
                                Spin statistics theorem

Consider two completely identical systems a and b coupled through an interaction 
energy which is symmetric in the two systems.
If we first consider the two systems together, without including the interaction 
energy, the systems will have stationary energy eigenstates n, m as eigenfunctions 

Φn
a=Φn

a(qa)  , Φm
a=Φm

b (qb)  and the total energy of the system is 

Ĥ= Ĥa⊗I+I⊗ Ĥb  with eigenstates (Φn
a⊗Φm

b )n ,m  ; 

ĤaΦn
a=H n

aΦn
a  , Ĥm

b Φm
b=Hm

b Φm
b  ; (qa)  , (qb)  spatial coordinates for a respective b

   

system. The systems being identical we will have
H nm=H n

a+H m
b=Hm

a +H n
b=H mn .

The udistorted by interaction total system is degenerated  and each eigenstate is a 
doublet (Φn

a⊗Φm
b  , Φm

a⊗Φn
b)  with the exception of that with m=n . 

In every system distorted by interaction the degeneracy is broken: it corresponds to 
secular beats in which the energy of the two particle system pulses back and forth and 
the energy of the distorted system is given in first approximation by the time average 
of the interaction energy over the undistorted motion which will contain other terms 
that correspond to the transitions in which the systems a and b exchange places.
 Since (Φn

a⊗Φm
b )n ,m  is still a basis for the distorted total system Hilbert space, the   

distorted by interaction Hamiltonian will be:
Ĥ=H1(nm,nm)|Φn

a ⟩⊗|Φm
b ⟩ ⟨Φn

a|⊗⟨Φm
b|+H1(mn,mn)|Φm

a ⟩⊗|Φn
b ⟩ ⟨Φm

a|⊗⟨Φn
b|+

H1(nm,mn)|Φn
a ⟩⊗|Φm

b ⟩ ⟨Φm
a|⊗⟨Φm

a|⊗⟨Φn
b|+H1(mn,nm)|Φm

a ⟩⊗|Φn
b ⟩ ⟨Φn

a|⊗⟨Φn
a|⊗⟨Φm

b| .
   

because the interaction energy is symmetric in the two systems, we have:
H1(nm,nm)=H1(mn,mn)   ,  H 1(nm,mn)=H1(mn,nm)       (1) 
 Considering the (1) relations, diagonalizing Ĥ  we obtain:   

Ĥ=(H1(nm,nm)+H 1(nm,mn))|Φ+mn ⟩ ⟨Φ+mn|+
+(H1(nm,nm)−H1(nm, mn))|Φ−mn ⟩ ⟨Φ−mn|     where 

|Φ+m n ⟩=
1

√2
(|Φn

a ⟩⊗|Φm
b ⟩+|Φm

a ⟩⊗|Φn
b ⟩)

|Φ−mn ⟩=
1

√2
(|Φn

a ⟩⊗|Φm
b ⟩−|Φm

a ⟩⊗|Φn
b ⟩)

  

 The eigenstates of Ĥ  are now (|Φ+mn ⟩)m,n  , (|Φ−mn ⟩)m,n  and a perturbation  

 inducing transitions between different eigenstates of Ĥ  can be written as 
Ĥ ′=F exp (−iω t)+F + exp(iω t)   where F  and its adjoint operator F +

 are in general functions of ( p̂a , q̂a , p̂b , q̂b)  which do not change under the 

  

interchange of the two systems and t is the time variable.
Then (according to Chap. Fermi’s golden rule) the transition probability rate from 
 a state |i ⟩=|Φ+mn ⟩  to a state |f ⟩=|Φ−m′n′ ⟩  is proportional to  
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|⟨ f |F|i⟩|2=|∫ 1
2
(Φm

a (qa)Φn
b(qb)+Φn

a(qa)Φm
b (qb))F (Φn′

a+ (qa)Φm′
b+ (qb)−

−Φm′
a+ (qa)Φn′

b+ (qb))d qa d qb|2
   

The expression under the integral on the right side of the above relation changes sign 
when a and b are interchanged and so the integral vanishes and we conclude that 
 transitions between |Φ+m n ⟩  states and |Φ−m′n′ ⟩  similar between  |Φ−mn ⟩  states and 
  |Φ+m′n′ ⟩  states cannot occur. 

  

Thus the level spectrum of the combined, distorted by interaction system can be 
divided into two spectra which can never combine with one other:
 the ( + ):|Φm

a ⟩⊗|Φn
b ⟩+|Φn

a ⟩⊗|Φm
b ⟩   symmetric wave functions  and 

 the ( −) :|Φm
a ⟩⊗|Φn

b ⟩−|Φn
a ⟩⊗|Φm

b ⟩  antisymmetric wave functions . 
 

The goal of the spin statistics theorem is to establish that only one of the two spectra
(+) or (-) is allowed, namely (+) if the individual systems are bosonic (integer spin 
particles) and (-) if the individual systems are fermionic (half integer spin particles) 
and so bosons will obey to the Bose-Einstein statistics and fermions will obey to the 
Fermi-Dirac statistics ( see Chap. Quantum statistical ensemble ).

Consider now a quantum field particles system described by a particle field operator 
 function Φ̂=Φ̂(x)  , x=(t , x⃗)∈ℝ4  acting on a Hilbert space of state vectors  
 containing an unique vacuum state |0 ⟩  with Φ=(Φλ)λ
Φ̂λ(x)=∑

s
∫ d3 k⃗ (uλ(k , s)b̂(k , s)exp(−i k x)+vλ(k , s)d̂ + (k , s)exp (ik x))     (2)

   

 where k=(k 0 , k⃗)  , k0=√ k⃗2+m2  and b̂ + (k , s)  , d̂ + (k , s)  / b̂(k , s)  , d̂(k , s)
 are creation/anihilation like operators acting on state vectors such that 
b̂|0 ⟩=d̂|0 ⟩=0  and b̂+ (k , s)|0 ⟩  is the spin index s  and k  - four-momentum state  
 vector for the particle and d̂ + (k , s)|0 ⟩  being the same for the antiparticle. 

  

We have an unitary representation of the inhomogeneous Lorentz group of Poincare 
transformations x→Λ x+a   with a∈ℝ4  , Λ∈SO + (3 ,1)  , restricted Lorentz  
transformation such that:

U=U (a ,Λ)  , Φ̂λ(Λ x+a)=U (a,Λ)Φ̂λ(x)U
+ (a,Λ)

U (a1,Λ1)U (a2 ,Λ2)=U (a1+Λ1 a2 ,Λ1Λ2)  , U (a , I)=exp (i p̂ a)  , U|0 ⟩=|0 ⟩  where 
p̂  is the four-momentum operator acting on state vectors 

  

 (we have indeed  Φ̂λ
+ (x+a)=∫ d3 k⃗ uλ

∗ (k , s)exp (i k a)b̂ + (k , s)exp(i k x)|0 ⟩=
=∫d3 k⃗ exp (i p̂ a) b̂ + (k , s)exp (i k x)|0 ⟩=U (a , I )Φ̂λ

+ (x)U + (a, I)|0 ⟩  ).
  

Φ  is transforming under some finite dimensional irreducible representation of the 
 restricted Lorentz group  : x→Λ x=x′  as Φ̂λ(x)→Φ̂′λ(x′)=Sλμ(Λ)Φ̂μ( x) .

  

 We also consider an invariant space of test functions, f=( fμ (x))μ  such that we   
we have the transformation
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f μ(x)→f Λ
μ (x′)=f λ(x)Sλμ(Λ

−1)  so that the test field operator defined as 

Φ̂( f )=∫d 4 x f μ( x)Φ̂μ(x)  is invariant under x→Λ x=x′ .
  

Suppose we want to interchange two space-like separated particles generated by the 
 field at the points x  , y  in space-time and test the system with test functions 
f λ(x)  and gμ( y) .  We test therefore the system at the neighbourhoods of two 

 

space-like separated points 1 and 2 generated by the field in points x respective y 
using arbitrary test functions f (x) , g (y). For interchanging the particles we must 
have a trajectory in space-time, expressing the interchanging process, from x to y. 
Since according to relativity no process from a point A to apoint B exist if B is not in 
the future light-cone of A (or A is in the past light-cone of B) we must therefore 
perform a measuring process of the vacuum at point y applying first to the vacuum 
state the corresponding test field operator and then we must find a way to conduct the 
process from y to the space-like separated x. Because x and y are space-like separated 
and we want the time to run forward when we arrive at x we must conduct the process 
from y to a point z which is in the past light-cone of y and in the past light-cone of x. 
Then we conduct the process from z to x, x being in the future light-cone of z. 
Because from y to z we move backwards  in time, for having a field effect of positive 
energy we must consider the term in exp(iky) in the field expression (2) at y and since 
b̂|0 ⟩=d̂|0 ⟩=0  we must take at y  the effect of gμ∗ ( y)Φ̂μ+ ( y)  as correspondng   
 test field operator on the vacuum state |0 ⟩   .  Φ+   is the antiparticle field, which 
according to interpretation is the particle moving backwards in time, that is the field 
creates, moving from the future proximity of y ( where the particle 2 is supposed to 
be ) a particle with positive energy. Now we can conduct further the measuring 
process by applying the field operator f λ(x)Φ̂λ(x)  on gμ∗ ( y)Φ̂μ

+ ( y)|0 ⟩  , that is the 
field anihilates moving from the past proximity of x (where the particle 1 is supposed 
to disappear ) a particle with positive energy.
The required expectation value of the measuring process is therefore
⟨0|f λ(x)Φ̂λ(x)Φ̂μ

+ ( y)gμ∗ ( y)|0⟩ . 
If we switch now particles and test first at x and then at y we move from x to a point 
z’ in the future light-cone of x and in the future light cone of  y  and from z’ , which is 
in the past light-cone of y , getting the expectation value
⟨0|gμ∗ ( y)Φ̂μ

+ ( y)Φ̂λ(x) f
λ(x)|0⟩ . 

 For ξ= y−x  we have ⟨0|Φ̂μ
+ ( y)Φ̂λ(x)|0⟩=

=⟨0|U ( y , I )Φ̂μ
+ (0)U + ( y , I)U ( y , I)Φ̂λ(x− y)U + ( y , I )|0⟩=

=⟨0|Φ̂μ
+ (0)Φ̂λ(−ξ)|0⟩=Hμλ(ξ)=⟨0|Φ̂μ

+ (0)exp (−i p̂ξ)Φ̂λ(0)|0⟩ .

  

 Let Kμλ(p)=∫d4ξexp (i pξ)⟨0|Φ̂μ+ (0)exp(−i p̂ξ)Φ̂λ(0)|0⟩ .  
We can always take a complete orthonormate system of four-momentum state vectors 
(|ψ ⟩)ψ  with p̂|ψ ⟩=pψ|ψ ⟩  , ∑

ψ
|ψ ⟩ ⟨ψ|=I  and pψ0≥0  , pψ

2≥0  for any permissible 

 state vector |ψ ⟩  and we will have: 
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Kμλ(p)=∑
ψ
∫d4ξ exp(i p ξ)⟨0|Φ̂μ+ (0)exp(−i p̂ξ)|ψ⟩⟨ψ|Φ̂λ(0)|0⟩=

=∑
ψ
(2π)4δ4(p−pψ)⟨ψ|Φ̂λ(0)|0⟩ ⟨0|Φ̂μ

+ (0)|ψ⟩
  

Hμλ(ξ)=∫ 1
(2π)4

exp (−i pξ)Kμλ(p)d
4 p=

=∑
ψ

exp(−i pψξ)⟨ψ|Φ̂λ(0)|0⟩ ⟨0|Φ̂μ
+ (0)|ψ⟩         (3) .

 

 For Φ̂λ(0)|0 ⟩=∑
ψ

cψ|ψ ⟩  , ⟨0|Φ̂μ
+ (0)=∑

ψ
dψ ⟨ψ| since (|ψ ⟩)ψ is a complete 

orthonormal system we have 
∑
ψ
|cψ||dψ|≤(⟨0|Φ̂μ+ (0)Φ̂μ(0)|0⟩⟨0|Φ̂λ

+ Φ̂λ(0)|0⟩)<∞  and so the series on the right 

side of (3) is absolute convergent and uniform absolute convergent with respect to 
z∈{ξ−iη∈ℂ4|η0≥0} ( z  on the place of ξ  variable in (3) ) .  
 Hence Hμλ(ξ)= lim

η→0  , η0≥0
Hμλ(ξ−iη)   and for α=(α0 ,α1 ,α2 ,α3)∈ℕ

4

α!=α0!α1!α2!α3!  we have if η0>0  that pψη≥0  and so: 

∑
α
∑
ψ

|(pψ)α|
α! |exp (−i pψ(ξ−iη))||ζα||⟨ψ|Φ̂λ(0)|0⟩⟨0|Φ̂μ+ (0)|ψ⟩|≤

≤exp(4 pψ0‖ζ‖)∑ψ |cψ||dψ|  for any ζ∈ℂ4 .

  

Therfore we have an analytic function on 
D={ξ−iη∈ℂ4|η0>0}∩{z∈ℂ4|z2≠0}with z=(z0 , z1, z2 , z3), z2=z0

2− z1
2−z2

2−z3
2  ,

Hμλ(z)=∑
ψ

exp(−i pψ z)cψdψ  and Hμλ(ξ)  is the boundary value of an analytic  
     

function on D.
 We have for any Λ∈SO + (3 ,1)  that Hμλ(Λ ξ)=⟨0|Φ̂μ+ (Λ 0)Φ̂λ(−Λξ)|0⟩=
=⟨0|U Φ̂μ

+ (0)U + U Φ̂λ(−ξ)U
+|0⟩=Hμλ(ξ)  where U=U (0 ,Λ) .

 

 Hence for any Λ∈SO + (3,1)  , z∈D  we have Hμλ(Λ z)=Hμλ(z)(because if 
z∈D  then Λ z∈D  . 

   

 Let (J k , K k)k=1 ,3  the generators of  SO + (3,1)  (see Chap. Representations of the  
restricted Lorentz group). It is easy to see that for any 
χ∈ℂ  , z∈D  , if Λ=exp (χ K 3)  satisfies Λ z∈D  then exists a continuous path 
γ :[0,1]→ℂ  with γ(0)=0  , γ(1)=χ  such that for Λ t=exp (γ(t)K3)  we have 
Λ t z∈D  for any t∈[0 ,1]  and therefore, by analytic continuation we obtain 

Hμλ(Λ z)=Hμλ(z)  for Λ=exp (χ K 3)  , z∈D  , Λ z∈D  . 

 

 Consider Q={exp(θ1 J 1+θ2 J 2+θ3 J 3)|θi∈ℂ  , i=1 ,3}=S .  
 Obviously Q z∈D  for any z∈D  and by analytic continuation Hμ λ(Q z)=Hμ λ( z) .    
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 Thus for given z=(z0 , z1 , z2 , z3)∈D  we find Q∈S  with Q z=z′=(z′0 , 0 ,0 , z′3)
z′2=z2  , z′∈D  and we can choose χ∈ℂ  such that for Λ=exp(χ K3)  we have 

Λ z′=(√z2 ,0 ,0 ,0)where the square root√z2 is taken with positive imaginary part.

   

 We will have Hμλ(Λ z′)=Hμλ(z′)=Hμλ(Q z)=Hμλ(z)  and so 

Hμλ(z)=Hμλ(√z2 ,0 ,0 ,0)  and since we can verify that {z2|z∈D}⊃ℂ∖ℝ +  and so  

Hμλ  can be analytically continuated on B={ζ∈ℂ4|ζ2∈ℂ∖ℝ + }.

  

 Since ⟨0|Φ̂μ
+ ( y)Φ̂λ(x)|0⟩  must be Lorentz invariant it follows that for any 

Λ∈SO + (3,1)  , U=U (0 ,Λ)  we have Hμ λ(Λ ξ)=Sμμ ′
∗ (Λ)Sλ λ′(Λ)Hμ′λ′(ξ)

 where S∗  is the complex conjugate of  S .

 (4) 

According to Chap. Representations of the restricted Lorentz group (final) we have 
that S is an irreducible (j1 , j2) representation so that

j1 , j2∈
1
2
ℕ  , Λ=exp((−i θ⃗−χ⃗)1

2
(i J⃗−K⃗ ))exp ((−iθ+χ⃗)1

2
(i J⃗+ K⃗ ))

S(Λ)=exp ((−i θ⃗−χ⃗)M⃗ + )exp((−i θ⃗+ χ⃗) M⃗ −)  , M+3=
1
2

H +  , M−3=
1
2

H−

H +  having the spectrum (−2 j1,−2 j1+2 , ... ,2 j1)  and 
H−  having the spectrum (−2 j2 ,−2 j2+2 , ... ,2 j2) .

  

Because for anyΛ=exp ((−iθ−χ)1
2
(i J 3−K3))exp((−iθ+χ)1

2
(i J 3+K3));θ ,χ∈ℂ

we have (Λ z)2=z2 ,by analytic continuation on θ ,χ  variables, we can take in (4) 
Λ=exp(−iπ(i J 3−K 3))  , S(Λ)=exp(−iπH + )  , S∗ (Λ)=exp(iπH−

∗ ) .

  

i J 3−K 3  has eigenvalues ±1  and is diagonalizable and so Λ=− I .  H +  and H −
∗

 are also diagonalizable (see Chap. Repres. of the restricted Lorentz group (final)) 
 and so exp(−iπH +)=exp(2 j1 iπ) I  , exp(iπH −

∗ )=exp(2 j2 iπ) I .

  

 Hence Hμλ(−ξ)=exp (2( j1+ j2)iπ)Hμ λ(ξ)  for any space-like ξ  because for 

ξ2<0  we have ξ∈B  . Thus for bosons j1+ j2∈ℕ  and we have Hμλ(−ξ)=Hμ λ(ξ)

 and for fermions j1+ j2∈
1
2
+ℕ  and we have Hμλ(−ξ)=−Hμλ(ξ)  . 

 

Testing the interchanging of particles in space-like separated points x , y with
f λ′(x′)→δ4(x′−x)δλ λ′  , gμ′( y′)→δ4 ( y′− y)δμμ′  with x′  , y′  variable and  →

 convergence in distributions space, since we have already proven the splitting of  
  

the level spectrum in (+) and (-) spectra with no transitions between them, we will 
have for the expectation values, considering the commuting/anticommuting for the 
individual wave functions of the respective spectra (+)/(-),  one of the relations:
⟨0|Φ̂μ

+ ( y)Φ̂λ(x)|0⟩=±⟨0|Φ̂λ(x)Φ̂μ
+ ( y)|0⟩ . 

Proving the spin statistics theorem is therefore reduced to verify that “wrong” 
commutation relations cannot take place.
 Taking Fμλ(−ξ)=⟨0|Φ̂μ(x)Φ̂λ

+ ( y)|0⟩=⟨0|Φ̂μ(0)Φ̂λ
+ (ξ)|0⟩  the 'wrong'    

commutation relation is for both bosonic and fermionic case
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Fλμ(ξ)+Hμ λ(ξ)=0  for ξ2<0       (5) 
 ( because Hμλ(−ξ)=(−1)2 ( j1+ j 2)Hμλ(ξ)  for a ( j1 , j2)  representation if ξ2<0.  
 Let for f=f (x)  , f̄=f (−x)  and we will have:  

‖Φ̂( f )|0 ⟩‖2=∫ f μ∗ ( y)⟨0|Φ̂μ
+ ( y)Φ̂λ(x)|0⟩ f

λ(x)d4 x d4 y=
=∫ f μ∗ ( y)Hμλ( y−x) f λ(x)d4 x d4 y

  

‖Φ̂+ (f̄ )|0 ⟩‖=∫ f μ(− y)⟨0|Φ̂μ( y)Φ̂λ
+ (x)|0⟩ f λ∗ (−x)d 4 x d 4 y=

=∫ f μ( y)⟨0|Φ̂μ(x)Φ̂λ
+ ( y)|0⟩ f λ∗ (x)=∫ f μ∗ ( y)Fλμ( y−x) f λ( x)d 4 x d 4 y

 

where for the last equality we have taken the complex conjugate of the integrand 
considering the fact that the left side is real , being a squared norm.
 Taking for y−x=ξ  , ξ2<0  : f λ(x′)=αλδ

4(x′−x)+βλ δ
4(x′− y)  with arbitrary 

αλ  , βλ  , from (5) follows now ‖Φ̂( f )|0 ⟩‖=‖Φ̂ + ( f̄ )|0 ⟩‖=0  and so, α ,β  being 
arbitrary we obtain Φ̂λ(x)|0 ⟩=Φ̂λ

+ (x)|0 ⟩=0  for any λ , x ,which leads, considering

  

(2) to the conclusion that Φ̂=0   and thus the 'wrong' commutation relations cannot 
take place or the field vanishes, which proves the spin statistics theorem.
 ( indeed, multiplying for example Φ̂λ

+ (x)|0 ⟩=0  with exp(−ik x)  for given k  and 

 integrating over x∈ℝ4  it follows ∑
s
δ(k0−√ k⃗2+m2)uλ

∗ (k , s) b̂+ (k , s)|0 ⟩=0   (6)
 

 so that applying to (6) b̂(k , s′)  , since b̂ ,b̂ +  are anihilation/creation like operators 
 and satisfy an commutation/anticommutation rule 
b̂(k , s) b̂+ (k′ , s′)±b̂ + (k′ , s′) b̂(k , s)=δ3( k⃗′−k⃗)δs s′

  

 we obtain uλ
∗ (k , s)=0  for any λ , k , s  with k 0=√ k⃗ 2+m2  )   
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