed (mπ/mp)lat matches the 
experimental (mπ/mp)exp . Then we determine the spacing a in physical units from 
(amπ)lat and mπ

phys . 
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The continuum limit must be taken using the constant line of physics mπ , mp<< a-1 
while keeping (mπ/mp)lat constant.
 
With relations (39) we are able to compute effective masses of mesons , baryons and 
even atomic nuclei which are made of nucleons which are protons (two up- and one 
down- quark) and neutrons (two down- and one up- quark ) and can be considered as 
a system of many quarks hold together by the strong interaction. The most part of 
their particles masses are then given by the gluon intermediated interaction energy. 
The strong interaction, intermediated by the SU(3) gluons (in the unified 
SU(3)xSU(2)xU(1) theory) has a positive contribution to the nucleon binding energy 
in an atomic nucleus while the weak and electromagnetic interaction , intermediated 
by the SU(2)xU(1) gluons which for positive electric charged protons turns out to be 
a repelling (Coulombian) force has a negative contribution to the nucleon binding 
energy. Thus for large (heavy) atomic nuclei the negative binding energy (as an 
absolute value) can exceed the positive binding energy, because the weak and 
electromagnetic interaction becomes more significant as the dimension of the nucleus
increases. Therefore the fusion of two light nuclei to another light nucleus happens 
with energy emission and the fission of a heavy atomic nucleus happens also with an 
emission of energy. The energy gain per fission event ΔE can be computed as
ΔE = Δmc2 ,where Δm is the difference between the sum of effective masses of the 
outgoing from the fission particles (atomic nuclei and other hadrons) and the sum of 
incoming in the fission interaction particles (atomic nucleus to be fissioned and the 
fission event producing particle which can be  for example a neutron ) effective 
masses.

To allow transitions between different flavours of quarks for decays like

B +
=bu  

W +

→
 

 τ++ντ     (40)

                                                                        τ+

             b
      B+

              u                                   W+                                ντ

where the notations are:
b – for the bottom-quark , u – for the up-quark,
W+ for the combination of W1

 + i W2  first two weak SU(2) bosons,
τ+ - for the tau-antimuon ,   ντ   - for the tau-neutrino,
B+  - for the b – meson in which a bottom-antiquark and an up-quark are confined by 
the strong interaction,
we add to the SU(3)xSU(2)xU(1) theory Lagrangian density, weak interaction terms 
like
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gψbα
γ
μ( I−γ

5

2 )Wμ
+
ψ
uα  ,  with b ,u  flavours , α  colour index and 

γ
5
=i γ0

γ
1
γ

2
γ

3  or equivalently we add −i gψbα
γμ( I−γ

5

2 )Wμ
+
ψ
uα  to the 

euclidean Lagrangian density.
Obviously in the lattice simulation we have
Wμ

+
=(2 i /(ag)) tr (Uμ−I)(T

1
+ i T 2

)  where 2T 1  and 2T 2  correspond to the  
σ1  respective σ2  Pauli matrices  , from the generators of SU(2) and g is the weak 

coupling constant.
Since it is a weak coupling we can have a perturbative approach and for the decay 
transition (40) we have to compute expressions for an operator

O(ψ ,ψ ,U)=∫(ψi
τ
(x1)ψ j

ν
(x2)(−i g)ψ

bα
(x )γμ( I−γ

5

2 )Wμ
+
(x )

ψ
uα
(x )ψk

bα
(y1)ψl

uα
(y2))d

4 x
and with x s=(T , x⃗ s)  , y s=(0 , y⃗s)  , s=1, 2  we take for i , j ,k ,l=0 ,3 :

Alat
i j k l

( x⃗1 , x⃗ 2 , y⃗1 , y⃗2)=∫D [U] ⟨O ⟩F [U]exp(−SG[U])|detDW [U]|  (41)
On the other hand, in the electroweak interaction theory, inter-flavour transitions can 
be allowed by considering mixed down-type weak interaction partners (d’ , s’ , b’) to 
the (u , c , t) up-type quarks given by unitary Cabibo-Kobayashi-Maskawa matrix   

VCKM=(
Vud V us Vub

V cd V cs V cb

V td V ts V tb
)    with   (

d ′
s ′
b ′)=V CKM(

d
s
b)

|V ij|
2  is the transition probability from a flavour j  quark to a flavour i  quark 

so that the significant changed part of the electroweak Lagrangian density will be

ℒW±=g (u   c   t )γμ( I−γ
5

2 )VCKM(
d
s
b)Wμ

−
+g (d   s   b)VCKM

+
γ
μ( I−γ

5

2 )(
u
c
t )Wμ

+

(The 
I−γ

5

2
 appearing since only the left-handed fields participate in the weak 

interaction.
 An equivalent to Alat

ijkl  in the modified electroweak theory according to ℒW ± is

AW
ijkl
(x⃗ 1, x⃗2 , y⃗1 , y⃗ 2)=V ub

∗
∫ ⟨0|ψ̂i

τ
(x1) ψ̂ j

ν
(x2) ψ̂

ν
(y) γμ( I−γ

5

2 )ψ̂τ
(y)

Ŵμ
− (y)Ŵλ

+ (y ′) ψ̂bα(y ′) γλ( I−γ
5

2 ) ψ̂uα(y ′)ψ̂k
bα (y1) ψ̂l

uα(y2)|0⟩d4 yd4 y ′=
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=CV ub
∗ ∫ ((Dν

(x2−y) γ
μ
(I−γ

5
)Dτ

(y−x1)) jiDμλ
bos

(y−y ′)

(Db
(y1−y ′) γ

λ
(I−γ

5
)Du

(y ′−y 2))kl )d
4 yd4 y ′

 (42)

where C is a constant.
Corresponding to the Aijkl  we have the momentum dependent amplitude: 
B(p ,q ,s ,h)=∫ (exp(ipx2)u j

ν
(p)(E p/mν)

1/2 exp(iqx 1)v i
τ
(q)(Eq /mτ)

1 /2

exp(−isy1)vk
b (s)(Es/mb)

1/2 exp(−ihy2)ul
u
(h)(Eh/mu)

1 /2

Aijkl
( x⃗1 , x⃗2 , y⃗ 1 , y⃗2))d

3 x⃗1d
3 x⃗ 2d

3 y⃗1d
3 y⃗2

After some calculations, considering (42) and (13) , (14) type relations we can derive:

BW (p ,q ,s ,h)=CV ub
∗ (
mνmτmbmu

EpEqEsEh
)

1/2

(vb
(s) γλ

(I−γ
5
)uu

(h))

(uν
(p) γμ

(I−γ
5
)v τ

(q))(−η
μ λ
+
(p+q)λ(p+q)μ

M2 ) 1
(p+q)2−M2

where C is a constant which can depend on the interaction time interval T and the 
interaction space volume, since we consider momentum conservation and incoming 
and outgoing momenta on mass shell , having therefore

p+q=s+h  , δ4
(p+q−s−h)=

VT
(2π)4 and M is the W-boson mass.

Notice that for a given quark or lepton and given four-momentum p on mass shell,
the u(p)  , v (p)  Dirac spinors are defined by their normalization values in the 

rest frame , where p⃗=0  and  spin index variable 1 ,2 is supposed to be 
understood.
Therefore we have a constant C’ depending on V, T, g and discretization and 
normalization of Grassmann variables of the lattice simulation, such that
BW(p ,q ,s ,h)=C ′Blat(p ,q ,s ,h)  where we take p+q=s+h  and 

the four-momenta p ,q ,s ,h  are on mass shell. 
(43)

From (43) we can extract in some momentum range a value CVub
∗  where C

is a lattice simulation dependent constant and similarly CVud
∗  and CVus

∗  with 
the same constant.

 Requiring that V CKM  is an unitary matrix and so |V ub|
2
+|V ud|

2
+|V us|

2
=1  ,

 we obtain the values of V ub  , V us  , V ud  and in the same way the whole V CKM

to multiplication with global phase factors which can be absorbed into the quark field
functions.

As we know, SU(N) requires a basis of N2 – 1 hermitean traceless matrices as 
generators, and so a matrix U∈SU(N)  requires N2

−1  real parameters. Adding 
one real parameter to determine the determinant of absolute value 1, we obtain that an
unitary CKM NxN matrix requires N2 real parameters. 2 N – 1 of these parameters 
are not physically significant because one  phase factor can be  absorbed into each 
quark field (both of the mass eigenstates and the weak primed eigenstates of the N 
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down-type flavours) but the matrix is independent of a common phase. Hence the 
total number of free variables independent  of the choice of the phases of basis 
vectors is N2 - (2 N – 1) = (N – 1)2 .
Splitting suitable chosen generators of SU(N), which are complex hermitian traceless 
matrices into real and pure imaginary generators we show without difficulties that an 
unitary matrix V  can be expressed as V=exp(A+i B)  where A  is a real 
antisymmetric matrix having all diagonal elements equal to zero and B is a real 
symmetric matrix. Therefore from the (N – 1)2  free real variables which remained to 
define the CKM matrix, N (N – 1) / 2 are rotation angles (the A matrix above) which 
are the so called quark mixing angles .
The remaining (N – 1) (N – 2) /2 are imaginary phase variables  which cause CP- 
violation as we will show.
For N = 2 we have no complex phase factors an one quark mixing angle. For N = 3 
there are three mixing angles and one CP- violating complex phase. For CP- violation
to occur we must have at least three families of quarks.
To create an imbalance of matter and antimatter, for the Universe to exist, from an 
initial condition of balance, a necessary condition is the existence of CP- violation, or
equivalent, considering the CPT theorem, the existence of time reversal T- violation, 
so at least three families of quarks exist in nature.
The reason why a complex phase factor in (Vi j)i , j causes CP- violation can be seen as 
follows:
Consider any given particles (or sets of particles) a  and b  and their antiparticles
a  and b  . Now consider the processes a→b  and the corresponding antiparticle 

processes a→b  under CP transformation,denote their amplitudes M respectively
M .  Before CP- violation, these terms must be the same complex number M=M.
 Let M=|M|exp(i θ)  . If a phase factor is introduced (from the CKM matrix),
 denote it exp(iφ).
M  contains the conjugate matrix to M  , so it picks up a phase factor exp (−iφ).
Now we have :M=|M|exp( iθ)exp(iφ)  , M=|M|exp(iθ)exp (−iφ).

Physically measurable reaction rates are proportional to |M|2=|M|2 .

However, consider that are two different routes a
1
→
 
b  and a

2
→
 
b , or equivalently

two unrelated intermediate states a→1→b  and a→2→b  and we have: 
M=|M1|exp(iθ1)exp(iφ1)+|M2|exp(iθ2)exp(iφ2)

M=|M1|exp (iθ1)exp (−iφ1)+|M2|exp(iθ2)exp(−iφ2)  and so 

|M|2−|M|2=−4|M1||M2|sin(θ1−θ2)sin(φ1−φ2).
Thus we see that a complex phase factor gives rise to processes that proceed at 
different rates for particles and antiparticles and CP is violated.

There can be considered also a lepton mixing matrix or neutrino mixing matrix, 
which contains information on the mismatch of quantum states of the three flavours 
of neutrinos νe  , ντ  , νμ  in the charged current weak interaction with the lepton 
partners e , τ , μ . That matrix is an unitary matrix, called the 
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Pontecorvo-Maki-Nakagawa-Sakata matrix, PMNS.
 

       Random walk, mean free path and critical mass of a fissile material

A random walk is a random process that describes a path that consists of a succession
of random steps on some mathematical space.
A lattice random walk is a random walk on a regular lattice where at each step the 
location jumps to another site according to some probability distribution.
In a simple symmetric random walk the location can jump only to neighbouring sites 
of the lattice forming a lattice path and the probabilities of the location jumping to 
each one of its immediate neighbours are the same.
Consider a tridimensional lattice Λ={(nia)i=1 ,3|ni∈ℤ  , i=1 ,3} .
To define the random walk we consider the product probability space of succession of
steps:

S=(∏
i∈ℕ∗

{−1, 1}3  , P̂=
i∈ℕ∗

(
1

3

P))  with P({−1})=P ({1})=1
2

 and the independent 

random variables Z iα :S→{−a ,a} with Z iα ((x j
β
) j∈ℕ∗  , β=1 ,3)=x i

αa .

 We have E (Z iα)=∫Z iαd P̂=0  and we take Z⃗ i=(Z iα)α=1 ,3  , S⃗n=∑
i=1

n

Z⃗ i  .

In order for Snα  to be kαa it is necessary and sufficient that the number of +1 
steps in α  direction excceds the number of −1  steps taken in α  direction of the n 
steps defined tridimensional walk. Therefore, for the α  direction, +1  step must  

 be taken (n+kα)/2  times from a total of n  steps . The total number of n steps 
considered tridimensional walks is 23n. Therefore we can derive

P̂ ∘ S⃗n
−1
({(k 1a ,k 2a ,k3a)})=∏

α=1

3

(( n
(n+k α)/2)

1

2n)  which implies n≡kα   (mod 2)

for the probability not be equal to 0.

Using the Stirling formula : lim
n→∞

√2πn(n/e)n

n!
=1   after some calculus we obtain 

ln (( n
(n+k α)/2)

1

2n )≈
kα

2

2n
−

1
2

lnn+ ln√ 2
π     for large n.

Therefore the asymptotic probability distribution for the defined tridimensional 
random walk as the number of steps increases when the step length is constant for 
each step is a function of the radius from the origin ρ=ρ(r )  having 

P̂ ∘ S⃗n
−1
(A)≃∫

A
ρ(r )d r dΩ=∫

A
( 2
nπ )

3 /2

r 2 exp( r
2

2n )d r dΩ

dΩ  - solid angle  , ρ(r )=( 2
n π)

3 /2

r 2 exp( r
2

2n )
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Also we can compute :

E (|S2nα|)=∫|S2nα|d P̂=a∑
k=0

n

2k ( 2n
n+k )

1

22n=

=
a

22n∑
k=0

n

((n+k )( 2n
n+k )−(n−k )(

2n
n−k ))=

=
a

22n (n(2nn )+∑
k=0

2n

k (2nk )−2∑
k=0

n

k (2nk ))
We have:

k (2nk )=2n(2n−1
k−1 )

∑
k=1

n

(2n−1
k−1 )=∑

k=0

n−1

(2n−1
k )=∑

k=n

2n−1

(2n−1
k )= ∑

k=n+1

2n

(2n−1
k−1 )

and therefore we obtain

E (|S2nα|)=
a

22nn(2nn )  and using the Stirling formula it follows 

E (|S2nα|)≃
a

√2π
√2n  for large n. The net distance travelled in a lattice simple 

random walk is proportional to the square root of the number of steps.

The mean free path is the average distance over which a moving particle (such as an 
atom, molecule , photon or neutron), travels before substantially changing its 
direction or energy, typically as a result of one or more successive collisions with 
other particles.
Imagine a beam o particles being shot through a target and consider an infinitesimally
thin slab of the target. The area of the slab is L2 (L is the width and height of the slab) 
and its volume is L2 dx (dx is the thickness of the infinitesimal slab). The 
concentration of the atoms in the slab is n. The typical number of stopping atoms in 
the slab is then n L2 dx . If l is the mean free path, then the probability of stopping 
within the distance l must be equal to 1: ℘(stopping within l)=1 .
The probability that a beam particle will be stopped in the slab of thickness dx is the 
net area of the stopping atoms ( which is the scattering cross section times the number
of stopping atoms in the slab ) divided by the total area of the slab:

℘(stopping within dx )=
σnL2d x

L2 =nσdx .

Hence the mean free path is l=(nσ)−1  where σ  is the scattering cross section. 

Consider now a fissile material of atoms in which fission events are produced by an 
existent neutron population. A neutron can scatter on atoms of the material, changing 
its momentum, or produce a fission event on an atom releasing other neutrons which 
can cause further fission events, leading to a chain reaction. If the effective neutron 
multiplication factor k, the average number of neutrons released per fission event that
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go on to cause another fission event rather than being absorbed or leaving the 
material, is equal to 1 (k = 1) the mass is critical and the chain reaction is self 
sustaining.
Most interactions of neutrons with the material are scattering events, so that a given 
neutron obeys a random walk until it either escapes from the medium or causes a 
fission reaction. If k = 1 we can consider that we have the same neutron travelling a 
random walk of ns + nf steps experiencing ns scattering events and nf fission events 
and during the fission event steps the neutron travels a net distance corresponding to 
a mean scattering free path l, while the total net distance travelled during both fission 
event steps and scattering event steps together will be Rc , the radius of a spherical 
critical mass.
Since the number of steps squared is proportional to the distance travelled in a 

random walk we have: 
Rc

l
=√s  with s=1+

ns

nf

 .  

 Also, if σ  is the neutrons on atoms scattering process effective cross section 
and n  is the nuclear number density of atoms we have l=(σn)−1  and so 

Rc≃
√s
σn

 . If M  is the critical mass, ρ  is the density of the material and 

m  is the mass of one atom of the material, we will have: 

M=ρ
4
3
πRc

3  , n=
3

4π
M
m

1

Rc
3  , Rc≃

√s
σ
m
M
Rc

3 3
4 π

   and generally 

1≃
f σ
m√s

ρ
2 /3M1/3  where f  is a factor which takes into account geometrical and 

other effects. The critical mass depends inversely on the square of density.

In a theory with neutrons and atomic kernels as confined quarks, we should be able to
compute in lattice gauge simulation, according to (23) relations the differential cross 
section for scattering of neutrons on atomic kernels dσ  and the differential cross 

 section for the fission event process dσf  taking |v⃗1−v⃗ 2|=|⃗v|=v  as the absolute 
value of the neutrons velocity by its thermodynamic average 

v=√
2⟨ε⟩
m0

=√
3kbT
m0

 with k b  Boltzmann constant ,

T  temperature, m0  neutron mass. 
Then we can determine σ  =∫dσ  , σf=∫dσf  , s=1+ σ

σf
 . 
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