
                     Mott scatering. Scattering of a spin ½ particle 
                     on a spinless charged particle. Spin Hall effect

As before we take the speed of light in vacuum constant c = 1 , reduced Planck 
constant h = 1 , electric permittivity of vacuum ε = 1 (by suitable choosing of 
measuring units for time , length and electric charge).
Let p be the incoming four-momentum of the charged spin ½ particle with charge q1 
and mass m and k the incoming four-momentum of the spinless particle having 
charge q2 and mass μ . The mass μ is supposed to be much larger than the mass m and 
so we can consider the scattering in the mass center frame of the particles which in 
this case can be assimilated to the lab frame where the heavier particle is at rest.
Then according to Feynman rules (see Chap. Feynman amplitudes and lattice gauge 
theory) , the Feynman amplitude of the scattering process at q1 q2 first order is 

A=(2π)4 M δ4(p+k− p′−k′)  , 

M=−i q1 q2 u(p′) γμu(p) 1
(p−p′)2

(k+k ′)μ  , 
 

where p’ , k’ are the outgoing four-momenta of the fermion respective the spinless 
particle.
 In the center of mass frame we have p⃗+k⃗= p⃗′+k⃗ ′=0  and energy conservation 
 leads to E=p0+k 0=p′0+k′0  , ‖p⃗‖=‖k⃗‖=‖p⃗′‖=‖⃗k′‖=r  , 

r= 1
2 E

((E2−(m+μ)2)(E2−(μ−m)2))1 /2  with p0= p′0=√r2+m2  , k 0=k ′0=√r2+μ2 . 

 

According to Chap. Canonical quantization of a scalar field, decay rate and cross 
section, taking as in Chap. Feynman amplitudes and lattice gauge theory, for the 
electron field the normalization Ep/m instead of 2ω(p) in the cross section formula, 
we will have a differential cross section given by 

d σ  
dΩ

= 1
|v1−v2|

4 m2

4 k 0 p0

1
(2π)2

2(k 0+ p0)r
8(k 0+ p0)

2
|M|2  

 where in the mass center frame v1=
r
p0

  ,  v 2=−
r
k0

  and so  

dσ  
dΩ

=m2

E2

1
(4π)2

|M|2  . 

 

As we proved in Chap. Anomalous magnetic moment of the electron we have the 
Gordon decomposition 

u(p′)γμu(p)= 1
2m

u(p′)((p′+ p)μ+iσ μν(p′−p)ν)u(p)  where σ μν=1
2

i [ γμ , γν]  .  

Thus 

M=
−i q1 q2

2m
u(p′)((p′+ p)(k′+k)+i(p′−p)ν(k′+k)μσ  μν)u(p) 1

(p′− p)2
 . 
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In the mass center frame we have
(p′+ p)(k′+k )=(p′+p)(2k+ p−p′)=2 k (p+ p′)=4 k 0 p0+2 p⃗( p⃗+ p⃗′)=

=4 k 0 p0+4 r 2cos2(θ/2)  considering that p2= p′2=m2  and θ  is the scattering 

 deflection angle between p⃗  and p⃗′ : p⃗⋅⃗p′=r 2cos (θ)  , p⃗× p⃗′=e3 r2 sin(θ)   ,  
 where e j=(δi j)i=1 ,3  for j=1 ,3 .

 

i(p′−p)ν (k+k′)μσ
 μ ν=−((p′−p)ν(k+k′)0−(p′−p)0(k+k′)ν) γ

0γν−   

−i(( p⃗′− p⃗)×( k⃗+ k⃗′))⋅⃗Σ=
 

=2k 0(γ
0 p−p′ γ0)−4 k 0 p0−2 i( p⃗× p⃗′)⋅⃗Σ  , where as usual p=γν pν   ,   

Σ⃗=(σ⃗ 0
0 σ⃗)   ,  σ⃗  =(σi)i=1 ,3  are the Pauli matrices. 

(p′−p)2=2 m2−2(m2+r2)+2r 2cos (θ)=−4 r2 sin2(θ/2)  . 
 

 Because u(p′) p′=mu(p′)   ,  pu(p)=m u(p)  we obtain  

M=
i q1 q2

m
(2 m k0 u(p′) γ0u(p)+

+2r2 cos2(θ/2)u(p′)u(p)−ir 2sin (θ)u(p′)Σ3 u(p)) 1

4 r 2sin2(θ/2)
 . 

 

Consider now a flat conductor plate in which exists a flux of  electrons j⃗  and we  
 always measure the spin in direction n⃗  . We have two relevant cases: 
 1) n⃗=e3  , j⃗∥e1  and (e1 , e2)  is the plane of the conductor plate; 

 2) n⃗=e3  , the conductor plate plane is (e2 , e3)  and j⃗∥(0 ,cos(φ) ,sin (φ))  . 
 

In the 1) case we measure the spin normal to the motion of electrons and in 2) case 
we measure the spin along a direction contained in the plane in which the electrons 
are constrained to move.
 Let ε ,ε′∈{± } the spin polarizations of the incoming respective outgoing  
electron in the scattering process. The charge carriers (electrons with mass m and 
charege e = - |e|) have spin up or down states along e3 and can scatter on impurities 
from the cristal lattice grid, impurities that build a network of heavy charged 
diffusion centers in the way of motion for the electrons. A diffusion center is 
considered to have charge q and mass μ .  
For a scattering on a diffusion center,  the p⃗′  outgoing moment of the electron   
is constrained to be in the (e1 , e2) plane in the 1) case and in the (e2 , e3) plane in the 
2) case and we will have  p⃗× p⃗′∥e3  , p⃗∥e1  in the 1) case and p⃗× p⃗′∥e1  ,  
 p⃗=r(0 ,cos(φ) ,sin (φ))  in the 2) case. 

 
We take first the 1) case: 

 

                   /                /        

 

            /  /                                                    /    
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 Let B=B(χ , e1)=(
cosh χ −sinhχ 0 0
−sinhχ cosh χ 0 0

0 0 1 0
0 0 0 1

)=exp(−χ K1)   

 where p=(p0 ,−r , 0 , 0)=(pα)α  as a column vector with 

B (
m
0
0
0
)= p   ,  sinh χ= r

m
  ,  cosh χ=

p0

m

 

R=R(θ , e3)=(
1 0 0 0
0 cosθ −sin θ 0
0 sin θ cosθ 0
0 0 0 1

)=exp(θJ 3)  , 

  K l , J l  , l=1,3  Lorentz group generators. 

 

(see Chap. Representations of the rotations group and of the restricted Lorentz group) 
 Then for P=cosh( χ

2
) I+sinh ( χ

2
) γ1γ0  , 

Q=cos( θ
2
)I−isin ( θ

2
)Σ3=cos( θ

2
)I+sin (θ

2
)γ1γ2  , 

uε=(wε

0
0 )   ,  w +=(10)   ,  w−=(01)   we will have:  

u(p)=P uε  , u(p′)=Q P uε′.

 

To compute M for the ε , ε’ spin polarizations of the incoming respective outgoing 
electrons we have to compute

u(p′) γ0 u(p)=uε′
+ P+ Q + P uε=H  , 

u(p′)u(p)=uε′
+ P+ Q + γ0 P uε=G  , 

u(p′)Σ3u(p)=uε′
+ P + Q + γ0Σ3 Puε=K  . 

 

After some calculus we obtain :
H=δεε′(cos( θ

2
)cosh χ+iεsin (θ

2
))  , 

G=δεε′(cos(θ
2
)+iεsin ( θ

2
)cosh χ)  , 

K=δεε′(εcos (θ
2
)coshχ+i sin( θ

2
))  , 

M= i e q

2m r2 sin2(θ/2)
δεε′((k0 p0+r 2)cos(θ

2
)+iεm k 0 sin( θ

2
))  , 

dσ  
dΩ

=( α2 E )
2 1

r 4 sin4 (θ/2)
((k0 p0+r 2)2cos2( θ

2
)+m2 k 0

2sin2(θ
2
))  . 
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(k 0 p0+r2)2 cos2( θ
2
)+m2 k0

2 sin2( θ
2
)=k 0

2 p0
2−k 0

2r 2sin2(θ
2
)+2 r2 k 0 p0 cos2( θ

2
)+

+r4 cos2( θ
2
)  . 

For r
m

, m
μ ∈O(ϵ)  in a non-relativistic approach we have 

r2 k 0 p0

(k 0 p0)
2
= r

m
r
p0

m
k 0

∈O(ϵ3)  

 

and so disposing of the O (ε3) terms we obtain 

dσ  
dΩ

=(α k0 p0

2 E )
2

1

r4 sin4(θ/2)
(1−v2 sin2( θ

2
))=(dσ  

dΩ )
Rutherford

(1−v2 sin2( θ
2
))   with  

v= r
p0

 the incoming velocity and α= e q
4 π  . 

 

As we can see, in the 1) case spin flipping is not allowed during the scattering process 
and the amplitude depends on the incoming spin polarization but the cross section 
does not depend on spin polarizations (since ε2 = 1).
However if there is a spin-orbit coupling between the electron and the diffusion 
center we expect the differential cross section to be spin polarization dependent since 
the spin-orbit coupling involves the magnetic moment of the electron and so different 
spin polarization electrons will be scattered at different angles. This fact can arise by 
higher order scattering Feynman diagrams since the amplitudes have to be added with 
the first order diagrams amplitudes and so ε comes in in the squared absolute 
amplitude.

In the case 2) we take 
B=exp(−χ K2)   ,  R=exp(θ J 1)   ,  S=exp(φ J 1)  , 

P=cosh( χ
2
) I+sinh ( χ

2
) γ2 γ0  , Q=cos( θ

2
)I−isin ( θ

2
) Σ1=cos( θ

2
)I+sin (θ

2
)γ2γ3  , 

C=cos( φ
2
) I−isin ( φ

2
)Σ1=cos ( φ

2
) I+sin ( φ

2
) γ2 γ3

 having u(p)=C P uε  , u( p′)=Q C P uε′   and we have to compute  

 

u(p′) γ0 u(p)=uε′
+ P+ C + Q+ C P uε=uε′

+ P+ Q+ P uε=
~H   

u(p′)u(p)=uε′
+ P + C + Q + γ0 C P uε=uε′

+ P + Q + γ0 Puε=
~G   

u(p′)Σ1 u(p)=uε′
+ P + C + Q + γ0 Σ1C Puε=uε′

+ P+ Q + γ0 Σ1 P uε=
~K  . 

 

We obtain 
~H=δεε′cos( θ

2
)cosh χ+i δ−ε′εsin( θ

2
)   

~G=δεε′cos( θ
2
)+i δ−ε′εsin ( θ

2
)coshχ  

~K=δ−εε′cos( θ
2
)coshχ+i δε′εsin ( θ

2
)   
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M= i e q

2m r2 sin2( θ
2
)(δεε′(p0 k0 cos( θ

2
)+r 2cos ( θ

2
))+δ−ε′ε im k 0sin ( θ

2
))   

d σ  
dΩ

=( α2 E )
2 1

r4 sin4( θ
2
)(δεε′(k 0 p0+r2)2 cos2( θ

2
)+δ−ε′εm

2 k 0
2sin2( θ

2
))   

 Considering again the non-relativistic case r
m

, m
μ ∈O(ϵ)  and disposing of all the 

O(ϵ3)  smaller terms we will have: 

 

d σ  
dΩ

=(α k0 p0

2 E )
2

1

r 4 sin4( θ
2
) (δεε′cos2( θ

2
)+δ−ε′ε sin2( θ

2
)−δ−ε′ε v2 sin2( θ

2
))  .  

Averaging over incomong spin polarizations (unpolarized incoming current) and 
summing over outgoing spin polarizations (outgoing spin polarization is not 
measured) we obtain the same differential cross section formula as in the 1) case, as 
expected.
We notice that at larger scattering angles appears spin flipping during the scattering 
process in the case 2) when the spin orientation is in the motion plane. 

As in Chap. Perturbation theory for the two-component Dirac equation, since the 
electron scatters in a Coulomb field we will have a spin-orbit interaction with a 
Larmor interaction energy given by
ΔH L=−gS

α
2m2 r3 L⃗⋅⃗S    with L⃗=m x⃗×v⃗   the angular momentum, gS≈2  the 

 gyromagnetic ratio and α= e q
4 π

 , x⃗  the position vector of the electron pointing 

 from the diffusion center, v⃗= d x⃗
d t

 , r=‖x⃗‖ . 

 

We have also a Thomas precession with an instantaneous rotation of the electron ret 
frame angular velocity 

  ω⃗T=−
1
2

v⃗×a⃗  where a⃗=d v⃗
d t

 is the acceleration of the electron.  

In the classical Coulomb scattering we have an acceleration

a⃗= 1
m
α
r3 x⃗  and so ω⃗T=

1
2m2

α
r 3 L⃗   ,  d a⃗

d t
=− 3α

mr 5 ( x⃗⋅⃗v) x⃗+ 1
m
α
r3 v⃗  .   

For the Thomas precession contribution to the energy we have to consider the inertial 
forces acting on the spinning ball to which we approximate the electron in its rest 
frame, having a uniformly distributed mass with density ρ and spinning angular 
velocity ω.
In the electron rest frame R’ , which has an instantaneous rotation of angular velocity
ωT (see Chap. Perturbation theory for the two-component Dirac equation) we have 
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 the Euler inertial forces field with density −ρ
d ω⃗T

d s′
×x⃗′  ( (s′ , x⃗′)  time-space 

 coordinates in R′  ) d t
d s′

=γ≈1  , γ= 1

√1−v2
 , 

d ω⃗T

d s′
≈

d ω⃗T

d t
=− 1

2
v⃗×( 3α

mr5 ( x⃗⋅⃗v) x⃗)= 3α
2m2r 5 ( x⃗⋅⃗v) L⃗  . 

 

In the cassical Coulomb scattering, when the electron is in the proximity of the 

diffusion centre, the distance r is near to its minimum and so x⃗⋅⃗v=1
2

d
d t

r2≈0  .  

Therefore we can neglect the influence of the Euler force on the scattering process.
 The centrifugal forces field is Fcf=−ρω⃗T×(ω⃗T×x⃗′)  and has an energy 

Ecf=
4πρR5

15
ωT

2=1
5

R2ωT
2 m  where R=3

5
e2

4πm
 is the estimated radius of the  

 

electron (see Chap. Perturbation theory for the two-component Dirac equation) . 

 Thus with 
e2

4π=
α
Z

 we have Ecf=
9

500
α4

Z2m5 r6 L⃗2  . 

 Since in the classical Coulomb scattering L⃗  is constant we take the centrifugal 

 forces energy contribution as a potential W=W (r)∝ 1

r6  . 

 

If we consider a scattering of electrons on impurities in a crystal lattice grid we can 
determine Z as the electric charge of one impurity node in the lattice grid which is the 
difference between the number of valence electrons of the impurity atom and the 
number of valence electrons of the majority atom of the lattice grid ( Z can be 
positive or negative and has the same sign as α ) .
 The Coriolis inertial forces field is F cor=−2ρ(ω⃗T×(ω⃗× x⃗′))  .  
As we noticed in Chap. Perturbation theory for the two-component Dirac equation , 

for the spin angular momentum we must have  S⃗=2
5

m R2 ω⃗  and so  

F cor=−
5

m R2 ρ(ω⃗T×( S⃗×x⃗′))=125
18

Z2

α
ρ

m r3 (( L⃗⋅⃗S) x⃗′−( L⃗⋅⃗x′) S⃗)  .  

 If L⃗∥S⃗  ( which is the situation in the 1) case ), the Coriolis forces field is 
 is conservative and we have a corresponding energy 
Ecor=∫

B

( ∫
Γ(x⃗′)

−2ρ(ω⃗T×(ω⃗×x⃗″))d x⃗″)d3 x⃗′    where B  is the electron ball of  

 radius R  , Γ( x⃗′)  is a path from the origin to x⃗′∈B   . 

 

Thus in the 1) case we have 

Ecor=
8πρ
15

R5 ω⃗⋅ω⃗T=
α

2 m2 r3 L⃗⋅⃗S  .  
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In the 2) case we take the conservative part of the Coriolis force field which can be
~Fcor ( x⃗′)=

125
18

Z2

α
ρ

m r3 (( L⃗⋅⃗S) x⃗′−(Li x′i Si)i=1 ,3)  and 

Ecor=∫
B

( ∫
Γ( x⃗′)

~Fcor ( x⃗″)d x⃗″)d3 x⃗′= α
2 m2r3 L⃗⋅⃗S  . 

 

The dissipation generated by the non-conservative part of the Coriolis force field in 
the 2) case on a closed path Γ in the R’ frame is according tho Stokes theorem 
 proportional to the flux of S⃗×L⃗  through the surface surrounded by Γ  and since 
L⃗  is constant  in the classical Coulomb scattering 
 and as we will see the motion equations determined with the conservative part 
 potential additional spin-orbit interaction energy are in the 2) case not 
 dependendent on spin, to compensate this dissipation we will have the flipping of 
 the spin angular momentum S⃗  during the scattering process in the 2) case. 

 

Hence we have a spin-orbit interaction energy 

ΔH=ΔH L+W +Ecor=−
(gS−1)α

2m2r 3 L⃗⋅⃗S+ 9
500

α4

Z2

1

m5 r6 L⃗2  .  

As in the classical Coulomb scattering (see I. Ința, S. Dumitru Complemente de 
fizică) , we consider a shock parameter ρ (do not confuse with the density of the 
electron ball above) which is the distance between the initial motion line and the axis 
parallel to the incoming moment p⃗  with ‖p⃗‖=m v∞   through the spinless heavy 
diffusion center so that we have L⃗∞=−ρm v∞ e3  in the 1) case and L⃗∞=−ρm v∞ e1   

in the 2) case and in both cases we take W=W (r)= 9
500

α4

Z2

1
m3 r6 ρ

2 v∞
2  , r=‖⃗x‖ .  

The work done by spin-orbit interaction forces to time moment t is 

ΔH=W (r)−
gS−1

2m r3 α(q×q̇)⋅⃗S−H0  where H0  is a zero point energy and 

q= x⃗  are the position coordinates. 

 

 Therefore since ΔH=∫
0

t

(∂(ΔH)
∂ q̇

q̈+
∂(ΔH )
∂q

q̇)d t  

 and for T=1
2

m q̇2  kinetic energy and V=α
r

 the Coulomb potential we must have 

 

∫
0

t

(∂T
∂ q̇

q̈−∂T
∂q

q̇)d t=∫
0

t

− ∂V
∂q

q̇ d t−ΔH  on solutions with q̇(0)=q̇(t)=0   

 and integrating by parts we obtain 

∫
0

t ( d
d t (∂T

∂ q̇ ) q̇−∂T
∂q

q̇+ ∂V
∂q

q̇− d
d t (∂(ΔH )

∂ q̇ ) q̇+∂(ΔH )
∂q

q̇)d t=0

 

we conclude that the Lagrangian of the system is
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L=L(q , q̇)=T−V−ΔH=mq̇2

2
−A (r)−m M

r3 (q×q̇)⋅⃗S   where  A (r)=α
r
+W (r)  , 

  M=−
(gS−1)α

2m2  , r=√q2  . 

 

Introducing the generalized moment coordinates 

p=∂ L
∂ q̇

=m q̇−m M
r 3 S⃗×q  we have a Hamiltonian 

H= p q̇−L= p2

2m
+A (r)+ M

r3 S⃗⋅(q× p)+ 1
2

m
M 2

r6 ( S⃗×q)2
 

The Hamilton-Jacobi system is 

q̇=∂H
∂ p

= p
m
+M

r3 S⃗×q  

ṗ=− ∂H
∂q

=−A′(r)q
r
+3

M

r5 (S⃗⋅(q×p))q+M

r 3 ( S⃗× p)+3
m M 2

r 8 ( S⃗×q)2q−

−m M2

r6 (S⃗2 q−( S⃗⋅q) S⃗)

 

In the 1) case, we notice from the system that if  q(0) , q̇(0)  are in the (e1 , e2)   
plane , then the entire solution (q , p) remains in the (e1 , e2) plane. Thus we have to 
consider only the (q1 , q2 , p1 , p2) variables and in the 1) case we will have

q×p∥S⃗∥e3   ,  S⃗⋅q=0  , S⃗⋅p=0  , q̇× p+q× ṗ=0  . 
 Hence in the 1) case q×p  is conserved in time and also H  is conserved in time. 

 

 Therefore we have q×p=Λ⃗=Λ e3=−ρm v∞e3  , 

p2

2m
+A (r)+ 1

8
M2

r 4 +
M

r3 S⃗⋅(q×p)=E=1
2

m v∞
2  during the motion in the 1) case. 

 

 with S⃗=1
2
εe3   ,  ε∈{±1} .  

From the HamiltonJacobi system we derive the motion equations

m q̈=α
r3 q−

W ′(r)
r

q+3
M

r5 ( S⃗⋅(q×p))q+3 m M2

r8 ( S⃗2 q−(S⃗⋅q)2 S⃗)−

− 3m M

r5 (q⋅q̇)( S⃗×q)+ 2m M

r3 ( S⃗×q̇)
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 In the 2) case we write the motion equations as m q̈i=Fi  , i=1 ,3  and have the  
 bounding x=0  choosing the generalized coordinates (q2 , q3)  with 

x=0   ,  y=q2   ,  z=q3   and therefore the generalized forces are  

Q2=F1
∂ x
∂ q2

F2
∂ y
∂ q2

+F3
∂ z
∂ q2

=F2  

Q3=F1
∂ x
∂q3

+F2
∂ y
∂q3

+F3
∂ z
∂ q3

=F3  . 

 

Thus in the 2) case we have 

q=(0 ,q2 , q3)  , S⃗×q=1
2
ε(−q2 ,0 ,0)  , 

p=m q̇−m M
r3 (S⃗×q)=( εm M

2 r3 q2, m q̇2 ,m q̇3)   ,  ( S⃗×q)⋅p=− m M
4 r3 q2

2  , 

Q2=(αr 3−
W ′(r)

r )q2    ,   Q3=( αr3−
W ′(r)

r )q3    and the motion equations are 

 

m ÿ=( αr3−
W ′(r)

r ) y   

m z̈=( αr3−
W ′(r)

r )z
 

We notice that in the 2) extreme case, with the spin angular momentum in the motion 
plane we have no spin dependence of the motion equations. However we have proved 
that in the 2) case spin flipping appears. Thus in an intermediate case with the spin 
angular momentum having an arbitrary direction and electrons confined to move in 
the flat conductor plane we expect differentiate scattering to the left or right of the 
charge current direction depending on spin polarization as we will see in the 1) case
and also spin flipping during the scattering process.

Considering now the 1) case, we have
er=(cosθ ,sin θ)    ,  eθ=(−sinθ ,cosθ)  , 

q=r er   ,  q̇=ṙ er+r θ̇  eθ  , q̈=r̈ er+2 ṙ θ̇  eθ−r θ̇  2 er+r θ̈  eθ  

Λ=mr (r θ̇  + εα
4 m2r2 )   ,  

1
2

m ṙ2=E−B(r)  , 

B(r)=α
r
+W (r)−α

4
1

m2 r3 εΛ+
1
32

α2

m3 r 4+
Λ2

2m r2   

(dθ
d r )

2

=θ̇  2

ṙ2 =
(Λ− εα

4 m r )
2

2 mr 4(E−B(r))

    (1)
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 For ᾱ=|αZ|=
e2

4π≈
1

137
 we will require |Λᾱ|<1  and also, since the electron is  

 as a well defined particle on mass shell we must consider that r  is greater than 
half the reduced Compton wavelenght (see Chap. Relativistic dynamics... Compton 

 wavelenght) and so m r> 1
2

 . 

 

 Thus |α4 1

m2r 3|=2 m|Z|O(ᾱ2)  and |W (r)/(α4 1

m2 r3 Λ)|=|Z|288
500

O(ᾱ4)  

 and so in O(ᾱ4)  approximation we can drop the W (r)  term in the  

B (r)  expression, leaving us with B(r)=α
r
+ Λ2

2m r2−
α
4

1
m2r 3 εΛ+

1
32

α2

m3 r4  . 

 

 For F (r)=E−B(r)  the equation F (r)=0  has at least one positive root, since 
F(∞)=E>0  and F (0)=−∞  . Considering the (1) relations it follows that from 

t=−∞  when θ(−∞)=π  (we consider Λ<0 ) and r (−∞)=∞  to t=0  when 
θ(0)=θ0  and r (0)=rm  , the function r=r( t)  is decreasing until at t=0  it reaches 
 the minimum value rm  where rm  is the greatest positive root of F(r)=0  ( the  

 equation F (r)=0  is a quartic equation in 
1
r

 ) . From t=0   to t=∞  when 

θ(∞)=φ  where φ  is the scattering angle and r(∞)=∞  the function r=r (t)  is 
 increasing. ṙ= ṙ(t)  changes sign only at t=0  since rm  must be the greatest  
 positive root of F (r)=0  . 

 

 Therefore ṙ (t)=−√ 2
m

F (r)  for t<0   ,  ṙ (t)=√ 2
m

F(r)  for t>0  and from (1) 

 follows now θ(r (t))−θ0=(sign t)∫
rm

r(t ) Λ− εα
4 r m

r2√2m√E−B(r)
d r

 

The unicity of solutions for the differential equations system in r = r (t) , θ = θ (t) 
 for r (0)=rm   ,  θ(0)=θ0  leads to θ(t)−θ0=θ0−θ(−t)  , r (t)=r (−t)  and so 

 taking χ=−∫
rm

∞ Λ− εα
4 r m

r2√2m√E−B(r)
d r  we will have φ+2χ=−signΛπ

 

 We have E−B(r)= 1
E3 r4 G(E r)  where 

G(x)=x 4−α x3−Λ2

2
E
m

x2+εαΛ
4 ( E

m )
2

x−α2

32 ( E
m )

3

 , 

∫
rm

∞ Λ− εα
4 r m

r2√2 m√E−B(r)
d r=∫

Erm

∞ √ E
2 m

Λ−εα
4 x

E
m

√G(x)
d x  . 
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 We consider α>0  . Taking A=−α  , B=− Λ2

2
E
m

 , C=εαΛ
4 ( E

m )
2

 , 

D=− α2

32 ( E
m )

3

 , a=− 3
8

A2+B  , b=A3

8
−A B+C  , c=− 3

256
A4+ A2 B

16
− A C

4
+D  , 

p=− a2

12
−c  , q=− a3

108
+ a c

3
−b2

8
 after some calculus , for E

m
=O(ϵ)  , 

ϵ→0  , |Λᾱ|<1  we obtain 

 

b≠0   ,  27 q2+4 p3>0  and solutions of the equation G(x)=0  can be expressed as 

u(C , D)=− A
4
+ 1

2
(−δ√2 y−a±√−2 y−a+4δ√ y2−c)  with δ∈{±1} , 

y=a
6
+w− p

3w
 , w=

3√− q
2
+√ q2

4
+ p3

27
 and we have 

u(C , D)=u(0,0)+O(ϵ2)  . 

 

 Thus in O(v∞
4 )  approximation we can ignore the C ,D  terms in the expression of 

G  so we can take B(r)≈α
r
+ Λ2

2m r2  .         (2) 
 

 Considering (2) and the case α>0  , |Λᾱ|<1  , v∞≪1  we will have 

m rm v∞
2 = κ2 v∞

3

−α+√α2+κ2 v∞
3
≈2α  where κ2=ρ2 m2 v∞  . 

 

 Therefore α
4 mr|Λ|

≤ α
4 m rm

|Λ|
< 1

8
v∞

|ρ|m
< 1

4
v∞≪1  if |ρ| is  greater than 

 half the reduced Compton wavelenght. 

 

 Hence sign (θ−θ0)=signΛ  for t>0  if |ρ| exceeds half the reduced 

 Compton wavelenght and |Λα|<1  and v∞≪1  . 
 

 If |Λα|<1  , v∞<α  , v∞≪1  we will have 

v⃗2=q̇2= ṙ2+(r θ̇  )2= 2
m
(E−B (r))+( Λm r

− α
4(mr)2 )

2

<v∞
2 +2 Λ2

(m rm)
2+

1
8

α2

(m rm)
4 < 

<v∞
2 + 1

2
(Λα )

2

v∞
4 + 1

128
( v∞α )2 v∞

6 ≪1.

 

We remain therefore, for the α > 0 case, in the non-relativistic application domain 
during the entire motion of the electron. 
Integrating with (2) expression for B (r) we obtain
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(sign t)(θ−θ0)= ∫
1/r

1 /rm
Λ− εα

4 m
τ

√2m√E−α τ− Λ2

2 m
τ2

d τ=

=(signΛ)(1+ εα2

4Λ3 )(π2−arcsin

Λ2

r
+αm

√2Λ2 E m+α2 m2 )−εα v∞

4Λ2 √1− 2α
m r v∞

2 −
ρ2

r2  . 

 

φ=−(signΛ)π+2(signΛ)(1+ εα2

4Λ3 )(π2−arcsin
αm

√2Λ2 E m+α2 m2)− εα
2Λ2 v∞  .  

We consider further that α>0   ,  v∞<α   ,  |Λ|α <1  and it follows:  

−(signΛ)φ=π−2(1+ εα2

4Λ3 )arctan
|Λ|v∞
α +(signΛ) εα

2Λ2
v∞=π−2(1+ εα2

4Λ3 ) (|Λ|α v∞+

−|Λ|
3

α3

v∞
3

3
+|Λ|

5

α5

v∞
5

5
−... )+(sign Λ)εα v∞

2Λ2 =π−2 arctan
|Λ|v∞α + 2

3
ε v∞

3

α sign Λ+O(v∞
4 ) .

 

φ≈−(sign Λ)π+2arctan
Λ v∞α −2

3
ε v∞

3

α  .    (3) 

We notice that in absence of spin effects ( ε = 0 ) we obtain 

cot2 φ
2
=Λ2 v∞

2

α2  which is the dependence of the scattering angle φ  on ρ  from the  

classical Rutherford non-relativistic Coulomb scattering (see I. Ința , S. Dumitru , 
Complemente de fizică). 
The relation (3) defines the dependence of the diffusion angle φ on the shock 
parameter ρ  ( since Λ=−ρm v∞  ) when a flux of particles are scattered on the  
same diffusion center.
Let the number of particles having shock parameter in the interval (ρ , ρ+dρ) , that 
are scattered in an unit of time be dN. These particles are scattered in the angular 
interval (φ , φ+dφ) . If j is the flux of incoming particles (the number of particles 
passing in an unit of time through a normal to motion direction unit surface element)
 we must have d N= j 2π|ρdρ|= jπ|dρ2| and if dσ  is the differential cross section 
 we have d N= j dσ  . Thus dσ  =π|dρ2|.

 

Since the conduction electrons in the flat conductor plate are restricted to move in 
 direction j⃗  parallel to the (e1 ,e2)  plane ( j⃗∥e1  ) we have to consider the number  
of electrons passing a normal section of height b and width d y parallel to the (e2 , e3)  
 in an unit of time as d N= j b d y  and we can define the bidimensional flux 
~
j⃗=d N

d y
e1= j⃗ b  and subsequently the bidimensional cross section ~σ  =1

b
σ  for the 

 scattering in the (e1 ,e2)  plane. 
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 As we proved, if A=(2π)4 M δ4(p+k−p′−k′)  is a total scattering amplitude, 
 then the differential cross section is 

dσ  =
k 0 p0

(k 0+ p0)r
4 m2

4 k 0 p0

1

(2π)2
d 3 k⃗′

2ω(k′)
d 3 p⃗′

2ω(p′)
|M|2δ4(k+ p−k′−p′)=

= 1
(4π)2

m2

(k0+ p0)
2|M|2 dΩ  with ω(k′)=√ k⃗′2+μ2   ,  ω(p′)=√ p⃗′2+m2

 

Introducing cilindrical coordinates ( r̄ ,θ̄ , p̄)  , θ̄∈(−π , π)    with   

x 1= r̄ cos θ̄  , x2= r̄ sin θ̄  , x3= p̄  , r′=√ r̄ 2+ p̄2  , 

E=k 0+ p0=√r′2+μ2+√r′2+m2  leads to r′= 1
2 E

((E2−(m+μ)2)(E2−(μ−m)2))1/2  . 
 

 Taking I= d3 k⃗ ′
2ω(k′)

d3 p′
2ω(p′)

δ4(p+k−p′−k′)  

 with p⃗+k⃗=0  in the mass-center frame we derive 

I= 1
2ω(k′)

1
2ω(p′)

r′2sin ψd θ̄dψδ(E−√r′2+μ2−√r′2+m2)d r′   

   where ‖⃗k′‖=‖p⃗′‖=r′  , 
d r′
d E

=√r′2+μ2√r′2+m2

E r′
 , ψ∈(0 ,π).

 

Therefore the number of electrons scattered in an unit of time in directions defined by

θ̄∈(θ ,θ+dθ)  is d N= j(∫
0

π

∫ r′
4 E′

sinψδ(E′−E)|M|2d E′dψ) m2

r (k 0+ p0)
1

(2π)2
d θ̄   

 where we have |M|2=|M|2(r ,θ̄ ,ε)  , r′=r′(E′)=r(E′)  defined above. 

 

 Hence d N= j
1

2 E2

m2

(2π)2
|M|2d θ̄  .  

According to the interpretation of the bidimensional flux and cross section we have

d N=~j d~σ  and so d N= j dσ=~j d~σ= j
1

2 E2

m2

(2π)2
|M|2d θ̄  

 and since ~j= j b  we obtain d~σ
d θ̄

=1
b

1

2 E2

m2

(2π)2
|M|2=2

b
dσ
dΩ

 

Considering the flux of electrons that are scatteredby the same diffusion center when 
the motion of electrons is constrained to the (e1 , e2) plane we have the shock
  parameter ρ̄  which is the distance between the trajectory of an incoming electron  
and the axial plane through the diffusion center, parallel to the  flux vector j⃗  and  
perpendicular to the plate. Then the number of particles which have the shock 
 parameter in the interval (ρ̄ ,ρ̄+d ρ̄)  and are deflected in an unit time interval is 
d N=~j|d ρ̄| . The d N  particles will be deflected in the scattering angle interval 

(θ̄ , θ̄+d θ̄)  having ρ̄  as a function of θ̄  and d~σ  =d N
~j

=|d ρ̄|     (4) . 
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 Thus d~σ  =d~σ  
d θ̄  

d θ̄= 2
b

dσ
dΩ

(r ,θ)dθ=|d ρ̄| .  

 If dσ
dΩ

 not depends on the angle ψ  between S⃗  and the incoming moment (that is 

it depends only on  incoming moment norm r )integrating with dΩ=sinψd θ̄dψ  

we obtain σ  =∫ dσ
dΩ

dΩ=2∫ dσ
dΩ

d θ̄=b∫ d~σ
d θ̄ d θ̄=b~σ  and we verify ~σ  =σ

b
 . 

 

 In the (e1, e2)  plane we have x⃗(r ,θ ,ψ)=x⃗ (r̄ , θ̄ , p̄)  , ψ=π
2

 , p̄=0  , θ=θ̄  , r= r̄  

 where x⃗(r ,θ ,ψ)=(r cosθ , r sinθ sinψ , r sinθcosψ)  and therefore for the 

 bidimensional approach θ=θ̄  in the spherical coordinate argument of 
d σ
dΩ

.

 

In the motion plane , the tridimensional scattering angle can be identified with the 
plane scattering angle  ( θ=θ̄=φ  ) and also the tridimensional shock parameter ρ   
 can be identified with the bidimensional shock parameter ρ̄  .  

 The determination of d~σ
d θ̄  

 is made in the supposition that the spin angular 

 momentum is normal to the motion plane. We cannot extend the relation 
d~σ
d θ̄  

= 2
b

d σ
dΩ

 to the entire tridiensional solid angle since this relation, as we 

 proven may be valid for ψ=π
2

 but the motion plane changes if we vary ψ  and  

 the spindirection is no more normal to the motion plane and as we have seen in  
 the derivation for the 2) case equations, the motion becomes spatial and we have 
 a dependence on ψ  of the tridimensional cross section (r ,θ ,ψ)  spherical 

 coordinates. So we have d~σ
d θ̄  

= 2
b

d σ
dΩ

 only in the ψ=π
2

 plane. 

 

For the situation we consider ( a Copper with Iridium impurities plate ) we have
Z≥1  ( Copper has one valence electron and Iridium has to nine valence electrons) 
 and so α>0  and |̄ρ| must be considered smaller than half the minimum distance 

 

between impurity nodes in the plate crystal lattice grid (measured normal to charge 
current direction) which we denote a / 2 where a is a lattice grid constant.
v∞  is the drift velocity of the electrons determined by the charge current e j⃗  . 

 Therefore we will have |Λ|ᾱ <1  , v∞<α  , v∞≪1  and since Λ=−ρ̄m v∞  , 

 considering (3) we obtain 

d ρ̄=− α
2 m v∞

2

1

sin2(φ2 +ε v∞
3

3α )
dφ  

    with φ=θ̄  as the scattering angle in (e1, e2)  plane, 
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φ∈(φ+
1 (ε) ,φ+

2 (ε))∪(φ−
1 (ε) ,φ−

2 (ε))      where 

φ+
1 (ε)=−π−2ε v∞

3

3α   ,  φ+
2 (ε)=−π+2arctan (am v∞

2

2α )−2ε v∞
3

3α   , 

φ−
1 (ε)=−φ+

2 (−ε)   ,  φ−
2 (ε)=−φ+

1 (−ε)  . 

 

From (4) follows now that the bidimensional differential cross section is

d~σε

dφ (φ)={ α
2m v∞

2

1

sin2(φ2 +ε v∞
3

3α )
 if φ∈(φ +

1 (ε),φ +
2 (ε))∪(φ−

1 (ε) ,φ−
2 (ε))  

0  else 

 

 and we can verify that 
d~σε

dφ (φ)=d ~σ−ε

dφ (−φ)      (5) .  

The number of up-spin electrons that are deflected to the left of the incoming flux 
direction  ( e3× j⃗  gives the left side direction of the flux vector direction ) is  

nl(+1)=~j ∫
φ +

1 (+1)

−π d ~σ +

d φ d φ+~j ∫
φ−

1 (+1)

φ−
2 (+1)

d ~σ +

dφ dφ=~j α
m v∞

2 (tan ( v∞
3

3α )+ a m v∞
2

2α )    
and the number of up-spin electrons that are deflected to the right of the incoming 
flux direction in an unit of time is

nr(+1)=~j ∫
−π

φ +
2 (+1)

d ~σ +

dφ dφ=~j α
m v∞

2 (−tan ( v∞
3

3α )+ a m v∞
2

2α )    
 We notice that nl(+1)>nr(+1)  and so we can see that up-spin electrons are  
deflected mostly to the left of the incoming flux direction or equivalent to the  right 
of the charge current direction, since electrons carry negative charge and in the same 
way we conclude that down-spin electrons are deflected mostly to the left of the 
charge current direction (as we proved, in the considered 1) case, spin flipping during 
the scattering process is not allowed so up-spin will accumulate on the right edge of 
the plate with respect to charge current direction and down-spin will accumulate on 
the left edge of the plate). 
In the bidimensional approach, we will have a mean free path of the electrons that are 

moving in the conductor plate plane given by l= 1
~n~σ

 ( see Chap. Feynman   

amplitudes and lattice gauge theory ),  where ~n  is the areal concentration of  
impurity nodes in the plate and  ~σ  is the total bidimensional cross section  
~σ  =∫ d~σ

dφ
dφ=a  .  

The number of electrons scattered in an unit of time by a diffusion center at angles in 
 the interval (φ ,φ+dφ)  and having spin polarization ε  is ( spin flipping is not  
allowed as we noticed ) :
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d nε=
~j d~σε

dφ (φ)dφ  which gives a particles bidimensional flux vector 

~⃗
jε=

d nε

l dφ
(φ)(cosφ , sinφ)

 

Hence we will have a total bidimensional spin flux vector given by 
~
j⃗s=

1
2
∫(

~
j⃗ + (φ)−

~
j⃗− (φ))dφ=

~j
2 l
∫(d ~σ +

d φ − d ~σ−

d φ )(cosφ , sinφ)d φ  .  

From (5) follows that in the (e1 , e2) plane we have:
~⃗
js⋅e1=0   and  

~⃗
js⋅e2=

~j
l
∫ d ~σ +

d φ sinφd φ=

=
~j
l

α
2m v∞

2 ∫
π−2arctan (a m v∞

2

2α )

π 1

sin2( φ
2
) (sin(φ−2 v∞

3

3α )−sin (φ+2 v∞
3

3α ))d φ=
=−

~j
l

α
m v∞

2 ∫
π−2 arctan( a m v∞

2

2α )

π

sin (2 v∞
3

3α )( 1

sin2(
φ
2
)
−2)d φ=

=(−~j a
l
+4

~j
l

α
m v∞

2 arctan(a m v∞
2

2α ))sin(2 v∞
3

3α )

 

 We verify that a m v∞

2α
<1  and v∞≪1  and so since lim

x→0

arctan x
x

=1  we derive 

 that 
~
j⃗s⋅e2>0  . Therefore we have a spin current in the flat conductor plane that is 

 

normal to the charge current and is oriented to the right of the charge current 
direction (again we notice that the charge current has opposite orientation to the 
particles flux vector since electrons have negative charge). The apparition of the spin 
current pointing to the normal right direction of the charge current in a flat conductor 
sample is known as direct spin Hall effect.

Page 16 of 22



                                                          v∞         ρ
                                                                       

                                                     A         χ 

                                                          χ 
                                                                                O
        e2                                                             θ0

                                                       φ

                                                                                 e1

 For this figure we have Λ=−ρm v∞<0  , φ+2χ=π   ,  ‖O A‖=rm  . 

 We assumed above conditions like |Λ|ᾱ <1  , v∞<ᾱ  , v∞≪1  with ᾱ= 1
137

 , 

 so we have to verify that the conditions (formulated in Planck units since 
 we have already considered ℏ=1  , c=1  ) : 
2 ᾱ
am

>v∞  , v∞<ᾱ  , v∞≪1       (6) are experimentally available. 

 

Time reversal not changes the spin-orbit coupling 
L⃗⋅⃗S  since L⃗ , S⃗  being angular momenta are both odd under time reversal. 
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Thus considering the time reversed inverse spin Hall effect, inverse spin Hall effect in 
which spin dependent skew scattering of spin carriers from an injected pure spin 
current on impurities in a crystal lattice grid, for example, generates a charge current 
giving a measurable inverse spin Hall effect signal ISHE of intensity IC  with a 
inverse spin Hall effect induced voltage UISHE , we will obtain a process equivalent to 
the direct spin Hall effect  in which the drift velocity of electrons corresponding to 
the signal current intensity IC is the scattering initial velocity  v∞  generating  
as described above the normal to its direction spin current.
We use the inverse spin Hall effect experiments data (from references [1], [2]) to 
illustrate a spin-orbit coupling influenced scattering of electrons on diffusion centers 
as presented above and verify that (6) assumptions are indeed experimentally 
available.
The experiments used a Copper with Iridium impurities plate of width w = 10-7 m , 
height b = 10-7 m . The Copper crystal lattice constant is d = 3,6 10-10 m . 
When V is the volume of the plate and c is the fraction of Iridium atoms from the 
total number of atoms in the sample we estimate the minimum distance between 
Iridium atoms in the lattice grid as a , having

c=

V
a3

V

d3+
V

a3

  and so  
V

a3=
V

d3

c
1−c

 , a=d 3√ 1−c
c

 .  

Copper has a density ρ = 8,94 103 kg / m3 and a atomic mass A = 63,5 10-3 kg / mol. 
The concentration of atoms for Copper is n = NA ρ / A where 
NA = 6,023 1023 atoms / mol is the Avogadro number.
 The measured ISHE voltages are in a range U ISHE∈(0 , 10−5)  V (Volt ) . 

The inverse spin Hall effect resistances are in a range |R ISHE|∈(0 ,5⋅10−5)Ω(Ohm)
at 10 K (Kelvin)  for a concentration c=9 % and |R ISHE|∈(0 ,3⋅10−5)Ω  for c=6 % .

 

 The occurred flux of electrons is j=
IC

w b e
 where e=−1,6⋅10−19C (Coulomb) is 

 the electron charge and IC=
U ISHE

RISHE

    (the  R ISHE  values are controlled through an  

 applied magnetic field ). 

 

The Copper has one free electron per atom and so the concentration of conduction 
electrons is equal to n and the drift velocity of electrons that occurs is 

v= j
n
=

U ISHE

R ISHE

A
N Aρ

1
w b e

 . Taking the maximal values for voltage and resistance  

 we compute after dividing the value in m/s of v  with the speed of light constant 
3⋅108 m / s to obtain the value in Planck units :

v∞=3.4⋅10−6  for c=9 %  and v∞=5.66⋅10−6  for c=6 %.
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 We have the Planck lenght lP=1.6⋅10−35 m   the Planck mass mP=2.17⋅10−8 kg

 and the electron mass m=9.1⋅10−31kg  and so in Planck units we compute 

a m=
d 3√1−c

c
m

lP mP

  ,  am=1.91⋅103  for  c=9%  and a m=2.21⋅103  for c=6 % .

 

We can verify that for both considered Iridium concentrations we have 
2ᾱ
a m

>v∞  and so the (6) assumptions are satisfied.  

 As we proved for |Λ|ᾱ <1  , v∞≪1  , 0<α  we have the trajectory of the electron 

 in the scattering process on a diffusion centre given by 

θ−θ0=(signΛ)(1+ εα2

4Λ3)( π2−arcsin

Λ
r
+αm

√2Λ2 E+α2 m ² )−εα v∞

4Λ2 √1−
ρ2

r2−
2α

mr v∞
2

 for t>0  with θ(−t)−θ0=θ0−θ(t)  relation that can be written as 

θ−θ0=(signΛ)(1+ εα2

4Λ3 )arcsin
|Λ|v∞ y

√Λ2 v∞
2 +α2

−εα v∞

4Λ2 y   for  t>0  , 

 where y=√1−Λ2 v∞
2

z2 −2α
z

  ,  z=m r v∞
2  , z>zm  , zm=

Λ2 v∞
2

−α+√Λ2 v∞
2 +α2

≈2α  

 and we have y=y (z)  , y (zm)=0  , y(∞)=1  , y∈(0 ,1)  , z∈(zm ,∞)  . 

 

 The scattering angle is φ=−signΛπ−2χ  with θ=θ(r)   ,  χ=(θ0−θ)(∞)  

 and so φ=−signΛπ+2(1+ εα2

4Λ3 )arctan
Λ v∞α −εα v∞

2Λ2  

 having also θ0+χ=−signΛπ     as it follows from the figure. 

 

 We notice that if (r ,θ(r))r  is the trajectory in polar coordinates for 
(signΛ ,ε)=( f , e)∈{±1}×{±1}  then (r ,−θ(r))r  is the trajectory for 
(signΛ ,ε)=(−f ,−e)  with the same |Λ|, v∞  . 

 

 We take signΛ=−1  , Λ=−ρm v∞  , ρm>1
2

 , |Λ|<ᾱ  , v∞≪1  .  

 Since for t>0  we have θ−θ0=∫
rm

r Λ− εα
4 m r

r2√2m√E−B(r)
d r  and with the 

 considered assumptions as we proved sign (Λ− εα
4 mr )=sign Λ  we obtain that 

 for t>0 ,θ  is a decreasing function of  r  and θ−θ0<0  , θ(rm)=θ0  . 

 

Therefore considering θ as a function of y we have that θ0 – θ is a increasing function 
of y . 
For getting a relevant graphic representation of the trajectory in polar coordinates 
r=r (θ)   we have  0<θ0−θ<χ=(θ0−θ)(1)  ( we consider further θ=θ( y)  ) .  
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 We want an upper limitation for y  ( or equivalently for z  or r  ) when 
θ0−θ  ∈(0 ,χ−δ)  with δ>0  . 

 

 Because θ0−θ  is increasing of y  we derive that if (θ0−θ)( x̄)=χ−δ  then for 
y∈(0 , x̄)  we will have (θ0−θ)( y)∈(0 , χ−δ)  . 

 

 Reminding that we have taken Λ<0  , we have 

(θ0−θ)′( y)=(1− εα2

4|Λ|3 ) 1

√h2− y2
+ εα v∞

4Λ2  where h=√1+ α2

Λ2 v∞
2 .

 

 We have also α2

4|Λ|3
= 1

4α ( α|Λ|)
3

>1  and so (θ0−θ)′  is increasing of y  if ε=−1   

 and decreasing of y  if ε=1  and obviously we have (θ0−θ)′>0  in both cases. 

 

 Hence if ε=−1  we obtain δ=(θ0−θ)(1)−(θ0−θ)( x̄)<(θ0−θ)′(1)(1−x̄)=

=
|Λ|v∞α (1− x̄)   ,  x̄<1− δα

|Λ|v∞

 In this case we have χ=(1+ α2

4|Λ|3 )arctan
|Λ|v∞α −α v∞

4Λ2>

>
|Λ|v∞α −1

3

|Λ|3 v∞
3

α3 − v∞
3

12α
 . If we take v∞  sufficiently small v∞<

1
2

 since already 

ρm> 1
2

 and |Λ|<α  we derive χ> 1
6
|Λ|v∞α  and we can take δ=(Λ v∞α )2≪χ  

 obtaining x̄<1−
|Λ|v∞
α

 

 If ε=1  we have δ<(θ0−θ)′(0)(1− x̄)=((1− α2

4|Λ|3 ) |Λ|v∞

√Λ2 v∞
2 +α2

+αv∞

4Λ2 )(1−x̄)  

 If further α< 1
4

 since ρm>1
2

 , |Λ|<α  we derive 

δ<((1− α2

4|Λ|3 )
|Λ|v∞

α+ 1
2
αv∞

2
+α v∞

4Λ2 )(1−x̄)=

=(|Λ|v∞
α + α v∞

8(ρm)2
1

1+ 1
2

v∞
2 )<(|Λ|v∞

α + 1
2
αv∞)(1− x̄)  

 

 Because α< 1
4

 in this case we have χ=(1− α2

4|Λ|3 )arctan
|Λ|v∞
α +α v∞

4Λ2>
|Λ|v∞
α  . 

 If 1
2
α v∞<

|Λ|v∞α  we can take δ=2 (Λ v∞α )2≪χ  and if 
|Λ|v∞α < 1

2
αv∞  we can 

 take δ=αv∞
|Λ|v∞α ≪χ  in both situations  

 obtaining x̄<1−
|Λ|v∞α  . 
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 For x̄=√1−Λ2 v∞
2

z2 −2α
z

 we obtain the upper limitation for z  as 

1
z
> 1
α
−1+√1+2κ3−κ4

κ2 ≈ 1
α (κ−1

2
κ2)  where κ=

|Λ|v∞α  . 

 

 The figure below shows the limit case |Λ|=v∞=α=0.98  . 
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