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                                             Abstract 

The material reality interacts with our conscience and registering and reflecting the 
events of material reality we take over the random structures of this reality, building 
our own corresponding structures as conceptual systems and ideas, which allows us 
to recognize patterns of reality and make predictions of further interactions with the 
reality, understanding it and organizing our survival strategies.
One of the most abstract such conceptual systems consists in mathematics.
The goal of physics is to build conceptual models of the material reality, mostly based 
on mathematics, that can predict the way in which initial interactions with the reality 
determine final interactions, in a process that is always similar to the physical laws 
correspondence of measured values which reflect specific recognized reality events, 
such that any interaction with the physical reality is in fact a measuring process.
Fundamental abstractions in physics are the space-time continuum (events can have 
or not the same place of happening and can happen or not simultaneously, in a 
specific reference frame that establishes specific measurement devices for length 
distances and time intervals, to associate for each event a space-time equivalent in the 
frame) and the material particles (the smallest part that can be considered of a 
system) . In classical physics, particles have a well defined path in space-time (at 
each time moment the particle can be at a single space location).
Experience (repeated interaction with the physical reality: the famous double-slit 
experiment for example) shows that as we zoom in in the the space-time continuum, 
things get blurry and particles present uncertainities when we try to determine a 
precise path. Thus the Quantum mechanics formalism imposes himself, beginning 
with the theory of de’Broglie wave  packets associated to a particle, with the 
explanation of path uncertainities, leading to the concepts of Hilbert space of system 
states and observables expressing measurable quantities asssociated with the system, 
as linear operators acting on states.
Special relativity and Lorentz invariance of physical laws which was initially brought 
up by the theory of electromagnetism plays a fundamental role in choosing the right 
mathematical structure for the space-time.
Possible symmetries that a quantum system can have (space-time translations, 
rotations), defined as Lie groups, determine observables as their generators, 
corresponding to the calssical concepts of energy, momentum , angular momentum 
and the necessary evolution of states that is taken unitary to conserve the number of 
quantum states and transition probabilities, according to the Hilbert space of states 
interpretation, leads to the time dependent Schroedinger equation.
The necessity of Lorentz invariance and the fact that a quantum particle can take 
between an initial state and a final state any path (acording to the wave function 
defined probability distribution) justify the introduction of Lagrangian field theory 
and path integral formalism following the canonical quantization picture of a
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 quantum particle field that fluctuates in vacuum creating and anihilating at any 
space-time location virtual particles.
The theory of electromagnetic field (and its interaction with charged particles) is a 
fundamental theory and provide the context for deriving the relations of relativistic 
dynamics.
The physical relevance of the electromagnetic field four-potential appears in the 
interaction of the electromagnetic field with the electron in the Aharonov-Bohm 
effect and the relevance of quantum electromagnetic field vacuum fluctuations 
appears in the Casimir effect.
The uncertainity relation for momentum and position of a real quantum particle and 
quantum fluctuations of the particle quantum field produce a limitation in 
measurement precision for position of the particle determined by the Compton 
wavelenght of the particle.
Thermodynamics has the main concepts necessary to understand many particles 
systems through the ideas of classical and quantum statistical ensembles, defining the 
probability density of the system which describes the distribution of microstates 
corresponding to a given thermodynamical macrostate. The entropy of the system  
measures the loss of information about the system by assigning all possible 
microstates of a macrostate to one averaging set of macrostate determining 
thermodynamical quantities.
At low temperature a quantum statistical ensemble condensates in the ground state, 
the lowest energy state (if the ground state is not degenerate). If the quantum 
statistical system system describes a many particle system at low temperature, all 
particles will be in the same lowest energy state forming a one state condensat and 
behaving in the same way.
Measurements are made by observables. Repeated measurements made on a 
statistical ensemble prepared in a macrostate with a defined probability density 
matrix results in a probability distribution over the eigenvalue spectrum of the 
measuring observable, the measured density matrix ‘collapsing’ through projection 
into the measuring observable eigenspaces. Any quantum operation, as a interaction 
with the environment, must be similar to a measurement, acting on a system 
probability density matrix.
The limits of predictability of quantum systems through collecting information about 
them by environmental measurements arise by decoherence: the system loses 
information into the environment, its evolution becomes non-unitary, quantum 
behaviour (additive probability amplitudes) becomes classical (additive probabilities) 
and it can be described poorly only by the evolution equations of the averaged 
expectation values of the quantum observables (as momentum and position operators) 
involving the system Hamiltonian expression that are similar to the classical 
Hamilton-Jacobi equations of the system.
Also violation of Bell inequalities by cross measurements performed  on entangled 
states leads to the fact that local realism is forbidden by quantum mechanics, 
excluding the existence of hidden variables that should determine the measurement 
on entangled pairs outcome.
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Although no bits of information can be transmitted by carefull preparing entangled 
systems, quantum entanglement has various applications in quantum information 
processing.
From the fact that any recursive problem answer can be verified through interaction 
with entangled provers follows that the maximum winning probability of a specific 
non-local game is not computable and further that the tensorial product model of 
enatanglement is not equivalent with the commuting operators model of 
entanglement (some Tsirelson bound values in the both models do not coincide) and 
therefore the answer to Connes embeding conjecture is negative having as 
cosequence that the infinite dimensional matrices (of quantum operators) cannot be 
approximate by finite dimensional matrices. Thus a quantum system cannot be 
entirely described as a computable limit : we must limit ourselves to finite 
dimensional subspaces for the possible eigenstates of observables. 
The classical physical world emerges from the quantum world as a zero limit of 
distances scale (equivalent zero limit of numerical value of the Planck constant) , 
according to the steepest descent approximation of the path intergral, losing its 
significant submicroscopical information: in the classical limit the paths that are away 
from the classical Euler-Lagrange motion equation path of the Lagrangian field 
theory compensate each other through the integration, remaining only the classical 
path.
The spin of a particle defines the way which the particle field transforms under a 
rotation (or Lorentz transformation) of the coordinate system generating a spin 
representation of the rotations (or restricted Lorentz) group.
The Dirac Lagrangian density (leading to the Dirac equation as its Euler-Lagrange 
equation) describes the fermion Dirac spinor systems of quarks and leptons of the 
Standard model in particular of the electron.
The chiral projections of the Dirac spinor as irreducible subrepresentations of the 
Dirac spinor representation, having a positive helicity for the left handed spinor and a 
negative helicity for the right handed spinor play an important role since only left 
handed spinors participate in the weak interaction.
The spin statistics theorem clasifies the particles as fermions and bosons that is 
particles that combine as antisymmetric respective symmetric tensorial product wave 
functions of multiparticles systems and satisfying therefore Fermi-Dirac respective 
Bose-Einstein statistics of quantum statistical ensembles.
Quantum electrodynamics describes the interaction of the electromagnetic field with 
charged particles.
The relevant discrete symmetries of a Lagrangian field theory are charge 
conjugation C, parity P  and time reversal T. Even though each of these symmetries 
can be violated, any Lorentz invariant local quantum field theory has CPT symmetry, 
that is an antimatter, mirrored and time reversed universe would behave exactly the 
same as our regular universe.
Feynman amplitudes can be calculated for various processes in direct relation with 
the corresponding probability amplitudes, in the perturbative approach of 
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 Lagrangian field theory knowing the field propagator and the various coupling 
constants that appear in the Lagrangian field density interaction terms.
Otherwise, when for a right approximation of the amplitude all higher order 
fluctuation diagrams must be considered, the amplitudes for the various scattering or 
decay processes can be calculated using lattice gauge theory.
The Quantum harmonic oscillator provides a fundamental example for further 
canonical quantizations of scalar fields , Dirac fields and even the quantization of an 
electromagnetic field, considering creation and anihilation operators that must satisfy 
commutation (or anticommutation) relations.
The quantum nature of radiation reveals itself in transitions between various states of 
a quantum system, generating spontaneous and stimulated emission or absorption of 
photons, governed by Fermi’s golden rule.
The energy states and levels of the electron in the Hydrogen like atom can be 
determined by solving directly the Dirac equation in presence of the Coulomb 
electromagnetic field of the nucleus or applying perturbation theory to the two-
component Dirac equation considering the relativistic correction , spin-orbit 
interaction with Thomas precession term and Larmor term, and the Darwin term.
Quantum fluctuations of the electromagnetic field determine an anomalous magnetic 
moment of the electron and also the Lamb shift of energy levels in the Hydrogen like 
atom.
Perturbation theory can also be applied for the Hydrogen like atom in presence of a 
constant magnetic field (Zeeman effect, Paschen-Back effect) . 
Linear combination of atomic orbitals and thight binding approximation can be used 
to determine the energy states and levels of electrons in covalent crystal lattices.
Phonons are quasiparticles that correspond to oscillations of crystal lattice atomic 
nodes.
The photonic gas inside a cavity, in thermal equilibrium with the cavity walls 
describes the thermal radiation of a black body and obeys to Bose-Einstein statistics 
of photons. The so called black body catastrophe, which happens if we would 
consider a classical law of energy equipartition for the photons, leaded Planck to the 
conclusion of quantum nature of radiation.
Phonons in a three-dimensional crystal correspond to longitudinal and transversal 
elastic waves in the material and also form a gas that obeys to Bose-Einstein statistics 
that determines the specific heat of the crystal.
Electrons in a three-dimensional crystal can absorb or emit phonons and also can 
interact with each other exchanging a phonon according to a phonon-electron 
interaction Lagrangian density. The last process determines the forming of Cooper 
electron pairs which behave like bosons and at low temperatures condensate in the 
same ground state, the material becoming a superconductor.
The emission and absorption of phonons by conduction electrons is the source of 
mobility effects like electric conductivity and thermal conductivity which are in 
direct relation with the phonon-electron interaction coupling constant.
Magnetic flux quantization is a consequence of considering theoretical magnetic 
monopoles and electric – magnetic duality in electrodynamics.
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The Hall effect is a mobility effect of conduction electrons in presence of a magnetic 
field.
Perturbation theory applied to the Hamiltonian of conduction electrons from a crystal 
lattice explains the apparition of Landau energy levels and of the quantum Hall effect 
by the integer filling number of Landau levels. Fractional quantum Hall effect is 
caused by the interaction of electrons as fractional quasiparticles satisfying a 
fractional statistics (experiencing a fractional phase shift when moving around each 
other) tied to a flux quanta in the case of of a fractional (inverse odd integer) filling 
number. 
Spin dependent Mott scattering of conduction electrons on the spinless impurity 
atoms in a crystal lattice determine a spin Hall effect of spin current normal to a 
charge current.
Non-abelian gauge theories, involving several tuples of fermion fields transforming 
under a unitary gauge symmetry group representation which can interact through 
gauge boson fields, are the natural generalization of the quantum electrodynamics of 
electrons and photons, needed to describe the interactions of particles in the Standard 
Model.
Adding various interaction terms to the Lagrangian density, the symmetry of the 
theory can be spontaneously broken when the vacuum expectation value of the field 
not vanishes. Every time a continuous symmetry is spontaneously broken so called 
Nambu-Goldstone massless bosons appear so that he theory can be reduced to a 
broken zero expectation value field theory, after redefining the field by extracting the 
vacuum expectation value.
The effective potential minimizes at the vacuum expectation value of the field.
The mass terms in the Lagrangian theory can be seen as interaction terms of the 
theory fields with an additional Higgs field that has non-zero expectation value and 
by the Anderson-Higgs mechanism, the gauge bosons also can achieve mass, at the 
same time ‘eating’ the Nambu Goldstone bosons that appear through the spontaneous 
symmetry breaking.
The necessity of CP-violation which is one of the Sakharov conditions for creation of 
an imbalance between matter and antimatter in the early universe, requires complex 
phases in the Cabibo-Kobayashi-Maskawa matrix (and/or Pontecorvo-Maki-
Nakagawa-Sakata matrix) and so at least three families of leptons and quarks must 
exist in nature.
The necessity that baryons, as fermions, have an antisymmetrical tensorial product 
wave function and also the ratio between (experimental measured) crosss sections of 
electron-positron anihilation into hadrons and of electron-positron anihilation into a 
muon-antimuon pair confirm the number of three quark colors and so the SU(3) 
symmetry of chromodynamics.
The SU(3)xSU(2)xU(1) Georgi-Glashow model unifies the electromagnetic, 
electroweak and chromodynamics strong interactions between the Standard Model 
fermions mediated by gluons.
Beta decay allowed by the SU(2)xU(1) electroweak symmetry group determines 
transmutation of atomic nuclei .

Page 5 of 6 5 of total 515  Gh.V.B. Introd. to...QFT 



The strong coupling of chromodynamics determines the confinement of quarks at low 
energies.
The theory is renormalizable and by renormalization the electroweak and 
chromodynamics coupling constants become smaller and smaller as the energy or 
momentum transfer scale increases, determining asymptotic freedom, the quarks 
appearing free as isolated particles at high energies. 
As the energy scale increases the renormalized three coupling constants of the 
Georgi-Glashow model draw closer each to other until at certain mass-energy scale 
the SU(3)xSU(2)xU(1) symmetry is unified to a SU(5) symmetry.
The SU(5) symmetry group allows proton decay by emission of a quark-lepton 
mixing gauge boson which must have a huge mass compared to the mass scales we 
usually encounter for the mean life time of the proton being sufficiently long to 
assure the stability of universum.Thus the stability of the world implies that the 
unifying mass-energy scale, since quark-lepton mixing bosons are allowed only in the 
unified group, must be huge compared to regular mass scales that implies weakness 
of electromagnetism (of the fine structure constant).
It must be noticed that the SU(5) unified theory breaks baryon number conservation 
(which is another Sakharov condition) in interactions mediated by the same quark-
lepton mixing bosons. 
The two SU(5) representations that appear in the Georgi-Glashow model can be 
unified in one irreducible spin representation of SO(10) which naturally allows the 
introduction of the (sterile) right handed neutrino. The seesaw mechanism applied to 
the right handed neutrino (Majorana) mass matrix generates for the (observed) left 
handed neutrino a small mass.
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                    Special relativity, Lorentz transformations

 Consider the affine euclidean space of space-time events in special relativity, U
A reference frame will be identified with a bijective function R :U→ℝ

4

For a space-time event P∈U  we have R (P)=( x̄ , t )  with x̄=(x1 , x2 , x3) spatial coordinates 
and t time coordinate.

R−1
( 0̄)=O  with 0̄=(0 , 0 , 0 ,0)  and OP=( x̄ , t )

For two reference frames R , R’  we have the coordinate transformations
T :ℝ4

→ℝ
4  , T=R ′∘R−1  , R(O)=0̄  , R ′(O ′)=0̄

T (OP)=O ′P ′=T (0̄)+M(OP )
T (0̄)=O ′O  , M(0̄)= 0̄

We consider now ℝ
4
=E as the four dimensional euclidean space of points which has at the same

time the four dimensional real vector space structure.
Suppose that R , R’ are inertial reference frames. The fact that if a particle is moving uniformly 
rectilinear as it is seen in the frame R then it will be seen moving uniformly rectilinear in the frame 
R’ leads to the fact that T transforms any straight line of E into a straight line :

for any points A , B∈E  we have T (AB)=T (A)T (B)
If (A1 A2 A3)  is a plane in E  and P∈(A1 A2 A3) we can take, after eventually renumbering, a 

point Q=P A1∩A2 A3 . Therefore we will have
Q ′=T (Q)=T (P A1)∩T (A1 A2)=P ′ A ′1∩A ′2 A ′3  and so P ′=T (P)∈(A ′1 A ′2 A ′3)

T transforms any plane into a plane.
 Thus if AB∥CD  , A ,B ,C ,D∈E  then A ,B ,C ,D  are coplanar and so A’,B’,C’,D’ are also 

coplanar and A ′B ′∩C ′D ′=T (AB)∩T (C D)=∅  which means A ′B ′∥C ′D ′
On E=ℝ4  we have the compatible affine structure given by AB=B−A  for any A,B∈E
For any A,B∈E  , considering S=0̄  and the parallelogram [S ACB]  we will have 
also [S ′ A ′C ′B ′ ]  as a parallelogram and so 

C=A+B
T (C)=T (A)+T (B)−T (S)  which easily leads to 

M(A+B)=M (A)+M(B)
For A, B, C, D in E such that C is the middle of the segment AB and B is the middle of the segment 
AD, considering the parallelograms [AGBF] and [AKDH] where B is the middle of the segment KH 
we will have that [A’G’B’F’] and [A’K’D’H’] are also parallelograms with centres at C’ respective 
B’ and so C’ is the middle of segment A’B’  and B’ is the middle of the segment  A’D’.
Therefore it is easy to prove by induction that

any A∈E=ℝ4  , m ,n∈ℤ  satisfy M(
m
2n

A)=m
2n

M(A)

      Lemma

 {
m
2n
∈ℚ|m∈ℤ ,n∈ℕ} is dense in ℝ

           Proof :
 For α∈ℝ  , ϵ∈ℝ+

we can take p ,m∈ℤ  , q ,n∈ℕ*  such that 
1
q
< ϵ

2
 , |pq−α|< ϵ2  , 

1

2n
<

1
2q

 , 
m
2n
∈( p

q
,
p+1

q )

and so |m2n
−α|< 1

q
+|pq−α|<ϵ

If T is continuous it follows now that M(αA)=αM(A)  for any A∈ℝ4  , α∈ℝ
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Hence, under the considered assumptions, M is linear continuous.
T (u)=T (0̄)+M(u)  for u∈ℝ4

For ( x̄ ,t )=(x1 ,x 2 , x 3, x4)  and ( x̄ ′ ,t ′)=(x ′1 , x ′2 ,x ′3 , x ′4)  we have 
x ′k=Mk l x l  (with Einstein summation convention) , or taking ( x̄ , t )  and ( x̄ ′ ,t ′)

as column vectors X respective X’ , we write X’ = MX.
Let G=(γpq)  with γαβ=δαβ  ,γ4α=γα 4=0  , γ4 4=−c2  for α ,β=1 , 2, 3

( where c is the speed of light constant )
Considering O ,P∈U separated by a light signal, for OP=XT  we have XT G X=0
because the light signal travels from O to P with the speed c.
We assume, according to special relativity, that the speed of light is the same constant in any inertial
reference frame and so it follows that if XT

∈ℝ
4  satisfies XT G X=0  then X ′T G X ′=0

Therefore if XT
∈ℝ

4  and XT G X=0  then XT MT GM X=0          (1)
Taking X T

=(±c t , 0 ,0 , t )   ,  MT G M=(ak l)  it follows 

a11 c2 t2
+a4 4t

2
±2a1 4ct 2

=0  for any t∈ℝ  and so a14=a4 1=0  ,−a4 4=c2 a11

In the same way we have a4 4=c2 aαα  , aα 4=a4 α=0  for α=1 ,2, 3
(the matrix MTGM  being obviously symmetric)

Taking X T
=(c x1 ,±c x 2 , 0 ,√x1

2
+x2

2
)  it follows now 

a4 4 x 1
2
+a4 4 x2

2
−a4 4(x 1

2
+x2

2
)±2a12 x1 x2=0  for any x1 , x2∈ℝ  and so a12=0

In the same way we obtain aαβ=0  for α≠β

Hence exists l∈ℝ  such that l G=MT G M
We suppose now that the frame R  moves with constant velocity v̄ ′  in R ′
 (i.e.  a point at rest in R  moves with velocity v̄ ′  in R ′  )
and R ′  moves with constant velocity v̄  in R
We take S :ℝ4

→ℝ
4  , S=T−T (0̄)  and we have S∘R ′∘R−1

=M
Let Ort={(ak l)∈M4×4(ℝ)|aα 4=a4 α=0  , (aαβ)=Q  , α ,β=1 ,2, 3  , QT Q=I  , a4 4=1}

Rotating adequately the frames S∘R ′  and R  we can find Q ,P∈Ort  such that P ∘R=R1

moves with velocity (0 , 0 ,v ′)  , v ′=‖v̄ ′‖ in Q∘S∘R ′=R0  and R0  moves with velocity 
(0 ,0 ,v)  , v=−‖v̄‖ in R1

Obviously we have R0 ∘R1
−1
=QM PT

=M̄  , l G=M̄T GM̄        (2)

It follows that for M̄=(mk l)  and M̄−1
=(mk l

*
) we have

(mk 4)k=(0 ,0 , sv ′ , s)  , s≠0

(mk 4
*
)k=(0 ,0 , s* v ,s*

)  , s*
≠0

Let N=(√γpq)    (with √−c2
=i c  , p ,q=1, 4 )  , Z=N M̄N−1       (5)

From (2) follows l I=ZT Z  , l Z−1
=ZT     (6)

By calculus from (5) , (3) , (4) we have  
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Z=(
. . . 0
. . . 0
. . . −i sv ′/c
. . . s

)  , Z−1
=(

. . . 0

. . . 0

. . . −i s* v /c

. . . s* )

Hence , considering (6) we will have

Z=(
. . . 0
. . . 0
. . . −i s v ′ /c
. . −i s* l v /c s

)  , s=s*l  , l=−s*2 l2 v2
/c2

+s2
=−s2 v ′2/c2

+s2

Therefore v=−v ′    (because we have chosen v ′>0  and v<0)

Since v2
<c2  we have l>0

By calculus, it follows

M̄=N−1 Z N=(
. . . 0
. . . 0
. . . sv ′
. . −sv /c2 s

)  , M̄−1
=N−1 Z−1 N=(

. . . 0

. . . 0

. . . s* v

. . −s*v ′ /c2 s* )
t=s ′(t ′−v ′

c2 x ′3)  , t ′=s (t− v
c2 x3)  , x ′3=s (x3−v t )

We admit the causality principle so that if an event precedes an other event at the same spatial point 
as it is seen in the inertial reference frame R1 then that one event precedes the other one event also 
in the inertial reference frame R0 . Therefore we have

s>0  , s=√lβ  where β=
1

√1−
v2

c2

Since we have l>0  such that l G=MT GM  if we consider |det M|=1  we will have  

l4
=(det M)

2  , l=1  and so M leaves invariant  the symmetric bilinear form product on the 
Minkowski space V=ℝ

4  defined by X⋅Y=XT GY  with X ,Y  as column vectors in ℝ4

Consider now M∈M4×4(ℝ)  such that G=MT G M . It is obbvious that also G=M−T GM−1

and |det M| = 1 and so if linearly independent vectors
(Ek)k=1 ,4  are a Minkowski base in V   ( i.e.E p⋅Eq=γpq  for p ,q=1 , 4)  then ( E’k )

with E ′k=ml k
* E l  , (mk l

*
)=M−1  for k , l=1 , 4  is also a Minkowski base of linearly independent

vectors.
Obviously, if xk Ek=x ′k E ′k  then x ′k=mk l x l

mpk mql γpq=γk l ( 7 )
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mpk
* mql

*
γpq=γk l (8)

We have mα4
* mα4

*
−c2 m4 4

*2
=−c2  and so m4 4

* 2
≥1  ( 9 )

The assumed causality principle means

m44
*
>0 . Hence we can take v∈ℝ  , v 2

<c2  such that m44
*
=β=

1

√1−
v2

c2

If v=0 , from (8) follows mα 4
*
=0  and now for any ((x ′α) , t ′)∈ℝ

4  we have 

mαγ
* mα ϵ

* x ′γ x ′ϵ−c2
(m4α

* x ′α+t ′)2=x ′α x ′α−c2t ′2  

This leads to m4α
*
=0  and mα γ

* mαϵ
*
=δγ ϵ and finally to M−1  , M∈Ort

We suppose now v≠0  and we can take 

A= 1
vβ

mα4
* Eα  with α=1 ,2 , 3

E ″3=βA+vβ
c2 E4        (10)

It is easy to prove that we have E ′4=vβA+βE4        (11)
and A⋅E4=0  , A⋅A=1  , E ″3⋅E ′4=0  , E ″3⋅E ″3=1       (12)

Consider the following system in unknown variable X∈V
E ′4⋅X=0        (13)
E4⋅X=0          (14 )
A⋅X=0           (15)
E ″3⋅X=0        (16)

Because of (10) , (11) the system is satisfied if and only if (14) and (15) are satisfied.
Obviously we can take Ek=(δk l)l  for l ,k=1, 4 and so it is easy to prove that we can take
(E ″ i)  such that E ″i⋅E ″ j=δi j  and for X=E ″ i  are satisfied (13)-(14) for i , j=1, 2

Therefore from (14) , (15) , (12) follows that (E’’1 , E’’2 , A) is an orthonormal basis of
[E1 , E2 , E3] and from (13) , (16) , (12) follows that (E’’ 1, E’’2 , E’’3) is an orthonormal basis of
[E’1 , E‘2, E’3].
We can transform the Minkowski base (E1 , E2 , E3 , E4) to Minkowski base (E’’ 1, E’’2 , A , E4)
by orthonormal coordinate transformation Q∈Ort .
However we can choose E’’1 , E’’2  such that detQ = 1 (if not we take -E’’1 instead of E’’1)
We can transform the Minkowski base (E’’ 1. E’’2 , A , E) to Minkowski base (E’’1 , E’’2 , E’’3 , E’4) 
by the boost coordinate transformation

Mv=(
1 O 0 0
0 1 0 0
0 0 β −vβ
0 0 −vβ/c2

β
)

We can transform the Minkowski base (E’’1 , E’’2 , E’’3 , E’4) to Minkowski base 
(E’1 , E’2 , E’3 ,E’4) by orthonormal coordinate transformation P∈Ort
Therefore we have M=P Mv Q  with P ,Q∈Ort , det Q=1

If det M=1 we will have det P=det Q=1
From the relation M=P Mv Q  follows without difficulties that we have : 
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Mα γ=R̄α γ+
β−1

v 2 R̄αϵv ϵvγ  where R̄α γ=Pα ϵQϵ γ

M4γ=−
β

c2 vγ  , Mγ 4=−β R̄γ ϵvϵ  , M4 4=β

 with vα=Q3αv  , vαvα=v 2  , β=
1

√1−
v2

c2

 , v 2
<c2

(17)

 for α , γ ,ϵ=1,2 ,3
and so M is described by 6 parameters ( 3 parameters for the rotation R̄ and 3 parameters for 

v̄=(vα) )
Thus we have proven that
ℒ={M∈M4×4(ℝ)|∃P ,Q∈Ort  , v∈ℝ  such that det P=det Q=1  , v2

<c2  , M=P Mv Q}=

={M∈M4×4(ℝ)|m4 4
*
>0  , G=MT GM  , det M=1}

We notice that if M∈ℒ  then according to (17) m4 4=β=m4 4
*
>0  and if 

M∈{M∈M4×4(ℝ)|m4 4>0  , G=MT GM  ,  det M=1} then M−1
∈ℒ  and from the above 

we can deduce m4 4
*
=m4 4>0  and so we have also 

ℒ={M∈M4×4(ℝ)|m4 4>0  , G=MT GM  , det M=1}
If M ,M ′∈ℒ  we have for M ″=M ′M  calculating according to (17) 

M ″4 4=β ′β( v̄ ′⋅R̄v̄
c2

+1)
We have v̄ ′⋅R̄ v̄>−|v v ′|>−c2  and so M ″44>0

Also Mv
−1
=M−v

Therefore , from the above follows that ℒ is a connected 6 – dimensional Lie group,
SO+

(3 , 1) the restricted Lorentz group. The more general set of transformations that also 
includes 4 – dimensional translations in space-time is known as the Poincare group.
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2. Representations of the rotation group and of the
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             Representations of the rotation group and of the restricted Lorentz group
                              Spin representations

For a finite dimensional vector space V, we have the general linear group
GL(V )={T :V→V|T linear homeomorphism}

with the usual composition operation and topology and for a given Lie group G (as a real manifold 
with continuous differentiable group inversion and multiplication) we consider group 
representations U such that for any map of G, h :D→G  , U  is considered to be definite on the 
map domain D by a function U :D→GL(V ) and there exists a map
h0 :D0→G  with IG∈h0(D0)  such that for any map h :D→G  of the manifold  G  , 
 for any R∈h(D)  exist neighbourhoods of IG  and R  , W0  respective W1  such that 

U(h−1
(R0R1))=U (h0

−1
(R0))U(h−1

(R1))  for any R0∈W 0  , R1∈W1  . 
if there is no confusion we will denote U∘h0

−1  by U  and U∘h−1  by Uh

Moreover we consider that U is continuous differentiable on map domain for any map of G.
In the following we will denote indexing from 1 to 3 by Latin characters and indexing from 1 to 4 
by Greek characters and also use the Einstein summation convention for repeating indexes.

 Let G={R∈M3×3(ℝ)|RTR=I  , det R=1  , R=(Ri j)}=SO(3) the rotation group.
 Any R∈SO(3)  can be written as R=R(φ ,n) a rotation around an axis of versor 
n=(ni)  by an angle of φ  radians and we will have :
Ri j=−ϵi j knk sin(φ)+(δi j−nin j)cos (φ)+nin j

Obviously we have :
R(φ+δφ ,n)=R(δφ ,n)R (φ ,n)

dR
dφ

(φ ,n)=
dR
d φ

(0 ,n)R(φ ,n)

R(δφ ,n)=I−i δφnk J̄k+O(δφ
2
)  with ( J̄k)i j=−i ϵi j k          (1)

dR
dφ

(0 ,n)=−i nk J̄k

R(φ ,n)=exp (−iφnk J̄k)           (1’)
Therefore SO(3) is a 3-dimensional manifold with maps given from the parametrisation in

(φ1 ,φ2 ,φ3)=(φn1,φn2 ,φn3)  as local coordinates and further we will take as h0 the map 
from the ( 0, 0, 0) containing domain.
It is easy to verify that we have the commutation relations:

[ J̄i , J̄ j ]=i ϵi j k J̄k  where [A ,B]=AB−BA denotes the commutator of A and B.
Let U be a representation of SO(3) over a finite dimensional complex vector space V such that U 
takes unitary operators as values. We have :
Uh(R(φ+δφ ,n))=U (R(δφ ,n))Uh(R(φ ,n))  if δφ  is small enough 

and so , differentiating with respect to δφ  we obtain 
dU
dφ

(R (φ ,n))=
dU
d φ

(R(0 ,n))U(R(φ ,n))  for R(φ ,n)∈h0(D0)

and if we define the operators Jk  by 
dU
d φ

(R(0 ,n))=−i nk Jk  we will have : 

U(R(φ ,n))=exp (−iφnk Jk)  for R (φ ,n)∈h0(D0)    (2)
and
U(R(δφ ,n))=I−i δφnk Jk+O(δφ

2
)         (2’)
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The representation being unitary it follows that the operators Jk must be self-adjoint.
For any R∈SO(3)  , because det R=1  we have 
R j pϵi j kRk q=Rimϵmpq   ,  RT J̄iR=Rim J̄m  and thus 

RT exp(−i θ J̄ j)R=exp(−iθR j k J̄k)     (3)  and for φ ,θ  small enough with R=R(φ ,n)

we will have :
U(R)

−1U(exp (−iθ J̄ j))U(R)=U (exp(−i θR j k J̄k)) (4) and from (1’) and (2) we obtain now

U(R)
−1 exp(−i θ Jl)U (R)=exp (−i θRl j J j)    (5)

Differentiating with respect to θ  we obtain 
U(R)

−1 JlU(R)=Rl j J j (5’)
Taking φ=δφ from (1) and (2’) follows

(I+i δφnk Jk) J l(I−i δφnk Jk)=(δl j−i δφnk ( J̄k)l j) J j+O(δφ
2
)

 and so, because ( J̄k)l j=−i ϵk l j  we have the commutation relations : 

[ Jk , Jl ]=i ϵk l j J j (6)

We say that the representation U is irreducible if and only if there are no proper invariant subspaces 
of V ,i.e. if
V1  is a subspace of V  satisfying U (R)(V 1)⊂V 1  for any R∈h0(D0)  then V 1={0} or V 1=V

Consider now U a finite dimensional complex unitary representation of SO(3).
Because of the commutation relations (6) we find that J2= Jk Jk commutes with all of the 
generators Jl and by (2) with U(R)  for any R=R(φ ,n)∈h0(D0)

U  being unitary J2  is selfadjoint positive semi-definite and so it has an eigenvalue λ∈ℝ+

 For R∈h0(D0)  ,if J2v=λv  we have J2U(R)v=U(R) J2v=λU(R)v  and U (R) leaves the 
eigenspace of λ  invariant . Therefore , because the representation is irreducible, the eigenspace 
must be the whole space V.

 Let denote ( Jk)=( Jx , Jy , Jz ). We can take j≥0  such that λ= j( j+1)

Jz  being self-adjoint and V finite dimensional, there will be a finite number of distinct 
eigenvalues of Jz :λ1<λ2<…<λp

 Let J+= Jx+ i Jy . Then if Jz v=μv  with v≠0  from (6) follows Jz J+ v=(μ+1)v
Hence, because V is finite dimensional we can take m0=max {m∈ℕ| J+

mv≠0} .

 Let v 0= J+
m0v  and we will have Jzv0=(μ+m0)v0

 For J−= Jx−i Jy . Then if Jzw=ρw  with w≠0  follows Jz J−w=(ρ−1) J−w  and we take 

m1=max {m∈ℕ| J−
mv0≠0}  ,  vk= J−

k v 0  for k=0 ,m1 .

 From (6) follows J+ J−= J2− Jz
2
+ Jz  and therefore for k=1 ,m1  we have 

J+ vk=( j ( j+1)−(μ+m0−k+1)
2
+(μ+m0−k+1))vk−1  and also J+v 0=0

 Hence the subspace generated by v0 ,v1…,vm1
 , S=Sp [v 0 ,v1… ,vm1

] is invariant under

J+ , J− , Jz  and so under U(R)  for any R∈h0(D0)   which leads to S=V  and 
{λ1 ,λ2 ,…,λp}={μ+m0−m1 ,μ+m0−m1+1 ,…,μ+m0} , m1+1=p the eigenspace for each 

eigenvalue λk=μ+m0−m1+k−1  being unidimensional and so we have αk∈ℂ  such that 
J+ vk=αkvk−1  for k=1 ,m1  and also we have J− vk=vk+ 1  for k=0 ,m1−1 ,
J+ v0=0  , J−vm1

=0  and J+
+
= J−  because Jx  and Jy are self-adjoint. Therefore we have

|αk
2|⟨vk−1|vk−1⟩=⟨vk| J− J+|vk ⟩=⟨v k|vk⟩( j ( j+1)−(μ+m0−k )(μ+m0−k+1)) and

⟨vk+1|vk+1⟩=⟨vk| J+ J−|vk⟩=⟨vk|vk ⟩( j ( j+1)−(μ+m0−k )(μ+m0−k−1))

 for k=1 ,m1  and respective k=0 ,m1−1 and
μ+m0= j  , −μ−m0+m1= j

Hence we have 
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m1=2 j  and − j≤μ+m0−k≤ j  for k=0 ,m1  , dimV=2 j+1
Unitary complex finite dimensional irreducible representations of SO(3) have 2 j + 1 dimensional
Jz  having eigenvalues with one-dimensional eigenspaces : − j ,− j+1 ,…, j−1 , j
J2  has only eigenvalue j ( j+1)  and j is a non-negative half-integer multiple.

If we take for V the wave functions Hilbert space of a quantum particle, because of the 
commutation relations for coordinates operators and momentum operators ,

[ x̂l , p̂ j]=i δl j ℏ

it follows that the angular momentum operators Ji=
1
ℏ
L̂i  with L̂=X̂×P̂  

satisfy the commutation relations (6) and therefore they can generate an unitary complex 
representation of SO(3). In polar coordinates (r ,θ ,φ)  we have: 

1

ℏ
2
L̂2

=−
1

sin2
(θ)

∂
2

∂φ
2
−

1
sin(θ)

∂
∂θ (sin(θ) ∂

∂θ )
the spherical functions operator , which has the eigenvalues l(l+1) with eigenstates the spherical 
harmonics
Y l
k
(θ ,φ)=P l

|k|(cos (θ))exp (i kφ)  with k , l∈ℕ|k|≤l  and P l
|k| the associated Legendre 

polynomials. Also we will have :
1
ℏ
L̂+=exp( iφ) ∂

∂θ
+i cot(θ)exp (iφ) ∂

∂φ

1
ℏ
L̂−=−exp(−iφ) ∂

∂ θ
+ i cot(θ)exp(−i φ) ∂

∂φ

1
ℏ
L̂z=− i ∂

∂φ

where we have taken 
z=r cos(θ)  , y=r sin (θ)sin(φ)  , x=r sin (θ)cos(φ)

The eigenstates of the l(l+1) generate (for constant r) the invariant subspace of the irreducible spin l
representation.

 Let (σk) be the Pauli matrices 

σ1=(0 1
1 0)  , σ2=(0 −i

i 0 )  , σ3=(1 0
0 −1)

 For M∈SU(2)={S∈M2×2(ℂ)|S+ S=I  , det S=1} we have uniquely determined

(αk)∈ℂ
3  and α0∈ℂ  such that M=α0I−iαkσk  , because (I ,σ1 ,σ2 ,σ3) provide a basis for the 

complex vector space M2×2(ℂ)

 For a=ℜ(α0)  , b=ℑ(α0)  , X⃗=ℜ(α⃗)  , Y⃗=ℑ(α⃗)  the conditions M∈SU(2)   lead to 

a2
+b2

+ X⃗2
+Y⃗ 2

=1  and a2
+ X⃗2

−b2
−Y⃗ 2

=1  and so we have a versor (nk)  and an angle θ
2

 uniquely determining a=cos( θ
2
)  , X⃗=nsin( θ

2
)  , b=0  , Y⃗=0

Therefore SU(2) is a 3-dimensional Lie group with local mappings given by the parametrisation

(φnk)∈ℝ
3  , h((φnk))=exp(−i 1

2
nkσk)=cos (

φ

2
)I−i sin(

φ

2
)nkσk

We can verify that we have a local diffeomorphism
T :SU(2)→SO(3)  which in any map parametrisation (φnk)  has the expression 

T (exp(−i 1
2

φnk σk))=R(φ ,n)

Moreover, considering the factor group
SU (2)/{−I ,I} with the projection p :SU(2)→SU (2) /{−I ,I} we have that 
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p∘T−1  is well defined as diffeomorphism from  SO(3)  to SU (2)/{−I ,I} which has a 
differential manifold structure that can be considered as induced by the local diffeomorphism T.
SU (2)  is a double covering of SO(3) , for any R(φ ,n)  corresponding 

±(cos(
φ

2
)I−i sin(

φ

2
)nkσk)  because we have R(φ ,n)=R(φ+2π ,n)

 For R=R (φ ,n)∈SO(3)  , S∈SU(2)  , T (S)=R  we have that 
S−1

σk S=Rk jσ j  and so if Si∈SU(2)  satisfies T (Si)=Ri∈SO(3)  for i=1,2  then 

 for S=S1 S2  , R=R1R2  we have that S−1
σk S=Rk jσ j  with k=1 ,2 ,3

 If W∈SU (2)  satisfies T (W )=R  we will have also W−1
σkW=Rk jσ j  and therefore 

 for H=SW−1  we have Hσk=σkH  with k=1 , 2, 3
 Thus (I ,σ1 ,σ2 ,σ3)  being a basis of M2×2(ℂ) ,H commutes with any 2x2 complex matrix  so
 exists λ∈ℂ  such that H=λ I  and because det H=1  follows H=±I
therefore S=±W and because T (W )=T (−W )  we conclude that 
T (S1)T (S2)=T (S1S2)  for any S1 ,S2∈SU(2)  and p∘T−1 is a groups isomorphism.

 Let U  the so called spin 
1
2

 representation U (R(φ ,n))=exp(−i 1
2

φnk σk)

 For any map h  of SO(3)  we have obviously T (U ∘h−1
(R))=R  and so 

T (U∘h−1
(R0R1))=T (U ∘h0

−1
(R0))T (U∘h−1

(R1)) and as we have proven above it follows
Uh(R0R1)=±U(R0)Uh(R1)  for R0 ,R1  in some neighbourhoods of I  respective R  (*)
 Because Uh  and U∘h0  are continuous in neighbourhoods of R  and respective  I and

U∘h0
−1

(I)=I , from the relation (*) we can derive the condition for U to be indeed a 
representation of SO(3).

 For U i  a GL(V i)  valued representation of SO(3)  with i=1 ,n  we can consider the  

GL(
i=1

n

V i)  valued representation which in any map h :D→SO(3)  has the expression 

Uh(R)(φ1⊗φ2…⊗φn)=Uh
1
(R)φ1⊗Uh

2
(R)φ2⊗…⊗Uh

n
(R)φn

 If we denote the generators of Uk  by Jk ,i i=1 ,2 ,3  then for the generators Ji  of U  we have 

Ji=∑
k=1

n

I⊗…⊗ Jk ,i⊗…⊗I  and so Jz  carries eigenvalues m1+m2+…+mn

with mk∈{− jk ,…, jk} if Uk  is a spin jk  representation for k=1 ,n

Take now n=2 j  and Uk
=U(1) ,the same spin 

1
2

 representation , valued on GL(V (1 )
)

 having generators J i
(1)  with eigenstates e+ ,e−  for eigenvalues 

1
2

 respective −
1
2

 of Jz
(1)

We can consider the subspace of symmetric tensors of the tensorial product space

V (n)
=
k=1

2 j

V (1) namely

S={ ∑
i1 ,i2 ,… ,i n=±

ai 1 i2…i n ∑
τ∈Sn

eiτ(1)⊗ei τ(2)⊗…⊗ei τ(n)|ai1 i 2… i n∈ℂ  for i1 , i 2 ,…, i n=± }

 The product representation is U(n)  with generators J i
(n)

The subspace S  is invariant under U(n)  carries the eigenstate e+⊗e+⊗…⊗e+

of eigenvalue j  of Jz
(n)  and has dimension n+1=2 j+1 and therefore the restriction of 

U(n )  to S  must be a spin j  irreducible representation of SO(3) .
In the same way we conclude that the representation given by
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 U(R)=R  for any R∈SO(3)  is a spin 1 irreducible representation 
and the representation given by
U(R)((εi j)i , j=1 , 2 ,3)=(Rk iRl j εi j)k ,l  with invariant space 
V={ε∈M3×3(ℂ)|εi j=ε j i  , εkk=0  with i , j=1, 2 ,3} , the symmetric traceless tensors, is a spin 2 

representation.

Consider now G=SO+
(3 , 1) the restrict Lorentz group (by suitable measuring units for time we 

can consider the speed of light constant to be c = 1  ) and the Minkowski  space with pseudo-metric
(η

αβ
)  , ηi j=−δi j  , η

i 4
=η

4 i
=0  , η4 4

=1
 For any M∈G  we have uniquely determinated B=B(χ ,q)  , R=R(θ ,n)  with 
n=(ni)  , q=(qi)  versors and χ ,θ  ∈ ℝ  such that M=BR
Ri j=−ϵi j knk sin(θ)+(δi j−n in j)cos(θ)+n in j  , Ri4=R4 i=0  , R4 4=1
Bi j=δ i j+(cosh (χ)−1)qiq j  , Bi4=B4 i=−q i sinh(χ )  , B4 4=cosh (χ)

 (see Chap. Special relativity. Lorentz transformation )v i=q i tanh (χ)

G=SO+
(3 , 1)  is therefore a 6-dimensional Lie group with maps by parametrisation in 

((χq i) ,(θn i))  and as the map h0  we will take the map which contains (0)∈ℝ
6 in its domain.

We can verify that
B(χ+δ χ ,q)=B(δ χ ,q)B(χ ,q)    (7)
R(θ+δθ ,n)=R(δθ ,n)R(θ ,n)      (8)

and we can define ( J̄i)  , (K̄ i)  such that 

nk J̄k=
dR
dθ

(0 ,n)   ,  qk K̄ k=−
dB
d χ

(0 ,q)  with  

( J̄i) j k=−ϵi j k   ,  ( J̄i)4α=( J̄ i)α 4=0   ,  (K̄ i)j k=0   ,  (K̄ i)4 j=(K̄ i) j4=δi j   ,  ( K̄ i)4 4=0
and so we will have :
B(χ ,q)=exp(−χqk K̄ k)   ,  R(θ ,n)=exp (θnk J̄k)      (9)

M(δχ ,q ;δθ ,n)=B(δ χ ,q)R (δθ ,n)=I−δ χqk K̄ k+δθnk J̄k+O(ε
2
)      (9’)

 for δχ  , δθ   ∈   O(ε)

[ J̄i , J̄ j ]=ϵi j k J̄k  , [K̄ i , K̄ j ]=−ϵi j k J̄k  , [ J̄i , K̄ j ]=ϵi j k K̄k     (10)

 For a representation U  of SO+
(3 ,1)  we can define ( J i)  , (K i)  such that 

nk Jk=
dU
d θ

(R(0 ,n))  , qkK k=−
dU
d χ

(B(0 ,q))  and we will have: 

U(B(χ ,q))=exp(−χqkKk)   ,  U (R(θ ,n))=exp(θnk Jk)   (11)

U(M(δχ ,q ;δθ ,n))=I−δ χqkK k+δθnk Jk+O(ε
2
)      (11’)

 for δχ   ,  δθ  ∈  O(ε)

 Let Al(θ)=R(−θ ,n) J̄lR(θ ,n) . Then from (9) and (10) follows 
d Al

d θ
=ϵl k j A j=( J̄k)l j A j  and because Al(0)= J̄l  we have the solution 

Al=R l j J̄ j  where R=R(θ ,n)  and so we have 

R−1 exp(φ J̄l)R=exp(φRl j J̄ j)
Therefore, according (9) and (11) , for θ  , φ  small enough we obtain 
U(R)

−1 exp(φ Jl)U(R)=exp(φRl j J j)  and taking the second order approximation in φ:
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U(R)
−1 JlU(R)=Rl j J j  and so for θ=δθ  follows 

(I−δθnk Jk) Jl(I+δθnk Jk)=(δ l j−δθnk ϵl j k) J j+O(δθ
2
)

[ Jl , Jk ]=ϵl k j J j      (12)

 In the same way, taking Al(θ)=R(−θ ,n) K̄ lR(θ ,n)  we obtain 

R−1 exp(−χ K̄ l)R=exp (−χRl j K̄ j)  with R=R(θ ,n)  and further, if θ=δθ  is small enough : 

(I−δθnk Jk)K l (I+δθnk Jk)=(δ l j−δθnk ϵk l j)K j+O(δθ
2
)

(nk)  being an arbitrary versor, we will have 
[ Jk ,K l ]=ϵk l jK j    (13)

We take now
Al (χ)=B(−χ ,q) K̄ lB(χ ,q)  , C l(χ)=B(−χ ,q) J̄lB(χ ,q)  and we have from (9) and (10)
d Al
d χ

=−qk ϵk l jC j

dC l

d χ
=−qk ϵk l j A j

Therefore , for B=B(χ ,q)  and R=R (χ ,q)  the solution 
B−1

(K̄ l+ J̄l)B=Rl j(K̄ j+ J̄ j)    (14)
 From (10) we obtain [K̄ i+ J̄i , K̄ j+ J̄ j ]=0  , [ K̄ i , J̄i ]=0  for i , j=1 ,2 , 3  and so we have: 

exp(χ ′ (K̄ l+ J̄l))=exp(χ ′ K̄ l)exp (χ ′ J̄l) and

exp(χ ′R l j( K̄ j+ J̄ j))=∏
j=1

3

exp (χ ′Rl j K̄ j)exp(χ ′Rl j J̄ j)

Multiplying (14) by χ ′ , exponentiating , applying U  for small enough χ  and χ ′  and after 
that considering (11) we obtain now:

U(B)
−1 exp(χ ′K l)exp (χ ′ Jl)U(B)=∏

j=1

3

exp(χ ′Rl jK j)exp (χ ′Rl j J j)

Taking the second order approximation in χ ′  we obtain, for small enough χ  that: 
U(B)

−1
(K l+ J l)U(B)=Rl j(K j+ J j)  and for χ=δ χ

(I+δχqkK k)(K l+ Jl)(I−δ χqk Kk)=(δl j−δχqk ϵk l j)(K j+ J j)
With (13) we can now conclude that 

[Kk ,K l]=−ϵk l j J j     (15)
We have therefore the commutation relations (12) , (13) , (15) for the generators.

Consider now the Dirac equation for a four component wave function ψ=(ψα) (as a column 
vector) of a mass m particle :
i γμ

∂μ ψ−mψ=0
with the 4x4 matrices 

γ
k
=(

0 σk

−σk 0 )  , γ4
=(

I 0
0 −I)

Under a Lorentz transformation M=(Mαβ) with
x ′μ=Mμδx

δ  , (xμ
)=(x , y , z , t )  , (x ′μ)=(x ′ ,y ′ ,z ′ ,t ′) (we consider the speed of light c = 1 )

we suppose that the wave function transforms like
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ψ ′α=Sαδ ψδ

We have Mνμ∂ν ′=∂μ  , γμMνμ∂ν ′S
−1

ψ ′=mS−1
ψ ′ and so requiring Lorentz invariance of the 

Dirac equation we come to
S−1

γ
νS=Mνμ γ

μ

We can verify that:
γ

α
γ

β
+γ

β
γ

α
=2η

αβ   (16)
 Considering (16), for M=B(χ ,q)  we can take 

S=P(χ ,q)=cosh (
χ

2
)I+sinh(

χ

2
)qk γ

k
γ

4

 and for M=R(θ ,n)  we can take 

S=Q(θ ,n)=cos( θ
2

)I+ 1
2

sin ( θ
2
)nk ϵk i j γ

i
γ
j

 Let SL(2,ℂ)={S∈M2×2(ℂ)|det S=1}

 Since (I ,σ1 ,σ2 ,σ3)  is a basis of M2×2(ℂ)  we have α0 ,α1 ,α2 ,α3   ∈ℂ , uniquely determined for
S∈SL(2,ℂ)  such that S=α0I+αkσk    (17)

 and α0
2
−α⃗

2
=1 which leads to

(ℜα0)
2
−(ℑα0)

2
=(ℜα⃗)

2
−(ℑα⃗)

2
+1    (18)

(ℜα0)(ℑα0)=(ℜα⃗)(ℑα⃗)          (18’)
 If we suppose now that S=(a I−X kσk)(bI−i Yk σk)   (19)

 with a,b∈ℝ   ,  a≥1   ,  (Xk) ,(Y k)∈ℝ
3

a2
−X⃗2

=1    (19’)
b2

+Y⃗ 2
=1     (19’’) , then (17) leads to

ab+ i X⃗ Y⃗=α0   (20)   and 

b X⃗+ ia Y⃗+ X⃗×Y⃗=−α⃗   (21) , or , by taking real and imaginary parts :
ab=ℜα0    (22)

b X⃗+ X⃗×Y⃗=ℜα⃗      (23)
X⃗ Y⃗=ℑα0    (24)

aY⃗=−ℑα⃗   (25)

Also from (17) we have :
b I−i Y kσk=(aI+Xkσk)(α0 I+αk σk) and so

b=aα0+α⃗ X⃗ (26)

Y⃗=iα0 X⃗+ i aα⃗− X⃗×α⃗   (27)

 1. If (ℜ α⃗)×(ℑα⃗)=0
        1.1 if ℑα⃗=0  we obtain Y⃗=0  from (25) and so, from (19'') b2

=1
By (18) and (18’) we will have in this case ℑα0=0 and taking the real part of (27) it follows

X⃗×ℜα⃗=0  , X⃗=λ ℜα⃗  with λ∈ℝ

From (26) we have now b=aα0+λ (ℜα⃗)
2  and multiplying by a  , using (22)  we have:

α0(1−a2
)=λ α⃗

2  and so with (19') follows −α0 λ
2
α⃗

2
=λα⃗

2a    (28)

If in this case α0
2
=1  from (18) we will have α⃗=0  and so X⃗=0  and by (19') and (22) 

a=1  , b=α0a . Hence a ,b , X⃗ , Y⃗ are uniquely determined from (19) by α0 , α⃗

If in this case α0
2
≠1  from (18) follows ℜα⃗≠0  and from (22) and (19’) follows

a2
≠1  and X⃗≠0 . Therefore λ≠0  and (28) leads to −λα0=a
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 and so, by (19') and (18) a2
=(ℜα0)

2
=1+(ℜα⃗)

2
>1 provides the correct uniquely determination 

of a ,b , X⃗  , Y⃗  from (19) by α0 , α⃗ .
       1.2. If ℑα⃗≠0  follows 

ℜα⃗=λ ℑα⃗  with λ∈ℝ  and because from (25) and (27) we have 
(a2

−1)ℑα⃗=−aℑα0 X⃗−a X⃗×ℜα⃗  , we will also have 

a( X⃗×ℜα⃗)
2
=0  and (a2

−1)ℑ α⃗=−aℑα0 X⃗ (29)  which by (19’) leads to 

(a2
−1)

2
(ℑ α⃗)

2
=a2

(a2
−1)(ℑα0)

2    (30)
                    1.2.1 If (ℜα0)(ℑα0)=0
In this subcase, from (18’) follows ℜα⃗=0  and with (23) and (25) we obtain 

b X⃗2
=0  and X⃗=μ Y⃗  , μ∈ℝ

From (22), (25) , (19’’) and (18) we have a2
=(ℜα0)

2
+(ℑα⃗)

2
=1+(ℑα0)

2
+(ℜα⃗)

2
≥1

From (24) and (25) we have μ(ℑα⃗)
2
=a2

ℑα0  and so a ,b , X⃗ , Y⃗ are correctly uniquely 
determined.
                       1.2.2 If (ℜα0)(ℑα0)≠0
In this subcase, (24) leads to
X⃗≠0  and so, by (19') a2

≠1  and from (30) follows a2
((ℑ α⃗)

2
−(ℑα0)

2
)=(ℑα0)

2 (31)

In this case (ℜα⃗)
2
(ℑ α⃗)

2
=((ℜα⃗)(ℑ α⃗))

2  and therefore, by (18) and (18') taking

μ
2
=

(ℑα0)
2

(ℑα⃗)
2  we obtain (1−μ

2
)((ℜ α⃗)

2
+(ℑα0)

2
+1)=1  and so μ2

<1

Hence, by (31) , (29) , (22) , and (25) a ,b  , X⃗  , Y⃗ are again correctly uniquely determined.

 2. If (ℜ α⃗)×(ℑα⃗)≠0
 we have λ ,μ ,ρ∈ℝ  such that 
X⃗=λ ℜα⃗+μ ℑα⃗+ρ(ℜ α⃗)×(ℑα⃗)  the relations (25) , (21) and (24) leading to 
λ ℜα0+ρ(ℑα⃗)

2
=−a   (32)

μ ℜα0−ρ(ℜα⃗)(ℑ α⃗)=0 (33)
λ−ρℜα0=0    (34)

λ (ℜα⃗)(ℑα⃗)+μ(ℑα⃗)
2
=−ℑα0     (35)

From (22) , (25) , (19’’) and (18) we have a2
=(ℜα0)

2
+(ℑα⃗)

2
=1+(ℑα0)

2
+(ℜα⃗)

2
≥1

which determines correctly
a≥1  and now (32),(34) and (35) determine λ ,μ ,ρ  and therefore X⃗ ; ( 25 ) determines Y⃗
a,b , X⃗ , Y⃗  are correctly uniquely determinated from (19) by α0  and α⃗

 Taking a=cosh (
χ

2
)  , X⃗=sinh(

χ

2
)q  , b=cos (θ

2
)  , Y⃗=sin( θ

2
)n  with versors q ,n ,

we  see that S L(2 ,ℂ) can be considered as a 6-dimensional Lie group with mappings given by 
local parametrisation in

((χqk),(θnk))∈ℝ
6  , h((χqk) ,(θnk))=exp(−

1
2

χ qkσk)exp (−i 1
2

θnkσk) ,

because we can easily verify by differentiation and same initial conditions that

cosh (
χ

2
)I−sinh(

χ

2
)qkσk=exp(−

1
2

χqkσk)  and  

cos (θ
2

)I−i sin( θ
2
)nkσk=exp(− i 1

2
θnkσk)

We define T :SL(2 ,ℂ)→SO+
(3 , 1)  and H :SL (2,ℂ)→M4×4(ℂ)  such that if 

S=exp(−
1
2

χ qkσk)exp (−i 1
2

θnkσk)  then 
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T (S)=B(χ ,q)R(θ ,n)  and H(S)=P(χ ,q)Q(θ ,n)

 For S1  , S2∈SL(2 ,ℂ)  we can verify that: 

H (S i)
−1

γ
μH (Si)=(T (S i))μν γ

ν  for i=1 ,2   ,  μ=1 , 4  and therefore 

(H (S1)H (S2))
−1

γ
μ
(H (S1)H (S2))=(T (S1)T (S2))μνγ

ν

 Let be S  such that T (S)=B(χ ,q)R (θ ,n)=T (S1)T (S2) . Then we can have only 

S=±exp(−
1
2

χqkσk)exp (−i 1
2

θnkσk)  and we have also: 

H (S )
−1

γ
μH(S)=(T (S1)T (S2))μν γ

ny  and for W=H (S )(H(S1)H(S2))
−1  we will have 

γ
μW=W γ

μ  for  μ=1, 4       (36)

 We take W=(A B
C D)  with A,B ,C ,D   ∈  M2×2(ℂ)

 Taking μ=4  in (36) we obtain B=−B  and C=−C  and so B=C=0
 For μ=i  in (36) follows Aσ i=σiD      (37)

 From (36) we obtain W γ
i
γ
j
=γ

i
γ
jW  and so, because for  i≠ j  we have 

γ
i
γ
j
=(

− i ϵi j kσk 0

0 −i ϵi j kσk
)  it follows 

Aσk=σk A   and  Dσk=σkD    (38)
 Hence, (I ,σ1 ,σ2 ,σ3)  being a basis of M2×2(ℂ)  , (37) and (38) lead to 
A=D=λ I  with λ∈ℂ  and so W=λ I   ,  H (S)=λH(S1)H(S2)      (39)

 For the subspace of ℂ4  (cosidered as column vectors), namely K={(X ,X )∈ℂ
2
×ℂ

2|}

we can verify that for any S0∈SL(2,ℂ) ,Z=(X ,X )∈K  we have H (S0)Z=(S0X , S0X )

Therefore, from (39) we obtain
S=λ S1S2  and because det S=det S1=det S2=1  it follows λ=±1
 Obviously T (S)=T (−S)  for any S∈S L(2 ,ℂ)  and so T (S1S2)=T (S1)T (S2)

Thus we have a well defined groups isomorphism
p∘T−1 :SO+

(3 , 1)→SL(2,ℂ)/{−I ,I} where p is the projection operator 
p:S L(2,ℂ)→SL(2,ℂ)/{−I ,I}

Moreover, T is a local diffeomorphism , is a double covering of SO+
(3 ,1)  by S L(2 ,ℂ)

and determines also the differential structure of S L(2 ,ℂ)/{−I , I}
 Considering F=(p∘T−1

)
−1  the inverse group isomorphism defined above we have that 

U  is a representation of SO+
(3 , 1)  if and only if U∘F is a representation of

S L(2 ,ℂ)/{−I , I} .
 By composition with the projection operator at left, any representation of 
SL(2 ,ℂ)/{−I , I} determines a representation of SL(2 ,ℂ)

Consider now the functions U :D→SL(2 ,ℂ)  defined for any map h :D→SL(2,ℂ)/{−I ,I} such 

that U((χqk), (θnk))=exp(−
1
2

χqkσk)exp(−i 1
2

θnkσk)  for ((χqk) ,(θnk))∈D

 We have that T (U∘h−1
(Ŝ ))=R  for any R∈SO+

(3 ,1)  where Ŝ=p∘T−1
(R)

 Therefore T (Uh( Ŝ0 Ŝ1))=T (U (Ŝ0))T (Uh(S1)) and so, as already proven above, we must have

Uh(Ŝ0 Ŝ1)=±U(Ŝ0)Uh( Ŝ1)  for Ŝ0  , Ŝ1  in some neighbourhoods of I  respective Ŝ∈h(D)

 Because U ∘h−1  and U ∘h0
−1 are continuous, if these neighbourhoods, W0 respective W1 , are 

connected then Uh( Ŝ0 Ŝ1)=U( Ŝ0)Uh( Ŝ1)  for ( Ŝ0 , Ŝ1)∈W0×W1   
Hence if Ū  is a representation of SL(2 ,ℂ)  then Ū∘U is a representation of
S L(2 ,ℂ)/{−I , I} .

Therefore any representation of SL(2 ,ℂ)  determines a representation of S L(2,ℂ)/{−I ,I} and 
backwards.
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Determining irreducible representations of SO+
(3 ,1) reduces to determining irreducible 

representations of SL(2 ,ℂ) .
 Let U  be a representation of SL(2,ℂ) . We denote

A(χ ,q)=exp (−
1
2

χqkσk)   ;  C (θ ,n)=exp(−i 1
2

θnkσk)  and we will have 

A(χ+δχ ,q)=A(δχ ,q)A(χ ,q)   ;  C (θ+δθ ,n)=C (δθ ,n)C (θ ,n)        (40)
As we mentioned , we denote by U  the same function U ∘h0

−1  where h0:D0→GL(V )

is the map around the origin from the representation definition.
In the same way as we proven in the case of SO+

(3 ,1) , considering the relations (40), if we 
define (Mk),(Nk)  by 
dU
d χ

(A(0 ,qk))=−qkMk   ,  
dU
d θ

(C (0 ,n))=− i nkNk

U(A(χ ,q))=exp (−χqkMk)   ,  U (C (θ ,n))=exp(−iθnkNk)         
 
 

We will in addition suppose that the functions defined in χ+i θ  ∈ℂ  by 

f j(χ+iθ)=U (A(χ ,(δ j k))C (θ ,(δ j k)))=U(exp(−
1
2

(χ+i θ)σ j)) are complex differentiable, or 

that the function defined on the complex variables (αk)

F ((αk))=U(√1+α⃗
2 I+αk σk)  is complex differentiable in each variable αk in some 

neighbourhood of (0 , 0, 0).

We can prove that we have f j(χ+iθ)=U (cosh (
1
2
(χ+iθ))I−sinh(

1
2
(χ+ iθ))σ j) and so any of 

these two suppositions will lead to Mk=Nk .

 Let E l(θ)=
1
2
C (−θ ,n)σlC (θ ,n) and considering the commutation relations satisfied by 

(
1
2

σk) we obtain 
dEk

d θ
=−nk ϵk l jE j  and so we have the solution 

E l=Rl j

1
2

σ j .   Therefore for δχ ,δθ  small enough we will have: 

C (−δθ ,n)exp (−
1
2

δχσ l)C (δθ ,n)=exp(−
1
2

δχRl jσ j)  and 

U(C )
−1 exp(−δ χMl)U (C)=exp(−δχR l jM j)  where C=C (δθ ,n)

Taking the second order approximation in δχ  and after that in δθ  it follows 
(I+i δθnkMk)Ml(I−i δθnkMk)=(I−δθnk ϵk l j)M j+O(δθ

2
) and so we will have the 

commutation relations:
[Mk ,Ml ]=i ϵk l jM j        (41)

We take X=M1+iM2   ,  Y=M1−iM2   ,  H=2M3   and we will have: 
[X ,Y ]=H   ,  [H ,X ]=2X   ,  [H ,Y ]=−2Y     (42)

M1=N1=
1
2

(X+Y )   ,  M2=N2=
1
2
( iY−i X )   ,  M3=N3=

1
2
H

Suppose  that U is finite-dimensional complex and irreducible.
Then exists an eigenvalue λ∈ℂ  of H  with an eigenvector v∈V  , Hv=λv  , v≠0

 From [H ,X ]=2X  follows H X jv=(λ+2 j)X jv and the space being finite-dimensional we 
can take i0= max {i∈ℕ|X iv≠0}. Let v 0=X

i 0v  , v j=Y
jv 0 .

 From [H ,Y ]=−2Y  follows Hv j=(λ+2(i0− j))v j and the space being finite-dimensional we 
can take m=  max {i∈ℕ|vi≠0}

We have 
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X v0=0  , Xv j+1=XY v j=Y Xv j+Hv j=Y X v j+(λ+2( i0− j))v j  , Y v j=v j+1 ,Y vm=0
v0 , v1, … vm are linearly independent being eigenvectors of H for distinct eigenvalues and by 
induction follows from the above relations that H, X, Y leave invariant the subspace generated by 
them. The representation being irreducible, that subspace must be the whole space and H has 
therefore one-dimensional eigenspaces for each eigenvalue λ+2(i0− j)  , j=0 ,m with 
eigenvectors respective vj . Therefore for the trace of H we have:

tr H=∑
j=0

m

(λ+2(i0− j ))=(m+1)(λ+2 i0−m) . 

Since tr H=tr [X ,Y ]=0  it follows λ=m−2 i0
By induction we can prove X v j= j(m− j+1)v j−1  for j=1 ,m  having Xv0=0 .
In conclusion we will have V=Sp[v0 ,v1 ,…,vm]  , Hv j=(m−2 j)v j  for j=0 ,m and also
Y vm=0  , Y v j=v j+1  for j=0 ,m−1 for the spin m/2 irreducible representation representation.

It can be proved without difficulties that if the V is the subspace of complex polynomials given by

Vm={∑
j=0

m

a jx
m− j y j

∈P [x , y ]|a j∈ℂ  for j=0 ,m}
 then U:SL(2,ℂ)→GL(Vm)  with U(A)p(x , y)=p (A−1

(x , y))  for any A∈SL(2 ,ℂ)

 and any p(x , y)∈Vm  , A−1  acting on the column vector (x , y) , provides a m+1-dimensional 
irreducible representation of S L(2 ,ℂ)

 For A=exp (−i 1
2

θσ3)  we have A−1
=cos( θ

2
)I+i sin( θ

2
)σ3  and  

exp (−i 1
2

θH)(xm− j y j
)=U(A)(xm− j y j

)=

=(cos( θ
2
)+ isin (θ

2
))
m− j

(cos (θ
2

)−i sin (θ
2
))
j

xm− j y j
=exp( i

m−2 j
2

θ)xm− j y j

Differentiating with respect to θ  and taking θ=0  we obtain 
H (xm− j y j

)=(m−2(m− j))xm− jy j and so we have obtained the eigenvalues and eigenvectors 
of H in the representation.
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3. On the rotation groups and the restricted Lorentz group
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                   On the rotation groups and the restricted Lorentz group

 Consider the n-dimensional rotations group
 SO(n)={R∈Mn×n(ℝ)|RR

T
=I  , det R=1} .

On the rotations group we take the topology induced from the square real matrices space such that a
fundamental system of neighbourhoods of R0∈SO(n)  is (Vε(R0))ε>0  with 
Vε (R0)={R∈SO(n)||Ri j−R0 i j|<ε  for i , j=1,n}
 For any R=(Qi j)i , j∈SO(n+1)  if Qk1≠0  we consider 

e1
k
=(Qi1)i=1 ,n+1  , e j

k
=(δ j−1 i)i=1 ,n+1  for j=2 ,k  , e j

k
=(δ j i)i=1 ,n+1  for j=k+1 ,n+1  and 

f 1
k
=e1

k

f p+1
k =vers(ep+1

k −∑
j=1

p

⟨f j
k ,ep+1

k ⟩ f j
k)  for p=1 ,n−1

f n+1
k =sign (Qk 1) vers(en+1

k −∑
j=1

n

⟨f j
k ,en+1

k ⟩f j
k)

 Then if Qk 1≠0  for Q(k )
=(f i j

k
)i , j=1 ,n+1  we have Q(k )

∈SO(n+1)  and 

Q(k )R=(
1 01×n

0n×1 R(k ))=M(k )  with 

R(k)
∈SO(n)

 where ⟨ .,.⟩  denotes the euclidean scalar product and δ  the Kronecker symbol 
We suppose as a induction hypothesis that we have a C∞  class mapping with 
W∋(ψ j)j=1 ,n (n−1 )/2→R((ψ j)j)∈SO(n)

W  an open set of ℝn(n−1)/2  and rank (
∂Rpq

∂ψ j
)pq , j

=
n(n−1)

2
 , p ,q=1,n  , j=1 ,n(n−1)/2

 We take (ψs)s=n (n−1) /2+1,n(n+1)/2→(Qs1)s=1 ,n+1∈Sn  where Sn={x∈ℝ
n+1|‖x‖=1} is the 

n+1- dimensional sphere, a mapping of Sn.

 We have Q(k )T
=(
Q11 A
B C )  with A∈M1×n(ℝ)  , B∈Mn×1(ℝ)  , C∈Mn×n (ℝ).

B=(
Q2 1

.

.
Qn+11

)  and (AC )  has an inverse S∈M(n+1)×n(ℝ)  : S(AC )=In

It follows

Q(k )TM(k )
=(Q1 1 AR(k)

B CR(k ))   (1) and we can consider now a mapping R(k )  such that 

R(k)
((ψs)s=1,n(n+1)/2

)=Q(k )T (
1 01×n

0n×1 R )
Q(k )

=Q(k )
((ψs)s=n(n−1)/2+1 ,n(n+1)/2)

R=R((ψ j)j=1 ,n(n−1)/2)

 Since rank(
∂Qi1

∂ ψs
)i ,s=n  with i=1,n+1  , s=n(n−1)/2+1,n(n+1)/2

 and the mapping R  has rank n(n−1)/2  and we have the inverse S  for 
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(AC )  it follows that if ∑
j=1

n(n+1)/2

α j

∂(Q(k)M(k )
)

∂ψ j
=0  with α j∈ℝ  , j=1 ,n(n+1)/2

 then α j=0  for j=1,n(n+1)/2  and so rank(∂Rpq
(k )

∂ψ j
)pq , j

=
n(n+1)

2

 where p ,q=1 ,n+1  , j=1 ,n(n+1)/2
 The application Φ(k) :Sn×SO(n)→SO(n+1)

Φ
(k )
((Qi1)i=1 ,n+1 ,R(k)

)=M(k )

is a local homeomorphism, defined in the neighbourhood of each
((Qi1)i=1 ,n+1 ,R(k ))  with Qk 1≠0  and so by induction we can define a smooth class C∞

manifold structure on SO(n+1)  having dimension n (n+1) /2  that generates the same 
 topology on SO(n+1)  as induced from M(n+1)×(n+1)(ℝ) .

Suppose now the induction assumption that for any R∈SO(m)  , m≤n  exists 
W∈Mm×m(ℝ)  such that W=−WT  and R=exp(W )

 For Q∈SO(n+1)  if Q  invariates a subspace V  of ℝn+1  (i.e. Q(V )=V  ) 
 then Q  invariates also V ⊥

 If λ∈ℂ  , x∈M(n+1)×1(ℂ)  , x≠0  , Qx=λ x  it follows λ λ=1  , since QQT
=I

(λ  the complex conjugate of λ)
 If further λ∈ℂ∖ℝ  taking u=ℜ x  , v=ℑ x  we have 
λ=cos (θ)+i sin(θ)  , sin (θ)≠0  , v≠0
Qu=ucos(θ)−v sin(θ)  , Qv=u sin(θ)+v cos (θ)  and since QQT

=I  we will have 
‖u‖2

=‖u‖2 cos2
(θ)+‖v‖2 sin2

(θ)−2⟨u ,v ⟩sin (θ)cos (θ)
‖v‖2

=‖u‖2 sin2
(θ)+‖v‖2 cos2

(θ)+2⟨u ,v ⟩sin(θ)cos (θ)
⟨u ,v ⟩=(‖u‖2

−‖v‖2
)sin(θ)cos(θ)+⟨u ,v⟩(cos2

(θ)−sin2
(θ))

(‖u‖2
−‖v‖2

)(cos (2θ)−1)−2 ⟨u ,v ⟩ sin(2θ)=0
(‖u‖2

−‖v‖2
)sin(2θ)+2 ⟨u ,v ⟩ (cos (2θ)−1)=0

 Therefore, since sin(θ)≠0  it follows ⟨u ,v⟩=0  , ‖u‖=‖v‖≠0
Q  invariates Sp(u ,v )  and Sp (u ,v)⊥  and so we can find R∈SO(n+1)  such that 

RQRT
=(

B 02×(n−1)

0(n−1)×2 Q0
)

 with Q0=exp(W 0)∈SO(n−1)  , W0=−W0
T
∈M(n−1)×(n−1 )(ℝ)

B=(cos (θ) −sin(θ)
sin (θ) cos (θ) )=exp(θA)  where A=(0 −1

1 0 )
 Taking W=RT (

θ A 02×(n−1)

0(n−1)×2 W0
)R  we obtain Q=exp(W )

 If λ∈ℝ  we must have λ∈{−1 , 1}
 Then if x∈M(n+1)×1(ℝ)  , Q x=−x  , x≠0  since detQ=1  there it exists another 
y≠0  , y∈{x}⊥  such that Q y=−y  and we will have 

R∈SO(n−1)  with RQRT
=(

exp (π A) 02×(n−1)

0(n−1 )×2 Q0
)  , Q0=exp (W0)  , W0=−W0

T

 and we can take Q=exp(W )  with W=RT (
π A 02×(n−1)

0(n−1)×2 W0
)R=−W T

∈M(n+1)×(n+1)(ℝ)
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 If x∈M(n+ 1)×1(ℝ)  , x≠0  , Qx=x  we will have R∈SO(n+1)  such that 

RQRT
=(

1 01×n

0n×1 Q0
)  where by induction assumption Q0=exp(W0) ,W0=−W0

T

 Taking W=RT

(
0 01×n

0n×1 W 0
)R=−W

T
∈M

(n+1)×(n+1)(ℝ)  we will have Q=exp(W )

Therefore , by induction we have proved that for any
Q∈SO(n)  exists W∈Mn×n(ℝ)  such that W=−W T  and Q=exp(W )

 Also it is obvious that if W=−WT  then WWT
=WTW  and so for Q=exp(W) :

QQT
=exp(W+WT

)=I  , Q∈O(n)
 Moreover we have W= J S J−1  where S  is the Jordan normal form of W

det exp(W )=det exp(S)=∏
i=1

n

exp(λi)  ,   where 

det(W−λ I)=∏
i=1

n

(λ−λ i)

 For W=−WT
∈Mn×n (ℝ)  , W x=λ x  , x∈Mn×1(ℂ)  , λ∈ℝ  we can take x∈Mn×1(ℝ)

 and so xTWx=xTWT x=−xTW x=0  , 0=xTW x=λ‖x‖2  and 
all real eigenvalues of W must vanish and since W is real we can split the eigenvalues as
E={i∈{1, ..n}|λ i∈ℂ∖ℝ}=E1∪E2  , E1∩E2=∅  , cardE1=cardE2

E1={i1 ,..., ik} , E2={ j1 ,..., jk} , λ i s=λ j s  for s=1 ,k

 Therefore it follows ∏
i=1

n

exp(λ i)>0  , Q=exp(W )∈SO(n).

We will prove now that the function
Φ :Mn×n(ℝ)→Mn×n(ℝ)  with Φ(W )=exp (W)  for any W∈Mn×n (ℝ) satisfies 

det(
∂Φpq

∂ t i j )pq ,i j

≠0  for any W=(ti j)i , j∈Mn×n(ℝ)   where  i , j ,p ,q=1 ,n     (2)

Φ=(Φpq)p ,q=(epq
W
)p ,q

(2) is equivalent to the fact that

 for any W  , β∈Mn×n(ℝ)  the relation ∂
∂h

exp (W+hβ)¿|
h=0

=0  implies β=0 .

 Suppose we have W ,β∈Mn×n(ℝ)  such that ∂
∂h

exp(W+hβ)|
h=0

=0

 Since for any J∈Mn×n(ℂ)  with det J≠0  we have 
∂
∂h

exp( JW J−1
+h Jβ J−1

)= J(
∂
∂h

exp(W+hβ)) J
−1 it is sufficient to prove (2) only for W 

having the upper triangular normal Jordan form

W=(
C1 0 .. 0
0 C2 .. 0
. .. . 0
0 .. 0 Cr

)  with C i  cells of the form C i=λ iIsi+Nsi  , λ i∈ℂ  , si∈ℕ
*

Ns i=(nk l)k , l=1 ,s i  , nk l={1  if l=k+1 ,1≤k≤si−1
0  otherwise 

 for k , l=1,si

 We denote W i i=μi  for i=1 ,n

Let W having the Jordan normal form and we have :
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∂eW

∂ ti j
=∑

m=1

∞ 1
m!∑k=0

m−1

Wm−1−k E i jW
k  where E i j=(δi kδ j l)k , l=1 ,n     (3)

 For any k∈ℕ  , Wk is upper triangular and has diagonal coefficients 
(Wk

)i i=μ i
k  and therefore calculating the terms Wm−1−k E i jW

k  it follows that 

∂epq
W

∂t i j
=0  if q< j  or p>i .

We consider for pq and ij pass the ordering (1n)(2n))...((n-1)n)(nn)(1(n-1))...(n(n-1))(1(n-2))…...
(11)((21)...((n-1)1)(n1) we find that the matrix

(
∂epq

W

∂t i j )pq , i j

 has an upper triangular form and so 

det(
∂ epq

W

∂t i j )pq ,i j

=∏
p ,q=1

n ∂ epq
W

∂ tpq
Calculation from (3) , with W having the Jordan normal form leads to 

∂epq
W

∂tpq
=∑

m=1

∞ 1
m!∑k=0

m−1

μp
m−1−k

μq
k
={

exp(μp)−exp(μq)
μ p−μq

 if μ p≠μq

exp(μp)−1
μp

 if μ p=μq

 and so det(
∂epq

W

∂ ti j )pq , i j

≠0  for any W∈Mn×n(ℝ) (3’)

 Let ( Js)s=1 ,n(n−1) /2 a system of linear independent generators for the antisymmetric real   

matrices  so that we have
W=−WT

∈Mn×n(ℝ)W=ψs Js  , ψs∈ℝ ( with Einstein summation convention for indexes

 s=1,n(n−1)/2)
Because we have (3’), it follows that for 
R0∈SO(n)  and ψ0

=(ψs
0
)s  such that exp(ψs

0 Js)=R0  we have an open neighbourhood 

U0  of ψ0  , an open neighbourhood G0  of R0  and the injective function 
Φ :U0→G0  , Φ(ψ)=exp (ψs Js)  , ψ=(ψs)s

As we proved , we can choose G0 such that we have a mapping
R :V 0→G0  of SO(n)  from some open neighbourhood V 0  of φ0  such that φ0

=(φs
0
)s  and   

R(φ0
)=R0  , rank (

∂Rpq

∂φs )pq , s
=
n (n−1)

2
   (4)

 Thus we have R(φ0
)=exp (ψs

0 Js)  and for φ=R−1
∘Φ(ψ)  we have R(φ)=exp(ψs Js)

 for any ψ∈U0  and the function R−1
∘Φ :U0→V 0  is continuous and injective .

Therefore, since U0 is open and U0 , V0 have the same dimension it follows that
R−1

∘Φ(U0)=W0  is an open set and φ0
∈W0  and we have a homeomorphism 

R−1
∘Φ :U0→W0  

Since (4) , by the implicit function theorem we will have a C1 class function
h :U1→V1  with U1  open neighbourhood of ψ0  , V 1  open neighbourhood of φ0  such that 
R(h(ψ))=exp(ψs Js)  for any ψ∈U1

 and for any (φ ,ψ)∈V1×U1:R(φ)=exp(ψs Js)  if and only if φ=h(ψ)
Since (3’) we have that
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rank(
∂ exp(ψs Js)pq

∂ψk
)pq ,k

=
n(n−1)

2
and we will have also a C1 class function

g :V 2→U2  with U2  open neighbourhood of ψ0  , V 2  open neighbourhood of φ0  such that 
R(φ)=exp(gs(φ) Js)  for any φ∈V 2

 and for any (φ ,ψ)∈V2×U2:R(φ)=exp(ψs Js)  if and only if ψ=g (φ).
 It follows (g∘h)(ψ)=ψ  , (h∘g)(φ)=φ  for any (φ ,ψ)∈V 1∩V 2×U1∩U2

Therefore we can find U, V open neighbourhoods of ψ
0  respective φ0  such that 

h(U)=V  , g (V )=U  , h|U=g
−1|U  , R(h(ψ))=exp (ψs Js)  , R(φ)=exp (gs(φ) Js)

 for any (φ ,ψ)∈V×U.
Intermediating through the R  mappings of the manifold structure SO(n)  we obtain that 

 for any ψ0  , ψ1  with exp (ψs
0 Js)=exp(ψs

1 Js)  there exist 

W0  an open neighbourhood of ψ0  and W 1  an open neighbourhood of ψ1  and a C∞  class 
 function f :W 0→W1  such that for any (ψ,ψ′)∈W0×W1 :
exp(ψs Js)=exp (ψ ′s Js)  if and only if ψ ′=f (ψ) and so we have the same manifold structure 
 on SO(n)  with topology induced from Mn×n(ℝ)  given by the mappings 
(ψs)s=1 ,n(n−1)/2→exp(ψs Js)  having the continuous surjective function 

Φ :ℝn (n−1) /2
→SO(n)  with Φ(ψ)=exp(ψs Js)  and so we find SO(n)  as a 
n (n−1)/2- dimensional connected Lie group. 

Consider now the Minkowski space
ℝ

4  identified with M4×1(ℝ)  having the pseudometric (ηαβ)α ,β  with 
ηαβ=0  if α≠β  , ηi i=−1  for i=1,3  , η0 0=1

( we  use greek characters for indexing from 0 to 3 and latin characters for indexing from 1 to 3 )
 We have the pseudo-scalar product ℝ4

×ℝ
4
∋(x , y)→x⋅y=yT ηx∈ℝ

x  , y  as column vectors x=xαEα  , (Eα)α  Minkowski base with 
Eα=(δαβ)β  (as column vector) , Eα⋅Eβ=ηαβ

We remind that , as a consequence of the Cauchy-Bunyakowsky-Schwarz inequality, we have:
i)  if x , y∈ℝ4  and x≠0  , xT

ηx≥0  , yT
ηx=0  then yT

ηy≤0
ii)  if x  , y∈ℝ4  and x≠0  , xT

ηx=0  , yT
ηx=0  then exists λ∈ℝ  with y=λ x .

 For M∈SO+
(3 ,1) ( see Chap. Representations of the rotations group and of the restricted 

Lorentz group , Spin representations) we have : 
M=R(θ ,n)B(χ ,q)=M( θ⃗ , χ⃗)  where θ⃗=θn  , χ⃗=χq  , θ⃗=(θi)i  , χ⃗=(χi)i
R(θ ,n)=(Rαβ)α ,β  , B(χ ,q)=(Bαβ)α ,β  , 
Ri j=−ϵi j knk sin(θ)+(δi j−n in j)cos(θ)+n in j  , Ri0=R0 i=0  , R0 0=1
Bi j=δ i j+(cosh (χ)−1)q iq j  , B0 i=Bi0=−q i sinh(χ)  , B0 0=cosh (χ)
B  is symmetric positive definite and so M=RB  must be the polar decomposition of  M  , 

B=√MTM  , R=M(√MTM)
−1

 and we can find k∈{1 ,2 ,3} such that : 
n=vers(ϵi j k(Ri−δi)×(R j−δ j))  with Ri=(Ri l)l  , δi=(δ i l)l

sin(θ)=−
1
2
ϵi j lnlR i j  , cos (θ)=

1
2
(Ri i−1)

cosh (χ)=B00  , sinh (χ)=√B0 0
2
−1  , qi=−

Bi0

√B0 0
2
−1
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Therefore we have a local homeomorphism :
ℝ

6
∋(θ⃗ , χ⃗)→M (θ⃗ , χ⃗)∈SO+

(3 ,1)  when SO+
(3 , 1)  is considered with the topology 

 which is induced from M4×4 (ℝ) and a 6-dimensional connected Lie group structure on
SO +

(3 , 1)  given by the mappings ( θ⃗ , χ⃗)→M(θ⃗ , χ⃗) .
Suppose now we have

(αk)k  , (βk)k∈ℝ
3  such that αk

∂M
∂θk

+βk
∂M
∂χk

=0  for a value of (θ⃗ , χ⃗)

It follows :

0=βk
∂B0 i

∂χk
=βk (−

δ i k
χ +

1
χ qiqk) sinh (χ)−βkqkqicosh (χ)

0=βk
∂B00

∂χk
=βkqk sinh(χ)  and so we obtain βi=0  for i=1 ,3

αk
∂R
∂θk

=0  with (Ri j)i , j=exp (θk Jk)  , ( Jk)i j=−ϵi j k  , for i , j ,k=1 ,3 .

 Since det(
∂epq

W

∂ ti j )pq ,i j

≠0  for any W=(t i j)i , j∈M3×3(ℝ)  as we have proven, it follows : 

rank (
∂ exp(θk Jk)i j

∂θl )i j , l=3  and so we must have also αk=0  for k=1, 3 .

 Therefore taking (ψl)l=1 ,6=(θ⃗ , χ⃗)  we have rank(∂Mαβ

∂ψl
)
αβ ,l
=6

We remind that we rise or lower the indexes according to
V α=ηαβV

β  , Vα
=η

αβVβ  , (ηαβ)=(η
αβ
)

 Let ϵαβ γδ  be the signature of the permutation (
α β γ δ

0 1 2 3)  and we define 

Jγ δ
αβ
=ϵ

αβ γε
ηεδ . We will have: 

J0 i=− J i0=− Ji  , J
i j
=ϵi j kK k  where Ji  , K k  are the Lorentz group generators 

( Jk)i j=−ϵi j k  , ( Jk)i0=( Jk)0 i=( Jk)0 0=0  , (Kk)i j=0  , (K k)i0=(K k)0 i=δ i0  , (Kk)0 0=0
R(θ ,n)=exp(θnk Jk)  , B(χ ,q)=exp(−χqkK k).

We define also

Jγ δ
αβ
=

1
2
ϵ  ψφ
αβ Jγ δ

ψφ
=−

1
2
ϵ
αβψφ

ϵψφδρη
γρ  obtaining 

Ji j=−ϵi j k Jk  , J0 i
=− Ji0=−K i .

 For a Lorentz coordinates transformation x ′μ=Λ  ν
μ x ν   ,  (Λ  ν

μ
)μ, ν=Λ∈SO

+
(3 ,1)

 we denote (Λμ
 ν
)ν ,μ=Λ

−1 .

 The relation Λ  α
μ
Λ  β
ν Jαβ=Λ−1 JμνΛ      (5) is equivalent to 

Λ  γ
ε
Λ  α
μ
Λ  β
ν
Λρ

 δ Jγδ
αβ
= Jερ

μ ν .
 Since Λ∈SO+

(3 ,1)  we have Λρ
 δ
=Λ ψ

φ
ηψδηρφ  and so (5) is equivalent to 

Λ  α
μ Λ  β

ν Λ  γ
ε Λ  ψ

κ ϵαβγψ=ϵμνε κ  which is true since det Λ=1
 Also, since Λ∈SO+

(3 , 1)  we have 
ϵ  μν
γ ε
Λ  α
μ
Λ  β
ν
=η

κ γ
η
ρε
ϵαβψφΛκ

 ψ
Λρ

 φ
=ϵ  αβ

κ ρ
Λ κ
γ
Λ  ρ
ε .

Therefore, from (5) follows :
Λ  α
ν
Λ  β
ν Jαβ=Λ−1 JμνΛ          (6)  
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We will prove further that if M∈SO+
(3 , 1)  then exists Λ∈SO +

(3 ,1)  such that 
M=Λ−1 exp(θ J3+χK 3)Λ  or M=Λ−1exp(α( J1+K 2))Λ  for some θ , χ ,α∈ℝ .

 If exists μ∈ℂ∖ℝ  such that we have x∈ℂ4
(x  as a column vector )x≠0  with 

Mx=μ x  , then if xT ηx≠0  it follows, since MT
ηM=η  that μ2

=1  and because 
μ∈ℂ∖ℝ  , we must have xT

ηx=0  and so 
ℜxT ηℜ x=ℑ xT ηℑ x  , ℜxT

ηℑ x=0        (7)
 If also ℜ xT ηℜx=0  , since ℑ x≠0 (   because μ∉ℝ)  we have λ∈ℝ  with ℜx=λℑ x .
 This leads to (i+λ)Mℑ x=( i+λ)μ ℑ x  which again contradicts μ∉ℝ .
 Therefore we have u=ℜx  , v=ℑ x  , x=u+ iv
uT ηu=vT

ηv≠0  , uT ηv=0      (8)
xT ηx=uT ηu+vT

ηv≠0     (9)  which from Mx=μ x   leads to  μμ=1  and α∈ℝ  with 
Mu=ucos(α)−v sin(α)
Mv=usin(α)+v cos(α )

As a consequence of Cauchy-Bunyakowsky-Schwarz inequality, from (8) we obtain
uT ηu=vT

ηv<0  and we can therefore consider uT ηu=vT ηv=−1 .
M  invariates V=Sp(u ,v)  and for V ⊥

={w∈M4×1(ℝ)|w
T
ηz=0  for any z∈V },

M  invariates also V ⊥ .
 We can take Λ∈SO+

(3 ,1)  such that Λ−1E1=u  and Λ−1E2=v .

 For M=ΛMΛ
−1  we will have: 

ME1=E1cos (α)−Esin(α)  , ME2=E1 sin(α)+E2cos (α) and that 
M  invariates Sp(E1 ,E2)  and Sp(E3 ,E0)=Sp (E1 ,E2)

⊥ .
 Hence exist θ  , χ∈ℝ  such that M=exp (θ J3)exp(χK 3)=exp (θ J3+χK 3)

M=Λ−1 exp(θ J3+χK 3)Λ

Therefore, to prove the statement we can further suppose that 
 if μ∈ℂ  , x∈M4×1(ℂ)  , x≠0  , Mx=μ x  then μ∈ℝ∗  and x∈M4×1(ℝ)  
 Let x∈M4×1(ℝ)  , λ∈ℝ∗  , x≠0  , Mx=λ x
 If xT ηx=0  we can choose x∈M4×1(ℝ)  and take Λ∈SO +

(3 ,1)  such that 

Λ x=E  where E=E3+E0  . Then for M=ΛMΛ
−1  , M  invariates 

{E}⊥=Sp(E1 ,E2,E )=V  and we will have: 
ME1=αE1+βE2+γE
ME2=α ′E1+β ′E2+γ ′E

ME=λ E

(10)

 Since M∈SO +
(3 ,1)  we obtain: 

α
2
+β

2
=1  , α ′2+β ′2=1  , αα ′+ββ ′=0

α=cos (θ)  , β=sin(θ)  , α ′=cos (θ ′)  , β ′=sin(θ ′)  , θ−θ ′=2k+1
2

π  , k∈ℤ .

 Let S=(
α α ′ 0
β β ′ 0
γ γ ′ λ)

After some calculus we find that solutions for the characteristic equation in μ  are: 

μ=λ  and μ=
1
2
(1+(−1)k+1

±√(1+(−1)k+1
)cos2

(θ)+4(−1)k)

 If k≡1(mod2)  and cos2
(θ)≠1  , S  and therefore also M  has an eigenvalue which is not real 

and so we can consider that k≡0(mod 2)  if cos2
(θ)≠1 .

Page 7 of 12 32 of total 515  Gh.V.B. Introd. to...QFT 



 If k≡0(mod 2)  or cos2
(θ)≠1  , M  must have an eigenvalue μ∈ℝ∗  , μ≠λ  , μ2

=1 .
My=μy  , ME=λE  , y∈V={E }⊥=Sp(E1 ,E2 ,E) .
M  invariates Sp(y ,E)  and Sp(y ,E)⊥=W  having dimW=2 .
 For z∈W  we have zT ηE=0 and as a consequence of the Cauchy-Bunyakowsky-Schwarz 

inequality, for any z∈W  which is independent of E  follows zT ηz<0 .
 Let E ′∈W  , E ′T ηE ′=−1  and we have β ″  , α ″∈ℝ  , β ″2

=1  with 
My=μ y

ME ′=β ″ E ′+α ″ E
ME=λ E

(10’)

yT ηE ′=0  , E ′T ηE=0  , ET
ηy=0  , yT

ηy=−1  , E ′T ηE ′=−1  , ET
ηE=0   (10’’)

Sp(y ,E ′ ,E )=Sp(E1 ,E2 ,E )  and from (10) , (10') follows 

det(S−ρI)=det(S ′−ρI)  for any  ρ∈ℂ  where S ′=(
μ 0 0
0 β ″ 0
0 α ″ λ

) and so we must have

(μ=1  and β ″=−1)  or (μ=−1  and β ″=1) .
 Because detM=1  , the characteristic equation in ρ  , det(M−ρI)=0 must have another 

solution ρ=−
1
λ

 and since λ∈ℝ  we have λ≠−
1
λ

 and z∈M4×1(ℝ)  , z independent of

x   such that Mz=− 1
λ
z  , Mx=λ x  , zT ηx=−zT ηx=0 .

 Hence because xT ηx=0 , x cannot be independent of z , and so, when all eigenvalues of M are 
real, as we can consider , we must suppose that we are in case a) or case b) described below:

a)  for any λ∈ℂ  , x∈M4×1(ℂ)  , x≠0  with Mx=λ x  we can consider that 

λ∈ℝ
∗  , x∈M4×1(ℝ)  , x≠0  , Mx=λ x  , xT

ηx≠0  , λ2
=1

(the last equality in case a) follows because M is a Lorentz transformation)
b)  there exist an eigenvalue λ∈ℝ∗  such that the corresponding x  , θ  , k  which we 
 have for λ  satisfy xT ηx=0  , cos2

(θ)=1  , k≡1(mod2)
 .

   In case a), taking x 0∈M4×1(ℝ)  with x0≠0 ,λ0∈ℝ
∗  , Mx 0=λ0 x0  we have that 

M  invariates {x 0} and {x0}
⊥  and we can take successively xi∈M4×1(ℝ)  , x i≠0  , λi∈ℝ

∗

such that after eventually a permutation of indexes we have:
Mxα=λα xα  , λα

2
=1  , xα

T
ηxβ=ηαβ  for α  , β=0 , 3 .

 Then we can find εα∈{1 ,−1} , Λ∈SO+
(3 ,1)  with Λ−1Eα=εα xα .

 In the basis (E1 ,E2 ,E3 ,E0)  the transformation M ′=ΛMΛ
−1  has the diagonal form 

(
λ1

λ2

λ3

λ0
)  and since M ′∈SO +

(3 ,1)  we have λ0=1 .

 If λ3=−1  it follows λ1λ2=−1  and we can take Q∈SO+
(3 , 1)  with QT

=Q−1  , 

QM ′QT
=exp(π J3+0K 3)  . If λ3=1  it follows λ1λ2=1  and also we can take Q∈SO+

(3, 1)

 with QT
=Q−1  , QM ′QT

∈{exp(π J3+0K 3)  , exp(0 J3+0K 3)}

 In case b) we must have μ=β ″=cos (θ)∈{±1} and the characteristic equation has another 

solution ρ=
1
λ

 , det(M−ρ I)=0.
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 If β ″≠λ  , taking z=E ′+ α ″
β ″−λ

E    we obtain: 

My=μy  , Mz=μ z  , ME=λ E  , 
yT ηz=0  , yT ηy=zT ηz=−1  , E∈{y ,z}⊥  and we find Λ∈SO+

(3 ,1)  with 
ε∈{±1} , ρ∈ℝ∗  , Λ−1E1=y  , Λ−1E2=ε z  , Λ−1E=ρE .

 For M ′=ΛMΛ
−1  we obtain M ′E1=μE1  , M ′E2=μE2  , M ′E=λE

SinceM ′∈SO+
(3 ,1)  it follows λ>0  , M ′  invariates Sp(E1 ,E2)=H  and Sp(E3 ,E0)=H

⊥

We will have therefore :

M ′=exp(θ J3+χ K 3)  , θ∈{0 ,π} , cosh (χ)+sinh(χ)∈{λ ,
1
λ }

 If λ2
≠1  we have obviously β ″≠λ  and so we have now left the case 

λ
2
=1  , β″=λ  having now the situation: 

μ=λ=β ″=cos(θ)∈{±1}  , k≡1(mod 2)  , sin(θ)=cos (θ ′)=0  , sin(θ ′)=cos(θ)
ME1=μE1+γE  , ME2=μE2+γ ′E  , ME=μE  and so in the basis (E1 ,E2 ,E3 ,E0):

M=(
μ 0 δ −δ

0 μ ε −ε

γ γ ′ ρ μ−ρ

γ γ ′ φ μ−φ
)  and M∈SO+

(3 , 1)  leading to: 

γ=−δ  , γ ′=−ε  , μ(ρ−φ)=1  , μ(δ2
+ε

2
)=−2φ  , μ≥φ+1

 If μ<0  it will follow φ≥0  , μ≥1  and so we must have μ=1  , ρ=φ+1  , δ2
+ε

2
=−2φ

 Taking Q=(
Q 02×2

02×2 I2
)  with Q=( cos (ζ ) sin(ζ)

−sin (ζ) cos(ζ))∈SO(2)  where 

ζ∈ℝ  , δcos(ζ)+ε sin(ζ )=0  we have that QMQT  has the form: 

S (α)=(
1 0 0 0
0 1 α −α

0 −α 1−α2
/2 α

2
/2

0 −α −α
2
/2 1+α2

/2
)  with α∈ℝ .

After some calculus we find out that S (α+α ′)=S (α)S (α ′)  for any α ,α ′∈ℝ  and so 
d S
dα

=S dS
dα

(0)=−S ( J1+K 2)  , S (α)=exp (−α( J1+K 2))

Thus the statement is completely proved :
 For any M∈SO+

(3 ,1)  exist Λ∈SO +
(3 ,1)  , θ ,χ ,α∈ℝ  such that 

M=Λ−1 exp(θ J3+χK 3)Λ   or  M=Λ−1exp(α( J1+K 2))Λ

 In conclusion, for any M∈SO+
(3 , 1)  exist Λ∈SO+

(3 ,1)ω=(ωαβ)α ,β∈M4×4(ℝ)

 with ω=−ωT  , M=Λ−1 exp(ωαβ J
αβ
)Λ

Above we have already  proven that
Λ
−1 JαβΛ=Λ  μ

α
Λ  ν
β Jμν  and so, taking ω=ΛT

ωΛ  we obtain: 

ω
T
=−ω   ,  M=exp (ωμν J

μν
)

 For any M∈SO+
(3 ,1)  exists ω∈M4×4(ℝ)  such that ω=−ωT  and M=exp(ωαβ J

αβ
)

 Let ω=(ωαβ)α ,β∈M4×4(ℝ)  with ω=−ωT  and we suppose detω≠0 .   (11)

 For Λ∈SO+
(3 , 1)  we have Λ−1

ηωΛ=ηΛ
T
ωΛ  , ΛT

ωΛ=ηΛ
−1
ηωΛ .      (12)

 If x , y∈M4×1(ℂ)  and x , y≠0  , μ ,λ∈ℂ  such that: 
ηω x=λ x  , ηω y=μy  then, because of (11) we have: 
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λ ,μ≠0  and yT
ω x=λ yT

ηx  , −yTω x=μyT
ηx . (the overline means that we are taking the 

complex conjugate)  Therefore, if yT ηx≠0  we must have λ=−μ .
 Since we have also ηω x=λ x  it follows that if xT ηx≠0  then λ=−λ (13)
 and if xT

ηx≠0  then λ=−λ .
 Because we assumed detω≠0  we must have xT ηx=0
 for any x≠0  with x∈M4×1(ℂ)  , λ∈ℂ  , ηω x=λ x
 Let x∈M4×1(ℂ)  , x≠0  , λ∈ℂ  with ηω x=λ x  and consider the case xT

ηx=0

 Since xT ηx=0  , for u=ℜ x  , v=ℑx  it follows uT ηu=vT
ηv=0  , uT ηv=0  and so: 

u=cv  or v=c ′u  , c ,c ′∈ℝ  and we can consider x∈M4×1(ℝ)  , λ∈ℝ∗

 We have det(ω−λη)=det (ωT
−λ η)=det(ω+λ η)  and therefore 

 we can take y∈M4×1(ℝ)  with y≠0  , ηω y=−λ y
 Supposing yT ηy≠0  it follows λ=−λ=0  which cannot be since we assumed det(ηω)≠0

Hence, in the considered case we have :
x , y∈M4×1(ℝ)  linear independent each of other with 

λ∈ℝ
∗  , yT ηy=xT

ηx=0  , ηωx=λ x  , ηω y=−λ y
.

 Taking u=x+y  , v=x−y  we obtain uT ηv=0  , uT ηu=−vT ηv .
Since x and y are independent, u and v are independent too and so we cannot have
uT ηu=−vT ηv=0 .
 Hence we can take u ,v∈M4×1(ℝ)  with uT ηv=0  , uT ηu=1  , vT ηv=−1  and 
ηωu=λv  , ηωv=λu .
ηω  invariates Sp(u ,v) .
 If ηω  invariates the subspace V⊂M4×1(ℝ)  ,for any z∈V ⊥  we have 

zT ηw=0  for any w∈V  and so (ηωz )T ηw=−zTωw=−zT ηw ′=0  for some w ′∈V
 Since det(ηω)≠0  weobtain that ηω  invariates also V ⊥ .
 So ηω  invariates Sp(u ,v )⊥ .
 In the case xT ηx≠0  we have λ=iμ  , μ∈ℝ∗  and we take u=ℜ x  , v=ℑx .
 We obtain: ηωu=−μv  , ηωv=μu  , uT ηu=vT

ηv≠0  , uT ηv=0
 where we can take uT

ηu=vT
ηv=−1  , u  , v  being independent since μ≠0.

Therefore we have two Minkowski-orthogonal subspaces , in both considered cases,
Sp(u1 ,v 1)  and Sp(u2,v2)  invariated by ηω  with u i

T
ηv i=0  , i=1, 2   one and only

 one of them  having a vector, say v1  with v 1
T
ηv 1=1  the other u i ,v i  having the 

Minkowski norm equal to -1.
So we have :

ηωu1=λv 1  , ηωv1=λu1  , ηωu2=−μ v2  , ηωv 2=μu2  , λ ,μ∈ℝ∗

ui
T
ηv j=0  for i , j=1 , 2 ;u i

T
ηu j=0  , vi

T
ηv j=0  for i≠ j  , i , j=1 , 2

u2
T
ηu2=v 2

T
ηv2=u1

T
ηu1=−1  , v1

T
ηv 1=1  and we can choose ui ,vi  such that v 1 0>0.

 Then we can take Λ∈SO +
(3 ,1)  with: 

ΛE1=εu2  , ΛE2=εv 2  , ΛE3=εu1  , ΛE0=v1  , ε∈{±1}.
 For φ=Λ−1

ηωΛ  we will have: 
φE1=−μE2  , φE2=μE1  , φE3=ελE0  , φE0=ελ E3  and in the basis (E1 ,E2 ,E3 ,E0) ,

we have the matrix form :
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Λ
T
ωΛ=ηφ=(

0 −μ 0 0
μ 0 0 0
0 0 0 −ελ

0 0 ελ 0
)

exp(ωαβ J
αβ
)=Λexp (ωαβΛ

−1 JαβΛ)Λ−1
=Λexp (ωαβΛ  γ

α
Λ  δ
β Jγ δ)Λ−1

=

=Λ exp(2μ J3−2ελK 3)Λ
−1

  

 Since J3  commutes with K 3  we will have exp(ωαβ J
αβ
)∈SO+

(3 ,1),
 if as we assumed ω=−ωT

∈M4×4(ℝ)  with detω≠0 .

 If we have ω=−ωT
∈M4×4(ℝ)  and detω=0  we observe that the set 

A={ω∈M4× 4(ℝ)|ω=−ω
T  , detω≠0} is dense in {ω∈M4×4(ℝ)|ω=−ω

T
}=A .

 The function M4×4(ℝ)∋ω→exp (ωαβ J
αβ
)∈M4×4 (ℝ)  being continuous, 

 since SO+
(3 , 1)  is closed in M4×4(ℝ)  it follows exp(ωαβ J

αβ
)∈SO+

(3 ,1)  for any ω∈A

The above proven results lead to the following three facts:
i)  We have 6 independent matrices {Hk}k=1 , 6  where 

Hk=−
1
2
ϵi j k J

i j
= Jk  , Hk+3=− J0k  for k=1 , 3

 ii)  We have a surjective C∞  class function 

Φ :ℝ6
→SO+

(3 ,1)  , Φ((ψs)s)=exp(ψsHs)  such that rank (
∂Φpq

∂ψk )pq ,k
=6

 with p ,q=0 ,3  , k=1 ,6

 iii) Φ  is local injective (Since det(
∂ epq

W

∂ t i j )pq ,i j

≠0  , p ,q , i , j=0 , 3

 for any W∈M4×4(ℝ)  , W=(ti j)i , j  ) 

As we proved for the rotation group SO(n) we conclude that the manifold structure 
 on SO+

(3 , 1)(  with the topology induced from M4×4(ℝ)) is equivalent to a structure given by 
the mappings ((ψs)s)→exp(ψsHs) .
Having the continuous surjective function Φ  we find SO +

(3 ,1) as a 6-dimensional connected 
Lie group (as well as by the mapping (θ⃗ , χ⃗)→exp( θ⃗ J⃗)exp( χ⃗ K⃗ )  ) .

 For U∈Mn×n(ℂ)  , n∈ℕ
∗  we denote U +  the conjugate transpose of  U .

 Let SU(n)={U∈M4×4 (ℂ)|U
+U=I  , detU=1}

 Consider Mn×n(ℂ)  as its natural complex Hilbert space .
 Then if x∈M(n+1)×(n+1)(ℂ)  , λ∈ℂ  , U∈SU(n+1)  with U x=λ x  we will have that 
U  invariates Sp(x )  and also Sp(x)⊥  and λλ=1 .

Therefore we can obviously prove by induction ( in a sampler way as we did for  SO(n) ) that for 
any U∈SU (n)  exists H∈Mn×n(ℂ)  with H+

=H  , U=exp (i H) . (14)

 Since tr (H)=tr ( JH J−1
)  , detU=  for any J∈Mn×n(ℂ)  with det J≠0 , taking H in the normal 

Jordan form, from (14) we deduce for H  that trH=0 .
From the way we proved it , it is obvious that the relation (3’) works even for complex W.
Therefore are no difficulties in proving that we have a surjective and local injective mapping
Ψ :ℝr

→SU(n)  , Ψ(φ)=exp(iφaT a)  where φ=(φa)a=1 ,r  , r=n2
−1 ,
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(T a)a  is a basis of the real vector space S={H∈M4×4(ℂ)|H
+
=H  , trH=0} .

 For n=2  we can take (T a)a=(σ i)i=1, 3  the Pauli matrices (see Chap. Representations of the 
rotations group and the restricted Lorentz group. Spin representations).

 Let M=exp (ωμν J
μν
)  with ω=−ωT

∈M4×4 (ℝ)

 Then,as we proved above, if detω≠0  we can find Λ∈SO+
(3 , 1)  such that 

Λ
T
ωΛ=ω ′  , ω ′αβ=0  for (α ,β)∉{(1 ,2) ,(2 ,1) ,(0 , 3) ,(3 ,0)} and 

Λ
−1MΛ=exp (−2ω ′1 2 J3−2ω ′0 3K 3)

(15)

We have the representation 
S :SO+

(3 ,1)→M4×4(ℂ)  such that for any M∈SO +
(3 , 1)  , S=S (M)  satisfies 

S−1
γ
μS=Mμν γ

ν  for μ=0 ,3   (16)  (see Chap. Representations of the rotations group and the 
restricted Lorentz group. Spin representations). 

S(exp(θ J3))=cos (θ
2
)I+sin (θ

2
) γ

1
γ

2
=exp ( θ

4
[ γ

1 ,γ2
])

S (exp (χ K 3))=cosh (
χ

2
)I+sinh(

χ

2
)γ

0
γ

3
=exp (

χ

4
[ γ

0 , γ3
])

 where [A ,B]=AB−BA  denotes the commutator of A  and B

   (17)

 We denote σμν
=
i
2
[γ

μ , γν ] .

 Since [ J3 ,K 3]=0  and [σ1 2,σ03
]=0 , from (15) and (17) , after some calculus we obtain:

S (M)=exp(
i
2

2ω ′1 2S (Λ)σ
12 S(Λ)−1

+
i
2

2ω ′0 3S (Λ)σ
03S(Λ)−1

) .  (18)

 From (16) we can deduce S(Λ)−1
σ
μνS(Λ)=Λ  α

μ
Λ  β
ν
σ
αβ  and so (15) and (18) will lead to: 

S (M)=exp(
i
2
ωαβσ

αβ
)  if as we assumed detω≠0

 If detω=0  we have ω= lim
n→∞

ωn  with ωn=−ωn
T
∈M4×4(ℝ)  , detωn≠0  and 

 since the representation S  is continuous, for Mn=exp (ωnαβ J
αβ
)  we have 

lim
n→∞

S (Mn)=S (M)  deducing S(M)=exp(
i
2
ωαβσ

αβ
)  for any ω=−ωT

∈M4×4(ℝ)   .

 The Dirac spinorial function ψ=(ψα)α (x)  (as a column 4x1 matrix ) , 
x=(xα

)α  space-time coordinates, which satisfies the Dirac equation 
i γμ ∂μψ−mψ=0

 

transforms under a Lorentz coordinates transformation 
x ′μ=Mμ ν x

ν  according to ψ ′=S (M)ψ  and considering 

M=exp(ωαβ J
αβ
)  , ψ=ψ+

γ
0  with ψ +  the complex conjugate transpose of ψ

we have for the transformation of the conserved current , Jμ=ψγμψ     , the expression: 

J ′μ=ψ+ S +
(M)γ0

γ
μS(M)ψ=ψ+ exp(−

i
2
ωαβσ

+αβ
)γ

0
γ
μexp (

i
2
ωαβσ

αβ
)ψ

 We have σ +αβ
=γ

0
σ
αβ
γ

0  and so we obtain: 

J ′μ=ψ+
γ

0exp (−
i
2
ωαβσ

αβ
)γ

μ exp(
i
2
ωαβσ

αβ
) ψ=ψ

+
γ

0S (M)−1
γ
μS(M)ψ=Mμνψ γ

ν
ψ

.

Therefore, the conserved current transforms like a contravariant Lorentz vector.
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                Representations of the restricted Lorentz group

Consider the restricted Lorentz group G=SO + (3,1) .We have the Lie group 
stucture on G defined by zhe mappings:
ℝ6∋(θ⃗ , χ⃗ )→exp( θ⃗ ⃗̄J +χ⃗ ⃗̄K )∈SO + (3 ,1)  where ⃗̄J =( J̄ k )k=1,3  , ⃗̄K=(K̄ k )k=1 ,3  are the   
generators of G (see Chap. Spin representations and Chap. Rotations and restricted 
Lorentz groups).
We have the commutation relations:
[ J̄ i , J̄ j ]=ϵi jk J̄ k  , [ K̄ i , K̄ j ]=−ϵi jk J̄ k  , [ J̄ i , K̄ j]=ϵi jk K̄ k       (1)  and taking   

M̄±l=
1
2

(i J̄ l∓K̄ l)  for l=1,3  we have [M̄ +l , M̄−k ]=0  and [ M̄±l , M̄±k ]=i ϵlk j M̄± j

 for l , k=1,3 .  Let X̄ ±=M̄±1+i M̄±2  , Ȳ ±=M̄±1−i M̄±2  , H̄ ±=2 M̄±3  and we have 

  

exp( θ⃗ ⃗̄J +χ⃗ ⃗̄K )=exp ((−i θ⃗−χ⃗) ⃗̄M ++(−i θ⃗+χ⃗) ⃗̄M − )=
=exp(−i(θ⃗−i χ⃗ ) ⃗̄M + )exp (−i( θ⃗+i χ⃗) ⃗̄M − )  because M̄+l  and M̄−k  commute. 

  

For W a finite dimensional vector space, as a representation U of G (see for definition 
Chap. Spin representations), we can consider the corresponding generators of the 
representation: 
H ± , X ± ,Y ± ∈GL(W )≃Mn×n(ℂ)  with n=dim W  and we have 

[S− , S + ]=0  for any S− ∈{H − , X − , Y − }   ,  S + ∈{H + , X + ,Y + }  ,    

U (exp (θ⃗ J⃗ +χ⃗ K⃗ ))=

=exp(− 1
2

i(θ1−i χ1)(X ++Y + )−1
2

i(−iθ2−χ2)(X +−Y + )−1
2

i(θ3−i χ3)H + )⋅

⋅exp (−1
2

i(θ1+i χ1)(X −+Y − )− 1
2

i(−iθ2+χ2)(X −−Y − )−1
2

i(θ3+i χ3)H − ) .

  

 For (H , X , Y )∈{(H ± , X ± , Y ± )} it follows 
[ X ,Y ]=H  , [H , X ]=2 X  , [ H ,Y ]=−2Y  and that for any eigenvector v∈W  of H   ,
H v=λ v  , λ∈ℂ  , v≠0   we will have: H X j v=(λ+2 j)X j v  for any j∈ℕ .
The space W being finite dimensional we take
i0=max{i∈ℕ|X i v≠0}  . Let  v0=X i0 v  , v j=Y j v0  and it follows   
H v j=(λ+2(i0− j))v j  so that taking m=max {i∈ℕ|vi≠0} for j∈ℕ  we have:   

X v0=0  , X v j+1=Y X v j+H v j  , Y v j=v j+1  , Y vm=0 .  

v0 , v1 , … , vm are linearly independent, being eigenvectors of H for distinct 
eigenvalues, and by induction follows that H , X , Y satisfy
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S(V )⊆V  for S∈{H , X ,Y }  ,  V =Sp[ v0 ,... , vm].

 Since H v j=(λ+2(i0− j))v j  we have tr H  
 |V=∑

j=0

m

(λ+2(i0− j))=tr [ X ,Y ]  
 |V=0 .

 Therefore λ=m−2 i0∈ℤ  , H v j=(m−2 j)v j  , Y vm=0  , X v 0=0  , Y v j=v j+1

 for j=0  , m−1.  By induction we also prove that X v j= j(m− j+1)  for j=1 ,m
 

We notice that V = Sp[v0 ,…, vm] is an irreducible representation space, that is, if
V ′⊆V  such that H (V ′)⊆V ′  , X (V ′)⊆V ′  , Y (V ′)⊆V ′  then V ′∈{{0} , V }.  
 A representation W  of g=Sp[ H̄ , X̄ , Ȳ ]  is given by H , X ,Y ∈GL(W )  with 
[ H , X ]=2 X  , [ H ,Y ]=−2Y  , [ X ,Y ]=H  and any irreducible representation of g
 is a V=Sp[v0 , ... , vm]  type representation as presented above. 

  

We will prove now that if W  is a finite dimensional representation of g  then H  is   
diagonalizable and following the introductory considerations we have

W=⊕
i=1

n

V i  with V i  irreducible representations V i=Sp [vi 0, ...v imi]  as above . 

Indeed suppose we proved that H is diagonalizable and we have set

V i=Sp[ v0
( i) ,... , vmi

( i) ]  , W ′=⊕
i=1

n

V i  with V i  irreducible representation for i=1 , n .  

 If W ′≠W  , since H  is diagonalizable we choose v∈W ∖W ′  , λ∈ℂ  , H v=λ v . 
 Let V=Sp[v 0, ... , vm]  the irreducible representation to which v=vk  belongs.   

 Assuming that vl∈W ′  we have v l=∑
k , i

αki Y
k v0

( i)  and applying X l  we obtain 

v0=∑
p ,q

β pqY p v 0
(q)  and further applying Y k  we obtain v k=∑

s , j

γsj Y
s v 0

( j)

 contradicting v∈W ∖W ′ .  Thus we can conclude W =⊕
i=1

n

V i    .

  

Let the induction over dimW assumption be: “For any representation W of g with
dimW = k < n the corresponding H generator is diagonalizable.”
Let W with dimW = n the invariant representation vector space for a representation of 
g. Assuming that the corresponding H generator is not diagonalizable, from its Jordan 
canonical form, we derive

W =W 0⊕W 1  , W 1=Sp[vi ]i=1 ,m  , (H−λi I )vi=0  , vi≠0  , λi∈ℂ  for i=1 , m
(H−λi I)w ij=w i j−1  , j=1 ,mi  , wi 0=vi  and at least one i∈{1 , ... ,m} we have mi≥1
 W 0=Sp [wij ] i=1,m

j=1 ,mi

   

Since the commutation relations lead to

Page 2 of 5 40 of total 515  Gh.V.B. Introd. to...QFT 



(H−λ I )X=X (H−(λ−2)I )    ,   (H−λ I)Y=Y (H−(λ+2)I )  for any λ∈ℂ  , 

 we can derive that for W ′=Sp[{w∈W| exists λ∈ℂ  such that (H−λ I)2 w=0}]
 we have H (W ′)⊆W ′  , X (W ′)⊆W ′  , Y (W ′)⊆W ′ .

 (2)   

If W ′≠W  , obviously dim W ′<n  and by induction hypothesis H  is diagonalizable
on W ′  which contradicts H  not diagonalizable. 

  

 Therefore we can assume that W ′=W  and so mi≤2  for i=1 ,m  and we have 

k , r , s∈ℕ , v0 , ...v k∈W  with v j=Y j v 0  , H v j=(k−2 j)v j  ,Y vk=0  , X v 0=0  ,

λ j=k−2 j  , X w0=q(r−k)/2−1  , Y k +1 w0=u(s+ k)/2+1  , w j=Y j w0  , r , s≥k  for j=0 , k
 and H q j=(r−2 j)q j  , Y q j=q j+1  , X q j= j(r− j+1)q j−1  for j=0 ,r  and 

H u j=(s−2 j)u j  , Y u j=u j+1  , X u j= j(s− j+1)u j−1  for j=0 , s  and 
 Y qr=0  , X q0=0  , Y us=0  , X u0=0  , 
 (ql=0  for l<0  or l>r)  and (ul=0  for l<0  or l>s) .

    

(considering (2) , since H  is not diagonalizable, for any l∈{0 ,... ,k } we have 
w∈W  , λ∈ℂ  such that (H−λ I)w=v l  and the rest follows from (2) and the   

 

Jordan canonical structure).
By induction hypothesis and commutation relations we can reduce W to 
W=Sp[ X l Y n H j({w0, v0})]l ,n , j∈ℕ=Sp[q0 ,... ,qr , u0 ,... , us , v0 ,... , vk ,w0 , ... ,wk ]
 where w j=Y j w0  , wl=0  for (l<0  or l>k).

 

We must therefore have:
Y w j=w j+1+γ j v j+1+α j q(r−k)/2+ j+1+β j u(s−k) /2+ j+1

X w j= j(k− j+1)w j−1+γ̄ j v j−1+ᾱ j q(r−k)/2+ j−1+β̄ j u(s−k)/2+ j−1  for j=0 , k
 with γ k=αk=γ̄0=β̄0=0  , ᾱ0=βk=1
 γ l=γ̄l=αl=ᾱ l=βl=β̄l=0  for (l<0  or l>k) .

  

Hence
X Y w j=( j+1)(k− j)w j+(γ̄ j+1+( j+1)(k− j)γ j)v j+
+(ᾱ j+1+((r−k)/2+ j+1)((r+k)/2− j)α j)q(r −k)/2+ j+
+(β̄ j+1+((s−k)/2+ j+1)((s+k)/2− j)β j)u(s−k) /2+ j

 

Y X w j= j(k− j+1)w j+( j(k− j+1) γ j−1+γ̄ j) v j+
+( j(k− j+1)α j−1+ᾱ j)q(r−k)/2+ j+( j(k− j+1)β j−1+β̄ j)u(s−k)/2+ j  for j=0 , k

  

and it follows :
0=(γ̄ j+1−γ̄ j+( j+1)(k− j) γ j− j(k− j+1) γ j−1−1)v j+
+(ᾱ j+1−ᾱ j+((r−k)/2+ j+1)((r+k)/2− j)α j− j(k− j+1)α j−1)q(r−k)/2+ j+
+(β̄ j+1−β̄ j+((s−k)/2+ j+1)((s+k)/2− j)β j− j(k− j+1)β j−1)  for j=0 , k

   (3)

If s = k and r = k , the (qj )j  and (uj)j must be respective all independent of or parallel 
to the (vj)j . In all of this cases we have therefore a relation
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γ̄ j+1−γ̄ j+( j+1)(k− j) γ j− j(k− j+1) γ j−1−1=0  for j=0 , k    (4)  
If s > k or r > k and if we can take 
j∈{0 , ... , k} such that γ̄ j+1−γ̄ j+( j+1)(k− j)γ j− j(k− j+1)γ j−1−1≠0
 then for this j  we have 
ᾱ j+1−ᾱ j+((r−k )/2+ j+1)((r+k)/2− j)α− j(k− j+1)α j−1≠0    (5)  or 
β̄ j+1−β̄ j+((s−k )/2+ j+1)((s+k )/2− j)β j− j(k− j+1)β j−1≠0    (6).

 

If (5) is satisfied, applying Xj+1 to (3) we obtain 
q(r−k) /2−1∥u(s−k)/2−1  and so Sp[q0 , ... , qr ]=Sp[u0, ... , us]  , s=r  , ql∥ul  for l=0 ,r
 and v j∥q(r−k)/2+ j  , Sp [v0 , ... , vk ]=Sp [q0 , ... , qr ]=Sp[u0 , ... ,us ]
 contradicting  (s>k  or r>k).

  

If (6) is satisfied, applying Yk – j+1 to (3) we obtain in a similar way a contradiction 
with ( s > k or r > k  ).
Therefore (4) is satisfied and taking the summation over j we obtain k+1 = 0 which 
contradicts k≥0.  and so we complete the proof of H ±  diagonalizable .    
Because H+ and H- commute and are diagonalizable, H+ invariate any eigenspace of 
H- , we have that we can find V i=Sp[v k

(i)]k=0 ,mi  such that V i  are corresponding to  
 irreducible representations of g−=Sp[H̄ − , X̄ − ,Ȳ − ]  for i=1 , n  , 

W=⊕
i=1

n

V i  and vk
(i)  is an eigenvector of H +  for any k=0 ,mi  , i=1 ,n .

 

 For any v∈{v k
(i)}k=0 ,mi

i=1 ,n

=S  we can take S j (v)⊆S  , j=1,2  such that   

X + v= ∑
w∈S1(v)

αw w  with αw≠0  for any w∈S1(v)     (7)

Y + v= ∑
w∈S2(v)

βw w  with βw≠0  for any w∈S2(v)     (8)
  

Without difficulties, because H + , X + , Y +  commute with H − , X − ,Y − , considering 
the minimal character of the chosen Si(v) (such that αw≠0  for any w∈S1(v)  and   
βw≠0  for any w∈S2(v)  ), repeatedly applying X+ , Y+ , X- , Y- to change back and 
forward the levels of the H operators eigenvalues , we find for any v∈S  the values   
r , p , k ,l∈ℕ  with l≤r  , k≤p  such that for any i=1,2  , w∈Si(v)  we have 

ai (w)  , c(w)∈W  with 

w=Y +
k ai(w)=Y −

l c (w)  , Y +
p+1 ai(w)=X + ai(w)=Y −

r+1 c(w)=X − c(w)=0  , 

Y +
p ai (w)≠0  , Y −

r c (w)≠0  . 

  

 Also, if S1(v)∪S2(v)=∅  we have d(v)∈W  , h ,t ∈ℕ  , h≤t  with 

Y + Y −
j d (v)=X + Y −

j d(v)=0  for j=0 , t  , v=Y −
h d (v)  , X − d(v)=Y −

t +1 d(v)=0
Y −

t d (v)≠0  . 

  

 For v∈S  we can consider  
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W (v)={u∈S| exist x 1 , ... , xf  such that for any i=1 , f −1  exist a, b∈{1,2} with 

Sa(xi)∩Sb(xi+1)≠∅  , x 1=v  , x f=u }
 

The above defined r,p,l,k depend on v and we denote 
(r , p ,l , k)=(r , p ,l , k)(v)  having (r , p , l , k)(u)=(r , p , l , k)(v)  for any u∈W (v)
 and the space R (v)=Sp [ X +

α Y +
β H +

γ X −
μ Y −

λ H −
ν (S j(u))]α ,β , γ ,μ ,λ , ν∈ℕ

u∈W (v)  , j=1 ,2

   

is a direct sum of spaces of the form 
Sp[Y −

j Y +
s a(u) , X −

i Y +
s a(u)]j=0 , r−l  ; i=0 , l  ; s=0 , p=K (u)  

 with u∈W (v)  , (r , l , p)=(r ,l , p)(v)  .
 Also, if R(v)∩R(v′)≠{0} then R (v)=R(v′)  and we have 
W=Sp [∪

v∈S
R(v)]⊕W 0   where W 0={u∈S|S1(u)∪S2(u)=∅}  . 

  

Thus W is a direct sum of irreducible representations of type K(u) and identical 
representations.
The K(u) representations can be indexed after (r /2 ,  p/2) : a spin r/2 representation 
for the (H- , X- , Y-) generators and a spin p/2 representation for the (H+ , X+ , Y+) 
generators.
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5. Wave propagation. Wave packets . Uncertainity relations
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                             Wave propagation. Wave packets
                                       Uncertainity relations 

Consider the general complex form of a plane wave 

ψ(t , x⃗)=A0 exp (i(ω t−k⃗⋅⃗x))   , with (t , x⃗)∈ℝ4  , A0∈ℝ  , ω=2πν  , k=‖k⃗‖=2π
λ  

 ( ν  -frequency ,λ  -wavelenght ) which propagates in the direction k⃗  having the 
 amplitude A0  and pulsation ω  . 

 

Placing a slit (we restrict ourselves to the z = 0 plane) which has the width l and is 
normal to the propagation direction x in the (x , y) plane, the wave can be detected on 
a screen parallel to the slit and to z -direction . The coordinate system is chosen such 
that the lower y coordinate of the slit is at the origin (see fig.) . 
With the screen at a large distance D0 from the origin O (0,0,0) , by the Huygens-
Fresnel principle , the oscillations propagate from the slit to a point 
A(D0, y A ,0)  on the screen (where x̂ O A  has α  rad  measure) and combine to a  

 wave function value ψA (t)=γ∫
0

l

exp (i(ω t−k (D+ssin α)))d s

where D=‖⃗B A‖ (see fig. and (*) below) and γd s  is the amplitude corresponding  
 to a Fresnel zone d s  of the slit. 
 For the normal direction (α=0)  we must have ψA=A0 exp(i(ω t−k D0))  and so  

 it follows γ=
A0

l
 . 

 

 For arbitrary α  we have ψA=
γ i

k sin α exp(i(ω t−k D))(exp(−i k lsin α)−1)  .  

The intensity of the wave, for the α -angle propagation direction is 

I (α)=ψA ψA
∗=

2|γ  |2

k2 sin2α
(1−cos (k l sinα))=I 0

sin2η
η2   with I 0=|A0|

2  , η=k l sin α
2

 .  

The minima of I , near to the central maximum at α = 0 are obtained for 

sinα=nλ
l

 with n∈ℤ∗  and other extremes of I  are obtained from the  

 transcedental equation η=tan η  . Therefore the first minimum of intensity is at 

sinα=± λ
l

 . 

 

The slit and screen device provide a model for detection and measuring the position 
and momentum of a quantum particle with wave function ψ* . The slit determines the 
y -coordinate of the particle with a precision Δ y = l /2 . Since the first minimum of 

 intensity of the wave function is at sin α=λ
l

 , a particle entering the slit in 

x  direction with momentum p⃗=(p x ,0 ,0)  can be detected at the screen with a 
 precision in momentum determination Δ p y=p x tanα  . 
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 Therefore Δ p y=px tan α=h
λ tan α> h

λ sin α=h
l

 and so we derive a uncertainity 

 relation about determinitation precisions of position and momentum as 

Δ p y Δ y≥h
2

.  Obviously we will have similar relations for all directions: 

Δ px Δ x≥h
2

  ,  Δ p y Δ y≥h
2

  ,  Δ pzΔ z≥h
2

  

 and we can compare these relations with the general Heisenberg  
 uncertainity relations we obtained in Chap. Quantum mechanics formalism. 

 

                                                                                   screen 
          slit                                                                    A

                                                     θ
            y                     D 

                      α
             B                                                                    B’ 
      l       s 
              M 
                O                      x

                                            D0     

                                           fig.      (*)

 The segment |O B| represents the slit. ‖⃗O B‖=l  , M∈|O B| , ‖⃗B M‖=s  , 
B⃗ B′∥O x   ,  Â B B′=α   ,  M̂ A B=θ  ; A , B′  are on the screen, B⃗′ A∥O y   ,  

‖⃗B B′‖=D0   ,  ‖⃗B A‖=D=
D0

cosα
 , l≪D0   ,  

l
D0

=O(ε)≪1

 We have sinθ
l

≤ sinθ
s

= cosα
‖⃗A M‖

≤ 1
D0

       and so θ=O(ε)  , 

s sinα
D

=
ssin (α+θ)

D
+O(ε2)   ,  

‖⃗A M‖
D

=√1+ s2

D2+2
s
D

sin α=1+ s
D

sinα+O (ε2)  . 

 Therefore we can approximate ‖⃗A M‖=D+s sinα  even if we take α= Â O x  . 

 

                                                          (*) 
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 For k :[ω0−Δω ,ω0+Δω]→ℝ    ,   Δω≪ω0  we take a wave packet propagating 

 in direction x  given by the function ψ(t , x)=a ∫
ω0−Δω

ω0+Δ ω

exp(−i(ω t−k (ω) x))dω  . 

 We have k (ω)≈k 0+( d k
dω )ω0

(ω−ω0)    and so integrating we obtain 

ψ(t , x)=2 aΔω sin α
α exp(−i(ω0 t−k 0 x))    where α=α(t , x)=(t−x( d k

d ω )
ω0
)Δω  

A(t , x)=2aΔω sinα
α  is the variable amplitude . 

 

 The maximum amplitude is Amax=A0=2aΔω  which is achieved at α=0  and  
 for α=±nπ  , n∈ℕ  we have A=0  . The secundary maxima of the amplitude 
 for which we must have tan α=α  have significant lower values and so the  
 resultant wave amplitude has significant values only in the interval for 
α∈[−π ,π]  around the maximum which occurs at α=0.

 

 Also a constant value of the amplitude A (t , x)=const .  is held on the planes 

t−x( d k
d ω )ω0

=const .  and so we can consider as the group velocity of he packet 

 the value vg=(d x
d t )A=const .

=(dω
d k )

k0
 or vectorial for k⃗=k (ω) u⃗  with u⃗  the constant 

 versor of propagation direction we will have v⃗ g=(d ω
d k )

k 0
u⃗  . 

 

 If v=ω
k

 is the phase velocity we obtain 

v g=(d(k v)
d k )

k 0
=v+k ( d v

dω )ω0
(dω

d k )
k 0
=v+k v g( d v

dω )ω0
  

v g=
v

1−k ( d v
d ω )

ω0

 . 

 

 Therefore for |k ( d v
dω )

ω0
|≪1  we can write v g≈v+ω( d v

d ω )
ω0

.   

 For d v
dω

=0     ( that is d v
d λ

=0  since λ= 2π
k (ω)

 )  we have v g=v  and a  

 non-dispersive medium. 

 For 
d v
dω≠0   ( that is 

d v
d λ≠0  )  the medium is dispersive and v g≠v  . 

 

 If we take t1 , t2∈ℝ  we have αi=α(t i , x)=(ti−x( d k
d ω )

ω0
)Δω  , i=1 ,2 . 

Since as we noticed the detection of the perturbation is significant possible only in 
the [ - π , π ] interval for α , the time interval in which the perturbation can be 
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detected at a position x has the length 2 Δ t = | t1 - t2 | where Δ t is the precision in 
determination of the time coordinate.
 Hence for the considered wave packet, the precision in determination of time 
 and the precision in determination of the pulsation satisfy the relation 

2Δ t≥|t 1−t 2|=
|α1−α2|

Δω = 2π
Δω  , ΔωΔ t≥π  . 

 

So if the wave packet represents a pilot wave group of a quantum particle, the 
precision in measuring the particles energy which is ΔE = h  Δω and the precision in 
determining the time coordinate , Δt , satisfy the uncertainity relation 

Δ E Δ t≥h
2

   ( with h=2πℏ  -the Planck constant) .  

In the same way , taking the values of α at a same time coordinate and different 
spatial coordinates we obtain for the width of spatial interval in which a perturbation 

 can be detected 2π  =|α1−α2|=|(x2−x1)( d k
d ω )

ω0

Δω  |≈2Δ xΔ k   and so because 

p⃗=ℏ k⃗  for the de Broglie wave vector k⃗  associated to a momentum p⃗  quantum 
 particle, for the precision in determination of momentum and the precision in  
 determination of the spatial coordinate in a motion on the x   axis of a quantum 

 particle we have Δ px Δ x≥h
2

 as we already proved. 

 

Since similar relations are valid for all three orthogonal propagation directions this 
 shows that if we have a bundle k⃗=k⃗0+Δ k⃗ (ω)  of waves sent from the origin 

 having central wave vector k⃗ 0  say in x  -direction we will have ‖Δ x⃗‖‖Δ k⃗‖≥π   
 then the width of the region in which we can significantly detect the waves  

 being d  at distance D  from the origin, it follows 
|k y|
‖k⃗ 0‖

= d
2 D

 , ‖Δ x⃗‖= d
2

 , 

|k y|=‖Δ k⃗‖ , ‖k⃗ 0‖=
2π
λ     with λ  -the central wavelenght of the bundle and so 

d≥√2 Dλ  concluding that the directivity of the bundle decreases when the  
 central wavelenght of the bundle increases. 
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6. Lagrangian field theory. Noether theorem
    Symmetries in quantum mechanics 
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                       Lagrangian field theory. Noether theorem
                            Symmetries in quantum mechanics 

Consider a set of fields 
Φ=(Φa)a=1 ,n  , Φa=Φ(x)∈ℝ  defined on a manifold M  which is parametrized  

 through coordinates x=(xμ)μ  the manifold M  can be for example the time 
 continuum (t ∈ℝ)  or the 1+3  time-space continuum with a metric (pseudometric) 

(gμ ν)μ ,ν  or the Minkowski space-time ((ct , x , y , z)∈ℝ4)  with signature (+,-,-,-) , 
  c  -speed of light in vacuum. 

 

The dynamic of the fields system will be described by a real Lagrangian density 
ℒ=ℒ (Φ ,∂Φ , x)  with ∂ Φ=(∂μ Φa)a ,μ  depending on the coordinates x  , the 

fields (Φa)a  and the fields derivatives (∂μ Φa)a ,μ  such that for any sufficiently  

 smooth domain D⊂M  the action S=∫
D

ℒ(Φ(x) ,∂Φ(x) , x)df x  (where f  is the 

 dimension of M  ) is stationary upon variations (δ Φa)a  which vanish on ∂ D .

 

The stationarity of the action for any domain is equivalent to the Euler-Lagrange 

 equations 
∂ ℒ
∂Φa

−dμ( ∂ ℒ
∂(∂μ Φa))=0  (where the Einstein summation convention 

 applies to the μ  index) . 

 

We consider a family of transformations ( Ω(ω))ω which depend on a real 
infinitesimal parameter ω such that 

Ω= I+ω P+O(ω2)  , P=( d Ω
d ω )

ω=0

 . 

 The family Ω=(Ω(ω))ω  induces coordinate transformations 

xμ→ x̄μ=xμ+αμ ω+O(ω2)  and field transformations 

Φa→Φa=Φa+βa ω+O (ω2)
 (where αμ ,βa  may depend on x  or Φ  ). 
 The domain also transforms becoming Dω .

 

If the system is invariant under the considered family of transformations we will have
δ S=Sω−S=∫

Dω

ℒ(Φ( x̄) ,∂Φ( x̄), x̄)df x̄−∫
D

ℒ (Φ(x) ,∂ Φ(x) , x)d f x=0  .  

We can verify that we have :
∂ x̄μ

∂ xν =δμ ν+ωdν αμ+O(ω2)  , det ( ∂ x̄μ

∂ xν )
μ ν

=1+ω∂λ αλ+O(ω2)  , 

ℒ (Φ( x̄),∂Φ( x̄) , x̄)−ℒ(Φ( x̄) ,∂Φ( x̄) , x̄)=O(ω)  , 
δ S=A +B    where 
A=∫

Dω

(ℒ (Φ( x̄) ,∂ Φ( x̄) , x̄)−ℒ (Φ( x̄),∂Φ( x̄) , x̄))d f x̄  , 

B=∫
Dω

ℒ(Φ( x̄) ,∂ Φ( x̄) , x̄)d f x̄−∫
D

ℒ (Φ(x) ,∂Φ(x) , x)d f x .
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Thus by changing the variable from x  to x in the integral expression of A it follows 
A=∫

D

(ℒ (Φ(x) ,∂ Φ(x) , x)−ℒ (Φ(x) ,∂Φ(x) , x)+O (ω2))d f x=

=∫
D ( ∂ ℒ

∂(∂μ Φa)
Δ (∂μΦa)+ ∂ ℒ

∂ Φa
Δ Φa+O(ω2))d f x

 where Δ Φa=Φa(x)−Φa(x)=Φa( x̄)−Φa(x)−(Φa( x̄)−Φa(x))=
=βaω−αμ ∂μ ω+O(ω2)  
Δ(∂μ Φa)=∂μ Φa−∂μΦa=∂μ(Δ Φa)

 

Therefore considering the Euler-Lagrange equations we obtain that on motion we 

 have A=∫
D

(dμ( ∂ ℒ
∂(∂μ Φa)

(βa−αν ∂ν Φa))ω+O(ω2))d f x  .  

 we have also ℒ (Φ( x̄) ,∂Φ( x̄), x̄)−ℒ(Φ(x) ,∂ Φ(x) , x)=dμ ℒ |x αμ ω+O(ω2)   
 and so changing the x̄  variable to x  variable in the Dω  integral we obtain 
B=∫

D

ℒ (Φ( x̄) ,∂ Φ( x̄) , x̄)(1+dμαμ ω+O(ω2))d f x−∫
D

ℒ(Φ(x) ,∂Φ(x) , x)d f x=

=∫
D

(dμ(αμ ℒ)ω+O(ω2))d f x

 

 Hence 0=δ S=−∫
D

(dμ( ∂ ℒ
∂(∂μ Φa)

(αν ∂ν Φa−βa)−αμ ℒ )ω+O(ω2))df x  

 and so since D  and ω  are arbitrary we conclude that if the action is invariant 
 under the Ω  transformations then during any motion, the Noether current is  

 conserved, that is dμ Nμ=0   where Nμ= ∂ ℒ
∂(∂μ Φa)

(αν ∂ν Φa−βa)−αμ ℒ   is the 

 Noether current. 

 

If N i(t , x⃗)  for (xμ)μ=(t , x⃗)=(t ,(xi)i=1 ,3)∈ℝ4  vanishes sufficiently fast as ‖⃗x‖→∞ ,

 for example as at least ‖⃗x‖−2−α  with α>0  we have that dμ Nμ=0  implies that the 

 total Noether amount ∫ N0(t , x⃗)d3 x⃗  is constant in time, since 

d
dt

∫N0 d 3 x⃗=−∫∂i N i d 3 x⃗=− lim
R→∞

∫
S (0⃗ , R)

N i(t , x) xi

‖⃗x‖
d σ (x)=0  

 where S (0⃗ , R)={⃗x∈ℝ3|‖x⃗‖=R}.

 

 If Φ=q=(qi (t))i=1 ,n∈ℝn  are the generalized coordinates of a system with 
 Lagrangian L=L(q , q̇ , t)  and Ω  is given by the s  -coordinate infinitesimal 
 translations transforms defined as t→ t̄ =t  , qi→q̄i=qi+δs iω+O(ω2)  we have 
 with the notations from above μ=1  , a=1  , αμ=0  , βa=(δsi)i=1,n  and the  

 Noether statement is that the s  -generalized momentum 
∂ L
∂ q̇s

=ps  is constant 

 on any motion if the system is invariant under s  -generalized coordinate 
 translations: ṗs=0  on motion. 
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 If L=L( x , y , z , ẋ , ẏ , ż , t)   is a single particle Lagrangian and Ω  is given by the 
z  -axis infinitesimal rotations 
  t → t̄ =t  , 
  x→ x̄=x−ω y+O(ω2)  

  y→ ȳ= y+ω x+O(ω2)   
  z→ z̄=z   
 ( ω  -infinitesimal rotation angle )  the conserved quantity on any motion if the  
 system is invariant under z   -axis infinitesimal rotations follows to be the 

z  -component of the angular momentum : Lz=p y x−px y=∂ L
∂ ẏ

x−∂ L
∂ ẋ

y

 

 For a time translations invariance of a q=q(t) , L=L(q , q̇ ,t)  system we have 
 Ω  described by t→ t̄ =t+ω   ,  q→q̄=q  and the conserved quantity on any 

 any motion is the energy H = ∂ L
∂ q̇i

q̇i−L=p q̇−L   :  
d H
d t

=0  . 
 

 (Obviously the notation Ḟ  means d F
d t

 ) . 

Consider now for the wave functions of a quantum system 
(Let ψ(t)∈V  ,V  Hilbert space of quantum system (see Chap. Quantum mechanics 
 formalism) ψ=ψ(t , x⃗)  , (t , x⃗)∈ℝ4  ) a group G  of coordinates transforms 
(t , x⃗)→(t′ , x⃗′)  . Then G  induces a representation group U (G)  of wave function 
 transforms which are supposed to be unitary operators on  V  such that 

 

 if g∈G  with g(t , x⃗)=(t′ , x⃗′)  then for Ω=U (g)  we have Ω :V →V  so that 
 for any (t , x⃗)  we have Ω ψ(t , x⃗)=ψ( t′ , x⃗′)  , Ω∈L(V )  ( Ω  is linear continuous) 
 and Ω+ Ω=ΩΩ+= I   ( Ω  is an unitary operator). 

 

 To say that an observable A=A (t)∈L(V ) , A=A +  is invariant under G  is  
 clearly the statement Ω A=A Ω  for any Ω∈U (G)  that is [Ω , A ]=Ω A− A Ω=0  
 for any Ω∈U (G)  . 

 

 If we take G  the x  -coordinate translations of (t , x , y , z)∈ℝ4  we have the Lie 
 group representation of infinitesimal translations Ω(d x)  with 
Ω(d x) ψ(t , x , y , z)=ψ(t , x+d x , y , z)       (1) 

 

Obviously we have 
Ω(d x1+d x2)=Ω(d x2)Ω(d x 1)  , Ω(0)=I   ,  Ω−1(d x)=Ω(−d x)  and so 
d Ω
d ω

(ω)=Ω′(0)Ω(ω)  , Ω′(0)ψ=∇ x ψ   and so  Ω(d x)=exp((d x)∇ x)

Ω(d x)=exp( i
ℏ d x (−i ℏ ∇ x ))

 

 Because −i ℏ ∇ x  is a self-adjoint operator, if we require that the system is   
invariant under x -coordinate translations and so the x -component of momentum 
must be a conserved measurable quantity on system evolution being therefore an 
observable  which depends on the infitesimal translations group only which group is 
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 determined by its Lie group generator, the linear self adjoint operator −i ℏ ∇ x  we 
 take as the x  -momentum observable p̂x  the operator −i ℏ ∇ x  having 

Ω(d x)=exp( i
ℏ d x p̂ x)   ,  ^⃗p=−i ℏ ∇     (2) . 

 

The h constant appears in the expression of momentum operator so that the operator 
eigenvalues have the dimension of momentum. 
In a similar way considering time translations invariance we conclude that as the 
energy observable on system evolution we can take the operator i ℏ ∂t  which on the  
unitary evolutions of the system is equal to a self-adjoint operator (see Quantum 
mechanics formalism) which must be the Hamiltonian operator of the system.
Also considering rotations invariance we derive as the z -angular momentum operator

L̂z=x̂ p̂ y− ŷ p̂x=i ℏ ∂
∂θ   ( where (r ,θ , z)  are the cilindrical z  axis coordinates 

  ( x , y , z)=(r cos θ, r sin θ , z)  (see Chap.Representations of the rotations group). 
 

 Thus ^⃗p=−iℏ ∇   -momentum operator , ^⃗L=^⃗x×^⃗p  angular momentum operator, 

Ê=iℏ ∂
∂ t

 -energy operator 

[ Ê , ^⃗p ]=0  , [ p̂x , p̂ y]=[ p̂ z , p̂ x]=[ p̂ y , p̂z ]=0  and we can therefore simultaneously  
 measure energy and momentum . 

 

 If momentum is determined to be p⃗  we have ^⃗p ψ= p⃗ ψ  and from (1) and (2)  

 follows ψ(t , x⃗)=exp( i
ℏ p⃗⋅⃗x)ψ(t , 0⃗)  . 

 

 In a similar way, if energy is determined to be E  on a particle system evolution, 

 we have Ê ψ=E ψ  and ψ(t , x⃗)=exp(− i
ℏ E t)ψ(0 , x⃗)

 

Thus if energy and momentum are determined on a particle system evolution we have

ψ(t , x⃗)=ψ(0 , 0⃗)exp(− i
ℏ (E t− p⃗⋅⃗x))=exp(−i(ω t−k⃗⋅⃗x))  having a plane 

 wave function with ν= ω
2 π

 frequency, λ= 2π
‖k⃗‖

 wavelenght of the associated 

 de Broglie wave of the particle ℏ ω=E  , ℏ k⃗= p⃗ .

 (3)

The wave function formula can be obtained also in another way as follows.
An associated wave function to a relativistic particle in its rest frame with 

(t′ , x⃗′)  coordinates in the rest frame , must be ψ(t)=ψ0 exp(−i ω′ t′)  

 where ℏ ω′=m0 c2  is the rest energy of the particle with rest mass m0  (see Chap. 
 Relativistic dynamics) .

 

If the particle moves with velocity v in x -direction we have the Lorentz coordinate 
transforms (see Chap. Special relativity) : 
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x′= x−v t

√1−v 2

c2

  ,  t ′=
t− v

c2 x

√1−v 2

c2

   and so requiring Lorentz invariance of the wave  

 function , the wave function will be 

ψ(t , x)=ψ0exp (−i ω(t− x v
c 2 ))=exp(−i(ω t−k x))  with 

ω= ω′

√1− v2

c2

  ,  ℏ ω=
m0c 2

√1− v2

c2

=m c2=E  -relativistic energy, 

ℏ k=ℏ ω v

c2 =
m0 v

√1−v 2

c2

=p  -relativistic momentum , 

ψ=ψ0exp (− i
ℏ (E t−p x))  . 

 

 Note that the phase velocity of the wave must be v f=
ω
k

=c2

v
>c .

 Therefore we consider for the propagation of the particle an associated pilot wave 

 group which has a group velocity v g=
d ω
d k

=

d c2

√1−v2

c2

d v

√1−v2

c2

=v  . 

 

The group velocity appears to be in fact the supposed velocity of the particle. 
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                      Quantum mechanics formalism

In quantum mechanics, a system with f degrees of freedom is described by a complex 
 wave function ψ=ψ( t , q)  depending on time t∈ℝ  and  f  degrees of freedom 
 generalized spatial coordinate q=(qi)i=1 , f  . 

   

 We have ψ=ψ(t )∈C1(ℝ ,H )  where (H ,⟨⋅ ,⋅⟩)  is a complex Hilbert space of  

 functions like Lℂ
2 (D)  with D∈ℝ f  a (bounded) domain in ℝf .

 

 The function 
|ψ(t)|2

⟨ψ(t)|ψ( t)⟩
=w (t ,q)  can be interpreted as the probability density    

of the system to have the coordinates q at time t. 
An obsevable which describes the system through its measurable real average values 
will be a time dependent function linear operator valued function

A :ℝ→L(H , H )  with average values 

⟨ A⟩t=∫ψ∗ (t)(q)(A (t)ψ( t))(q)d f q=⟨ψ|A|ψ⟩( t).
  

Since the average values must be real we will consider that A is self-adjoint : A = A+ .
As usual we can consider a discretization of D by a f-dimensional lattice grid
Γ={(ni a)i=1 , f|ni∈ℤ  for i=1 , f }∩D  with cardΓ=N  such that  H  becomes ℝN

 with the scalar product ⟨(ψ′i)i=1 , N  , (ψi)i=1 , N ⟩=
1

af ∑
i=1

ψ′i
∗ ψi  where ψi=ψ(n j

i a) j=1 , f

  

 with ((n j
i a)j=1 , f )i=1 ,N  being an enumeration of the elements of Γ  and ψ∈H  .  

Obviously, for the derivatives we have the correspondence by discretization

∂iψ=
∂ψ
∂qi

→(± 1
a

(ψ(a n1, an2 ,... ,a(ni±1) , ani+1, ... , a nf)−

−ψ(an1 ,... , a nf) ))(a n1 , ...,anf )∈Γ

 

 The  −  sign in ±  is taken eventually if (a n1 ,... ,a(ni+1) ,... , nf )∉Γ  and 
(a n1, ... , ani , ... , a nf )  is on the boundary of the grid. 

 

 We have also the correspondence by discretization ∫ F(q)d f q→af ∑
q∈Γ

F(q)  , 

δf (q′−q)= 1

af δq′q

  

Considering the discretization we can suppose that the observables are compact self-
adjoint linear operators on H.
Thus any observable has an orthonormal complete set of eigenvectors 
(ψi)i  with A ψi=λiψi  , ⟨A ⟩ψi

=λi  , the measurable real eigenvalues of observable A .
Moreover, by the discretization, A can be considered a trace operator, that is it exists a 
 number tr A  such that for any complete orthonormal set (ψi)i∈ℕ  of H  we have 
tr A=∑

i∈ℕ
⟨ψi|A|ψi ⟩  .  
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 If φ ,ψ  are wave functions describing states of the system, the value 
|⟨φ|ψ⟩|2

‖φ‖2‖ψ‖2  can be interpreted as the probability of transition from state φ  to state ψ  .
  

For simplification we will consider the measure units for length [L] such that
1ℏm2=[L]2  where 2πℏ=h  and h  is the value of the Planck constant in SI units.   
 We consider the position states |q ⟩∈H  for q=(qi)i=1, f∈D  normalized such that  

⟨q′|q⟩=δf (q′−q)=∫ 1
(2π)f exp (i p(q′−q))d f p    (1)

∫δf (q′−q)ψ(q′)d f q′=ψ(q)  ,∫δf (q)d f q=1  ,q(q′)=δf (q′−q)  (2)
⟨q|ψ⟩=ψ(q)  ,   ∫|q ⟩ ⟨q|df q=I      (3)

 

We will have the normalized states of momentum
|p ⟩∈H  for p∈ℝ f  such that ⟨q|p⟩=exp(i p q)  for any position state ⟨q|∈H

 and ∫ 1
(2π)f

|p ⟩ ⟨ p|d f p=I     (4).

Hence ⟨p′|p⟩=∫ ⟨p′|q⟩ ⟨q|p⟩d f q=∫ exp(i q(p−p′))d f q=(2π)f δf (p′−p)   (5)

 and so  δf (p′−p)= V
(2π)f δp ′p   where V=∫

D
df q  is the spatial volume taken by the 

   

system.
We define the coordinates operators
q̂=(q̂i)i=1 , f  , q̂i∈L(H ,H )  as observables satisfying q̂i|q ⟩=qi|q ⟩  for any q=(qi)i=1 , f  . 
The commutator of two operators A , B is defined as [A ,B ]=A B−B A  and since  
(|q ⟩)q∈D  is complete it follows [q̂i , q̂ j ]=0  for i , j=1 , f  .
With the chosen length measure units the reduced Planck constant is ℏ=1  and so   
 the momentum operator is p̂=−i∇ q  , p̂=( p̂i)i=1 , f  , p̂i|p ⟩=pi|p ⟩
 for any p=(pi)i=1 , f  , p̂k=−i ∂

∂ qk

 for k=1 , f
  

 For d q∈ℝ  infinetisimal we take the i-translation vector (d q)i=(d qδi k)k=1 , f  
 and the spatial translation operator T i(dq)  defined by 
(T i(dq)ψ)(t , q)=ψ(t ,q+(dq)i)  for any ψ(t)∈H  and we will have : 

  

T i(d q)=I+i p̂i d q+O((d q)2)
T i(d q) q̂ j|q′ ⟩=q′j T i (d q)|q′⟩+O((d q)2)=q′ j|q′−(d q)i⟩+O ((d q)2)

q̂ j T i(d q)|q′ ⟩=q̂ j|q′−(d q)i⟩=(q′ j−δi j(d q))|q′−(d q)i⟩
[T i(d q) , q̂ j ]|q′⟩=δi j(d q)|q′ ⟩+O((d q)2)   and so 

i [ p̂i ,q̂ j]d q=δi j d q+O((d q)2) .
 Dividing by d q  and taking d q→0  we obtain [ p̂i ,q̂ j]=−i δi j  . 

   

Restoring the Planck constant by dimensional analysis we obtain the commutation 
[ p̂i ,q̂ j]=−i ℏ δi j .  
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 For an observable A=A(t)  we have a complete orthonormate system (ψi)i∈ℕ  of 
 eigenvectors: A ψi=λiψi  such that for any normalized ψ∈H  we have 

|ψ ⟩=∑
i
⟨ψi|ψ⟩|ψi ⟩=∑

i
ci|ψi ⟩  , ci=⟨ψi|ψ⟩  , A|ψ ⟩=∑

i
λi ci|ψi ⟩  . 

 The average value of A  for ψ  is ⟨ψ|A|ψ⟩=∑
i
|ci|

2λi  with ∑
i
|ci|

2=1

   

 We define Δ A=A−⟨A ⟩ I  and it follows: ⟨(Δ A)2⟩=‖(Δ A)ψ‖2=∑
i
|ci|

2|λi−⟨ A⟩|2  .    

 Hence ⟨(Δ A)2⟩  is the averaged square deviation in measuring the observable A  , 

⟨(Δ A)2⟩≤‖Δ A‖2  where ‖Δ A‖=
 
max

i
|λi−⟨ A⟩| is the maximal error in 

 measuring A  (if we measure the obervable A  , ψ  collapses to an eigenvector ψi

 and the measured value is λ i=⟨ψi|A|ψi ⟩  ) .

  

 Obviously [Δ p̂k ,Δ q̂k ]=[ p̂k , q̂k]=−i  and for any λ∈ℝ  it follows:   
0≤‖(λΔ q̂k−iΔ p̂k)ψ‖

2=λ2 ⟨(Δ q̂k)
2⟩+⟨(Δ p̂k )

2⟩+⟨iλ [Δ p̂k ,Δ q̂k ]⟩

λ2⟨(Δ q̂k)
2⟩+⟨(Δ p̂k )

2⟩+λ≥0  for any λ∈ℝ  and therefore ⟨(Δ q̂k )
2⟩ ⟨(Δ p̂k)

2⟩≥1
4

 , 

|Δqk||Δ pk|≥
ℏ
2

 which is the Heisenberg uncertainity relation satisfied by the  

 maximal measuring errors |Δqk| and |Δ pk| of coordinates and momentum. 

   

It is supposed that for any quantum system exists a time evolution operator
U (t ,Δ t) : H→H  defined for t∈ℝ  , Δ t∈ℝ  with U (t ,Δ t)ψ(t)=ψ(t+Δ t)  for any 
 wave function ψ=ψ(t )∈H  such that U  is an unitary operator: U U +=U + U= I
 and twice continuous differentiable in both time variables. 

 

 Thus U (t ,0)=I , U ( t ,Δ t)  is linear unitary and we have a self-adjoint operator 

Ĥ= Ĥ ( t)=i ℏ ∂U
∂(Δ t )

( t ,0)∈L(H , H )  such that U (t ,Δ t )=I− i
ℏ Ĥ (t)Δ t+O((Δ t)2) .

  

Therefore

ψ(t+Δ t)=ψ(t)− i
ℏ Ĥ (t)ψ(t)+O((Δ t )2)  and according to Chap. Lagrangian field 

theory. Noether theorem Ĥ  is the energy observable satisfying the time dependent 
 Schroedinger equation iℏ∂t ψ= Ĥ ψ  . 

 

 In analogy with classical mechanics, Ĥ  will be considered as a function of time 
 and the momentum and coordinates observables :

 

Ĥ=(̂ t)( p̂ ,q̂)  for example in the non-relativistic case for a spin 0, mass m  particle 

 we consider Ĥ= p̂2

2m
+V (q)  where the potential energy is defined by 

V (q̂)|ψ ⟩ (t ,q)=V (q)ψ(t ,q)  . 

 

Hence in this case we have
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Ĥ ψ=−ℏ2

2m
∇ 2 ψ+V ψ .

 If Ĥ= Ĥ ( p̂ , q̂)  not depends explicitly on time the solution of the Schroedinger 

 equation is |ψ(t)⟩=exp(− i
ℏ Ĥ t)|ψ(0)⟩  so we have to solve the time independent  

 eigenvalue problem Ĥ ψ=E ψ  with E∈ℝ  , ψ=ψ(q)  , ψ∈H

 

to get a complete set of energy eigenfunctions:
(ψk)k∈ℕ  , Ĥ ψk=Ek ψk  and the wave functions of the system can be determined by 

ψ( t , q)=∑
k

exp(− i
ℏ E k t )c k ψk (q)  , ck=⟨ψk|ψ(0 ,.)⟩  . 

 

(the last equality holds if the eigenfunctions system is orthonormalized).

                     Quantum field theory. Path integral formalism.
                     Feynman diagrams. Theory renormalization

For simplification we will use natural units for length and time such that the reduced 
 Planck constant ℏ=h /2π=1  and the speed of light in vacuum constant c=1.   
We consider the Minkowski space of time-space coordinates 
(c t , x⃗)=(t , x⃗)=(xα)α=0 ,3  with the diagonal Minkowski metric coefficients 
(ηαβ)α ,β=¿0 ,3=diag(1 ,−1 ,−1 ,−1)  of signature (+ ,− ,− ,− )  . 
Contextual, if x , y are involved four-vectors, we denote the product
x y=ηαβ xα yβ=x0 y 0−x1 y ¹−x2 y2−x3 y3  . We use Einstein summation covention 

 also. We denote ∂α=
∂

∂ xα   ,  ∂α=ηαβ∂β   .  
  

In quantum field theory , a system can be described by a time-space dependent 
coordinate field system of functions φb=φb(t , x⃗)=φb(x)  with b=1 ,m  which are    
considered also as operator valued functions φ̂b=φ̂b(x)  , b=1 ,m  ; φ̂b(x)  is an   
operator acting on a Hilbert space H of state functions

ψ=ψ(t)∈H  , ψ(t )=ψ(t)((φb(t , x⃗))b , x⃗)  ; (φb(t , x⃗))b , x⃗  is assimilated with the 
 generalizated coordinates q=q(t )  evolution from quantum mechanics formalism. 
 The states Hilbert space has a vacuum state corresponding to |0 ⟩=|q ⟩  with q(t)
 assimilating as a generalizated coordinates position the field values 

φb(t , x⃗)=0  for any b  and x⃗  . 

   

A quantum field theory is a Lagrangian field theory (see Chap. Lagrangian field 
theory) defined by a Lagrangian density ℒ=ℒ((φb , dμφb)μ=0 ,3  , b)(t , x⃗) .
We can consider discretizations of the field functions spatial domain so that with
φb :ℝ×D→ℂ  and a∈ℝ +

∗  lattice constant, we take   
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Γ={a(n1 , n2, n3)∈D|n1 , n2 , n2∈{1 , ... , N0}}  and the system is considered the 
continuum limit of quantum systems having wave functions ψ=ψ(t , q)  whose time 
dependent generalized coordinates and Lagrangian are given respectively by

q(t)=(φb(t , j a))b=1 ,m  , j∈{0 , ..., N 0 }3  and 

L(q(t) , q̇(t ))=∑
j

a3 ℒ((φb(t , j a), dμφb(t , j a))b ,μ , j)     where  

(d0φb(t , j a))b , j=(∂φb

∂ t
( t , j a))

b , j

=q̇(t )  for μ=0

diφ( t , j a)=1
a
(φ(t ,( j+(δi k )k=1 ,3)a)−φ(t , j a))  for any j∈ℕ3  , μ=i=1,3

  and we take  φb(t , j a)=0  if exists i∈{1 ,2 ,3} such that ( ji<0  or ji>N 0)

     

The simplest Lorentz invariant Lagrangian densities are 

ℒ(φ ,∂φ)=1
2
(∂φ)2−V (φ)    (1)  with  V  and φ  real functions ,

ℒ(φ ,∂φ)=∂φ+ ∂φ−V (φ+ ,φ)      (2)  with V  a real function and φ=φ1+iφ2

 

a complex function.
In particular we can have :

ℒ(φ ,∂φ)=1
2
(∂αφ∂αφ−m2φ2)+J φ  (1') with J=J (t , x⃗)  a real source function  ,  

ℒ(φ ,∂φ)=∂αφ+ ∂αφ−m2φ+ φ+J + φ+J φ+    (2') with J=J (t , x⃗)  a complex   
source function.
For the (1’) , (2’) Lagrangian densities we derive from the Euler-Lagrange equation
∂ℒ
∂φ −dμ( ∂ℒ

∂(∂μφ))=0  the motion equations   

□φ+m2φ=J       (*) where □=∂α∂α  is the d'Alembert operator.   
Thus in the absence of a source  J ( restoring the Planck and speed of light constants )

 it follows that m
c 2

ℏ  is the lowest pulsation that a wave solution of (*) can have , so   

m is the mass of the quantum particle described by the field under Lagrangian density
(1’) or (2’).

Consider now that we have

L(q , q̇)=1
2

m̄ q̇2−V (q)       (3)  with q=(qi)i=1 , f  for the discretization Γ ,card Γ=f  , 

m̄  a discretization dependent constant. 
  

For the Hamiltonian corresponding to the (3) Lagrangian we have 

H=H (p ,q)  , p=∂L
∂ q̇

 , H= pq̇−L= p2

2m̄
+V (q) 

The undiscretized system with Lagrangian density 

ℒ=ℒ(φ ,∂φ)  leads to a generalized momentum field π(t , x⃗)= ∂ℒ
∂(∂0φ)

( t , x⃗) 
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and so the Hamiltonian density will be 

H=π(t , x⃗)∂0φ(t , x⃗)−ℒ (t , x⃗)=1
2
((∂0φ)

2+(∇ φ)2+m2φ2)−J φ  for the (1’) 

Lagrangian density and 
H=∂0φ

+ ∂0φ+(∇ φ+ )(∇ φ)+m2φ+ φ−J + φ−J φ +  for the (2') Lagrangian density. 
The corresponding Hamiltonian observables are given by

Ĥ= Ĥ (t )=∫
D

1
2
((∂0 φ̂)

2+(∇ φ̂)2+m2φ̂2−J φ̂)( t , x⃗)d3 x⃗  and 

Ĥ=Ĥ (t)=∫
D

(∂0φ̂
+ ∂0 φ̂+(∇ φ̂+ )(∇ φ̂)+m2φ̂ + φ̂−J + φ̂−J φ̂+ )(t , x⃗)d3 x⃗

 Given an initial state ψI  and a final state ψF  , since the Schroedinger equation 

 solution with initial condition ψ(0)=ψI  is ψ(t )=exp (−i Ĥ t)ψ I  we consider the 
 transition amplitude from state ψI  at t=0  to state ψF  at t=T   :

M=C ⟨ψF|exp(−i Ĥ T )|ψI ⟩   where C=1 /(‖ψ I‖‖ψF‖)  is a normalization constant. 

  

|M|2 can be interpreted as the probability of the system to be in the given final state at 
time moment T if at time moment 0 the system is in the given initial state.
Approximating by taking the discretization Γ  and initial state at position state qI  ,  
 final state at position state qF  with a discretized Hamiltonian function 

Ĥ ( p̂ , q̂)= p̂2

2m̄
+V (q̂)  we take also δ t= T

N +1
 , q j=(φb

j ( jδ t , x⃗))b=1 ,m , x⃗∈Γ  , j=0 , N+1
 

and we have:
M
C

=⟨qF|exp (−i Ĥ T )|q I ⟩=∫ ...∫∏
j=0

N

⟨q j+1|exp(−i Ĥ δ t)|q j ⟩d f q1 d f q2 ...d f qN

(because ∫|q j ⟩ ⟨q j|d f q j= I  with f =m cardΓ   ) .

  

 Since |q j ⟩  is an approximating function for δf (q−q j)  we can write 

exp (−i Ĥ δ t)|q j ⟩=exp(−i
p̂2

2 m̄
δ t−iV (q j)δ t)|q j ⟩  and therefore we have 

 

⟨q j+1|exp(−i Ĥ δ t)|q j ⟩=∫ ⟨q j+1|exp(−iδ t p̂2

2 m̄
−iδ t V (q j))|p⟩ ⟨p|q j ⟩ 1

(2π)f d f p=

= 1

(2π)f exp(iδ t
m̄
2 (q j+1−q j

δ t )
2

−iδ t V (q j))∫exp (−i
δ t
2 m̄ (p− m̄

δ t
(q j+1−q j))

2)df p

 

 Using the Fresnel integral ∫
−∞

∞

exp (−i s2)d s=√−iπ  we obtain : 

⟨q j+1|exp(−i Ĥ δ t)|q j ⟩=(− 1
2π

i m̄
δ t )

f /2

exp(iδ t( m̄
2 ( q j+1−q j

δ t )
2

−V (q j)))
Hence 
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M
C
=( −i m̄

2πδ t )
(N+1) f /2

∫ ...∫exp (iδ t
m̄
2
∑
j=0

N ((q j+1−q j

δ t )
2

−V (q j)))d f q1 ...df qN  .

 In the limit N→∞   , the integrand becomes exp (i∫
0

T

L(q (t) , q̇(t))d t)  and we    

are integrating over all paths q = q (t) with q(0) = qI and q(T) = qF , from the initial 
state to the final state.
We can denote the path integral 

∫ ... D q= lim
N→∞ ( −i m̄

2πδ t )
(N+1) f /2

∫ ...∫... df q1 ...d f qN  and therefore we can write: 

M=C∫D q exp(i∫
0

T

L(q , q̇)d t)

 

For a (1) type Lagrangian density we can take the discretization lattice constant 
a=δ t  and for given T  take the continuum limit a→0  following m̄=a3       (4)

f =V

a3  , V =∫
D

d3 x⃗          (5)

N+1= T
a

              (6)

 In the continuum limit we denote ∫D q ...=∫Dφ ...   the path integral integrand 

 becoming exp(i ∫
[0 ,T ]×D

ℒ(φ ,∂φ)d4 x)  and we integrate over all (φ(t ,.))t  paths 

 with |(φ(0 , x⃗))x⃗∈D ⟩=|ψI ⟩  and  |(φ(T , x⃗))x⃗∈D ⟩=|ψF ⟩  . 

 

 Also we take φ(t , x⃗)=0  for any x⃗∈ℝ3∖ D  or t∉[0 ,T ]  and we will
 calculate transition amplitudes when |ψI ⟩=|0 ⟩  , ⟨ ψF|= ⟨0| . 

  

In that case, for a (1’) or (2’) Lagrangian density, with the discretization we made, the 
transition amplitude becomes

M=C∫Dφ exp(i∫ℒ(φ ,∂φ)d4 x)=

=C̄∫
−∞

∞

...∫
−∞

∞

exp(i(1
2
~qT A~q+JT~q))d q1

1 ...d q f
1 d q1

2 ...d q f
2 ...d q f

N  where 

~q=(q1
1, ... , qf

1 ,q1
2 ,... ,q f

N)  as a column vector , q j=(qk
j)k=1, f  for j=0 , N+1  and 

A  is a symmetric real N f×N f  matrix and J  is the discretized column source 
 vector that couples to the discretization of φ( t , x⃗)  , 
C̄  being a discretization dependent constant. 

  

Hence, following the calculation we have done in the Appendix, we have 

⟨ψF|exp(−i Ĥ T )|ψI ⟩=Z(J )=C̄ ((2π i)N f

det A )
1/2

exp(−(i /2) JT A−1 J)  . 

For the (1’) Lagrangian density, because we integrate in the path integral over
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φ  with φ(t , x⃗)=0  for x⃗∉D  , the domain D  being bounded and 
φ(0 , x⃗)=φ(T , x⃗)=0  for any x⃗∈D  we have, integrating by parts, 

∫ℒ(φ ,∂φ)d4 x=∫d4 x(−1
2
φ(∂2+m2)φ+J φ)  and so the relation A A−1=I

 in terms of discretized operators corresponds to 

 

−(∂2+m2)D( x− y)=δ4(x−y)       (5)  so that −1
2

JT A−1 J  becomes  in the 

continuum limit :

W (J)=−1
2
∫ J (x)D(x− y)J ( y)d4 x d 4 y  leading to Z (J)=Z (0)exp(i W (J ))  .   

The solution to the (5) partial differentials equation is the propagator

D( x− y)=∫ d4 k
(2π)4

exp (ik (x−y))
k 2−m2+iε

   with ε>0  , ε→0  a small value.    

To evaluate D ( x ) we integrate over k0 by the method of contours.
 Let ωk=√ k⃗ 2+m2  , k=(k 0 , k⃗)  
The integrand has two poles which 
 for ε→0  , ε>0  are equal to ωk−iε  and −ωk+i ε  . 
 For x0>0  the factor exp(i k 0 x 0)  is exponentially damped for k0  in the upper 
 plane. Hence w extend the contour from −∞  to ∞  on the real axis to include 
 the infinite semicircle in the upper half plane, enclosing the pole at −ωk+iε
 obtaining by the residues theorem 

  

∫ d4 k
(2π)4

exp (i k x)
k2−m2+iε

=−i∫ d3 k⃗
(2π)3

1
2ωk

exp(−i(ωk t−k⃗ x⃗))  .   

For x0 < 0 , we close the contour in the lower half plane, enclosing the pole at

ωk−iε  , obtaining −i∫ d3 k⃗
(2π)3

1
2ωk

exp(i(ωk t−k⃗ x⃗))  and so we will have 

D( x)=−i∫ d3 k⃗
(2π)3 2ωk

(θ(x0)exp (−i(ωk t−k⃗ x⃗))+θ(−x0)exp(i(ωk t−k⃗ x⃗)))

 where θ  is the Heaviside function θ(x0)={1  if x0>0
0  if x0<0

     (6)

As we observe in (6) , in the future cone ( x0 > 0 ) we integrate with a positive energy
ωk  of a virtual particle, that justifies the choosing ε>0  in the propagator solution.  
For the (2’) Lagrangian density we have 
φ=φ1+iφ2   ,  J=J 1+i J 2  

∫ℒ(φ ,∂φ)d4 x=∫d4 x(−1
2
φi K i jφ j+2 J iφi)   with 

K i j=2δi j (∂
2+m2)   , i , j=1,2
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 The A A−1=I  in the discretized formula is like K i j D jk (x−y)=δi k δ
4 (x− y)

 so that D j k (x−y)=1
2
δ j k D(x−y)  and after some calculus we have 

W (J)=−2∫ J i(x)D jk (x− y) J k ( y)d4 x d4 y=

=−1
2
∫(J (x)D(x−y)J + ( y)+J + (x)D (x− y)J ( y))d4 x d4 y

  

Z(J )=Z(0)exp (iW (J)). 
Obviously, (ℝ4∋x→D (x− y))  is a temperate distribution, as an inverse Fourier 

 transform of a temperate distribution which is ℝ4∋k→ 1

k 2−m2+iε
  . 

 

For the Fourier transform we use the momentum space notation of the argument:

D(k)=∫D (x)exp (−ik x)d4 x= 1
k2−m2+iε

 .

In the distributions space, for the distribution x→D(x−y)  we have   

D (x− y)= lim
n→∞

∫
An

exp(i k( x− y))
k2−m2+iε

d4 k
(2π)4      (7)    for any sequence (An)n∈ℕ  with 

∪
n

An=ℝ4    , An+1⊃An  and therefore we can separate integration variables in (7)

 which allows the contour method we used to derive (6). 

  

 Taking J (k)=∫ J (x)exp (−i k x)d4 x   in the momentum space we have : 

W (J )=−1
2
∫ 1
(2π)4 J ∗(k)D(k )J (k)d4 k

 

We add to the (1’) Lagrangian density an interaction term so that the Lagrangian 
density becomes 

ℒ(φ ,∂φ)=1
2
((∂φ)2−m2φ2)− 1

4!
λφ4+J φ     (8)

( to the (2') Lagrangian density we add the interaction term − 1
2!2!

λ(φ+ φ)2
  

In the discretized formula we have 

∫
−∞

∞

...∫
−∞

∞

exp(i(1
2
~qT A~q− λ

4!
~q 4+J~q))dNf ~q=

=∫
−∞

∞

...∫
−∞

∞

exp(i(1
2
~qT A~q+J~q))∑

s=0

∞

∑
i1 , ...,1 s

1
s!
(− iλ

4!
)

s
~q i 1

4 ...~q is
4 dNf ~q=

=exp(−i λ
4!∑j ( ∂

∂(i J j))
4

)∫−∞

∞

... ∫
−∞

∞

exp (i(1
2
~qT A~q+J~q ))dNf~q   and so we derive:
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Z (J ,λ)=∫Dφ exp(i∫ℒ(φ ,∂φ)d4 x)=

=Z (0 ,0)exp (−i λ
4!∫d 4 w ( δ

δ(i J (w)))
4)exp((−i /2)∫ J (x)D (x− y)J ( y)d 4 x d 4 y)

(9)

 where δ
δ(i J (w))

 is the partial derivative with respect to the infinetisimal variable  

i J (w)d4 w  .   
Consider now a process of a system described by the (8) Lagrangian density in which 
the source field J generates incoming matter J( x1

a) ,…, J( xn
a) at space-time locations

x1
a ,…, xn

a, involves matter J (w1),…, J (wm) at interaction locations w1 ,…, wm and 
generates outgoing matter J (x1

b) ,…, J (xs
b) at space-time locations x1

b ,… xs
b .

I={x1
a , ... , x n

a}   ,  V={w1, ... ,wm}   ,  O={x1
b , ... , x s

b}.
 The process assumes field incoming propagation from x k

a  to w ik  for each k=1 , n  ,
 internal field propagation from  wl j  to wm j  for j=1 , r  and outgoing field  

 propagation from wf u  to xu
b  for each u=1 , s  with f u  , ik  , l j  , m j∈{1 , ... , m}.

 

 We label to each propagation : x k
a  to w ik  , wl j  to wm j  , wf u  to xu

b  respectively     
 the four-momenta k k

a  , k j
i  , k u

b  for k=1 ,n  , j=1 , r  , u=1 , s   .

((x k
a ,wik )  , k k

a)k=1 ,n  are the incoming external legs,  

((wf u, xu
b)  , k u

b)u=1 , s  are the outgoing external legs, 

((wl j ,wm j)  , k j
i ) j=1 , r  are the internal lines and 

V ={w1 ,... ,wm} are the vertices of the corresponding Feynman diagrams 

  

considered in space-time and in momentum space.
                       x1

b

                                      x2
b                                                                                            x1

b

                       k1
b   k2

b                           x1
a                                               

                                                                        k1
a                           k1

b           
    k1

i               w2                                                                                                    w1                                    

                   k2
i                                                                     k2

b               
                                                                                 k2

a                              x2
b

k1
a   w1        fig. (a)                                                           fig. (b)

x1
a                                                                                                                            x2

a

       x2
b                                                            k1

i

              x1
a                k1

a              w1              k1
b           x1

b

                                    fig. (c)

Page 10 of 24 65 of total 515  Gh.V.B. Introd. to...QFT 



To calculate the amplitude of the process we observe that the process corresponds to 
terms from the expansion of exp ((−i /2)∫ J (x)D (x− y)J ( y)d4 x d4 y)  in (9)  that   
 contain the following (10) expression: 

∏
k=1

n

i J (xk
a)i D(x k

a−wik )i J (wi k )d
4 xk

a d4 wi k∏
j=1

r

i J (wl j )i D(wl j−wm j) i J (wm j)d
4 wl j

d4 wm j∏
u=1

s

i J (w f u)i D(wf u−xu
b)i J ( xu

b)d4 w f u d4 x u
b

    

 These terms carry a factor 1
2n+r+s

1
(n+r+s)!

 and must be multiplied by a symmetry

 factor SF  which comes from the fact that the terms appear from the product 

(∫ J (x)D(x− y)J ( y)d4 x d4 y)n+ r+ s
 and D( x− y)=D( y−x)  and therefore  

each pair (x , y)∈{(x k
a ,w ik ) ,(wl j , wm j) ,(xu

b , w f u)|k=1 , n  , j=1 , r  , u=1 , s}
 can be chosen two times if x≠ y  and one time if x= y  from any of the 

n+r+s  factors of the product (∫ J (x)D(x−y)J ( y)d4 x d4 y)n+r+ s
 unless the factor

 

was not already used for choosing previously a pair.
 Then we get rid of the J (w l j)  and J (wm j)  , j=1 , r  factors by applying a term 

 from the expansion of the operatorial function exp (−i λ
4!∫d4 w( δ

δ(i J (w)))
4

)   

which must be

(−i λ
4!)

m 1
m!∫ ...∫d4 w1 d4 w2... d4 wm( δ

δ(i J (w1)))
4

...( δ
δ(i J (wm)))

4

 .   

The integration over wi means that the internal process can occur anywhere in space-
time.
Expressing

J (xl
a)=∫ 1

(2π)4 exp(i kl
a xl

a)J (k l
a)d4 k l

a=∫ 1
(2π)4 exp(−i k l

a xl
a) J + (kl

a)d4 kl
a  , 

D(xl
a−w il)=∫

1
(2π)4 exp(i k l

a(xl
a−wi l))D(k l

a)d4 k l
a   for l=1 , n

J (xl
b)=∫ 1

(2π)4 exp(i kl
b xl

b)J (kl
b)d4 k l

b  , 

D (w f l−xl
b)=∫ 1

(2π)4 exp (i kl
b(wf l−xl

b))D (kl
b)d4 kl

b    for l=1 , s

D(w l j−wm j)=∫ 1
(2π)4 exp(i k j

i (w l j−wm j))D(k j
i )d4 k j

i    for  j=1 , r

  

and integrating over all space-time variables we obtain the relevant term :
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Z(0,0)SF
1

2n+r+ s

1
(n+r+s)!∫  (∏j=1

n i

k j
a2−m2+i ε

i J + (k j
a))(∏j=1

s i

k j
b2−m2+iε

i J (k j
b)) 1

m!

(−iλ)m(∏j=1

r i
k j

i 2−m2+i ε)(∏i=1

m

δ4 (∑
k∈A i

k−∑
k∈Bi

k))(2π)4(m−n−r−s)

∏
j=1

n

d4 k j
a∏

j=1

s

d4 k j
b∏

j=1

r

d4 k j
i  where Ai  , Bi⊂{k k

a , k j
b, k l

i|k=1 ,n  , j=1 , s  , l=1 , r}

Ai∩Bi=∅  for i=1 ,m  and the momenta in Ai  , Bi  are occurring as labels. 

 (11)

Because each interaction vertex has four incoming or outgoing lines we have
n + s + 2 r =4 m and so, as we expect, the amplitude term A defined by the (11) 
expression is adimensional.
For a simple propagation process we have to consider the zero-th order Feynman 
 diagram with I={xa} , O={xb} , V =∅  and the first order in λ  diagram fig.(c) 
The zero-th order amplitude for the propagation is

A0=−Z(0 ,0) i
(2π)4∫ J + (k) 1

k2−m2+iε
J (k)d4 k      (12) 

For the fig.(c) diagram we have a symmetry factor 22 . 3! and so from this diagram we 
have an amplitude 

A1=Z (0 ,0)22⋅3! 1
23

1
3!
(−iλ)(2π)−8∫ i

k′2−m2+iε
i J + (k′) i

k″2−m2+iε
J (k″)

i

k2−m2+iε
δ4(k′−k″)d 4 k′ d4 k″d 4 k=

=1
2

λ
(2π)8 Z(0,0)∫ d4 k

k 2−m2+iε
∫ J + (k ′)J (k′)
(k′2−m2+i ε)2

d4 k ′

The integral over k (the loop from fig.(c) momentum integral) in the above 
expression is divergent and so we will integrate over a cutoff of momentum range we 
consider : 
‖k‖4≤Λ  where Λ∈ℝ +

∗  is an upper bound for the momentum range we take in 
consideration and ‖⋅‖4  is a specified four-dimension euclidean equivalent norm. 

 

The first order approximation amplitude for a k- four-momentum propagation process 

with |kα−k 1α|<
1
2
|d kα| , α=0 ,3  is therefore (taking the Λ  cutoff):   

A=A0+A1=Z (0 ,0)(− i
(2π)4

J + (k1)J (k 1)
k 1

2−m2+i ε
d4 k 1+

+1
2

λ
(2π)8 (∫Λ 1

k2−m2+iε
d4 k) J + (k 1)J (k1)

(k 1
2−m2+iε)2 d4 k 1)        (12') 
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| A |2 will be the probability for the considered k- momentum propagation process to 
occur for a given source J. The probability has a resonance pike for
|k 1

2−m2|≤δ  with δ  small , that is δ→0  .  
If we set the source to produce or remove virtual particles having an arbitrary four-
momentum k 1  which is on mass shell  ( that is |k1

2−m2|<δ  with δ→0 ) , the 
probability | A |2 must be bounded  ( for δ→0  , ε→0  ) and not dependent on k1  .  

 Therefore we must have J (k1)=(k1
2−m2)P  where P  may depend only on the 

k -space discretization constant |d k1α| and on k1  . 
 

Hence if we set the source to produce or remove virtual particles with k-four-
momentum on mass shell, the general scattering process amplitude for 
k 1

a ,... , kn
a  incoming particles four-momenta on mass shell and k1

b , ... , k s
b outgoing 

particles four-momenta on mass shell will be proportional to the Feynman amplitude
M defined by a relation as follows :

A=SF (2π)
4 (m−r−n−s)(−iλ)m 1

m!
1

2n+r+s

1
(n+r+s)!

(−1)n+ s∫ (∏j=1

r i

k j
i 2−m2+i ε)

∏
i=1

m

δ4( ∑
k∈A i

k−∑
k∈Bi

k)∏
j=1

r

d4 k j
i=(2π)4(−1)n+s 1

(2π)4(n+s)
M δ4(∑

j=1

n

k j
a−∑

j=1

s

k j
b)

  

M is obtained after progresively transforming the integral by changing variables to 
obtain the combination of k i

a  , k j
b  , i=1 ,n  , j=1 , s  reducing the delta functions.  

M  depends on k i
a  , k j

b  and may depend on the Λ  cutoff which can be a four-ball 

with radius Λ  , B4(K ,Λ)={k∈ℝ4|‖K−k‖4<Λ} where the integration variables 

k j
i  , j=1 , r take values if the integral is divergent and we integrate over the cutoff.

  

Consider now a diagram with BE = n + s external legs of incoming and outgoing 
particles. Let BI = r the number of internal lines and V = m the number of interaction 
vertices. We have 4 V = BE + 2 BI . We can see that the number of loops (elementar 
cycles of the unoriented graph corresponding to the Feynman diagram) is L, equal to 

the number of ∫ ...
d4 k
(2π)4  integrals we  have to do in the expression of M (the number 

of BI integrals we seem have to do is decreased to L = BI - ( V - 1 ) (Euler theorem) by 
the momentum conservation delta functions associated with the vertices, one to each 
vertex, but one of them is associated with overall momentum conservation

∑
j=1

n

k j
a−∑

j=1

s

k j
b=0 ).

We say that we have a superficial degree of divergence D for a Λ dependent 
expression if it diverges like ΛD  for Λ→∞ (a logarithmic divergence counts as D=0).
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 For each loop there is a ∫Λ
d4 k  when cutoff integrating the M  expression  and each 

vertex brings the degree of divergence down by a power of 2 (from the propagator 
factor). Therefore the total degree of divergence for the M expression integrated on 
the Λ-cutoff of the momentum space is D = 4 L – 2 BI = 4 – BE  .

For the fig.(b) Feynman diagram we have  m = 1, n = 2, s = 2, r = 0, SF = 24.4! and 
the Feynman amplitude M1 = -i λ  .
For the fig.(a) Feynman diagram we have m = n = s = r = 2 , the symmetry factor is

SF=(64)4!⋅26  and the Feynman amplitude M2=
1

(2π)4 M2(Λ ,m , K) λ2  with   

M 2=(1 /4)∫Λ 1
k2−m2+iε

1
(K−k)2−m2+iε

d4 k   where K=k 1+k 2 , k 1=k 1
a , k 2=k2

a .  

When we consider the whole meson-meson scattering process with k1 , k2 incoming 
particles four-momenta , k3 , k4 outgoing particles four-momenta in λ-second order 
approximation we must consider in additon to fig.(b) and fig.(a) diagrams the other 
two relevant Feynman diagrams fig.(d) and fig.(e) ;k3 =k1

b , k4 = k2
b , x3 = x1

b , x4 = x2
b ,

x1 = x1
a , x2 = x2

a                                                                                                                
                            x3                                                                              x4                         
                                                                                                       k4                            
                            k3                                           x1       k1                                                   
       x1      k1       w1                                                                 w1        q                            
                                     q                                                                                            
                     p                                                                       p                                    
                                                                                                           w2    k3                  
                                 w2    k4                                                                                    x3    
                                                                                                       k2                      
                               k2                x4                                           x2                                   
                         x2                                                                                                      
                                                                                                                                 
                                 fig.(d)                                                                fig.(e)                     
                                                                                                                            
 with Feynman amplitudes              

1
(2π)4 M2(Λ ,m , k1−k3)λ

2  and respective 1
(2π)4 M 2(Λ ,m , k 1−k 4)λ

2 .

The final scattering process amplitude will be 

A=(C M1+
C

(2π)4 λ
2 (M 2(Λ ,m, k 1+k2)+M2(Λ ,m , k1−k 3)+

+M 2(Λ ,m , k 1−k 4)) )δ4(k 1+k2−k3−k 4)  where C  is a constant independent 

 of Λ  , k1 , k 2, k 3 ,k 4  . 

  

We prove in the Appendix that
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M 2(Λ ,m , K )=E+i F log Λ2

f (K2 ,m)
 where E , F  are constants independent of 

Λ , K  and F  is real and f  is a positive function of K 2, m  . 

  

Thus for s=f ((k1+k2)
2 , m)  , t=f ((k 1−k3)

2 , m)  , u=f ((k 1−k 4)
2 , m)  we have 

 geometrical momentum space discretization determined constants G , D , C  with 
G ,C  real, such that the scattering  amplitude to O(λ̄3)  approximation is given by 

A=−i λ̄+D λ̄2+iC λ̄2(log Λ2

s
+log Λ2

t
+ log Λ2

u )with λ̄=Gλ  .

 

By real scattering experiments we can determine the probability | A |2 for given values 
of s0 , t0 , u0 and so determine positive real λP such that for this values we have an 
amplitude A = -i λP . 

 Hence −iλP=−i λ̄+D λ̄2+iC λ̄2(log Λ2

s0

+log Λ2

t 0

+ log Λ2

u0
)+O (λ̄3)          (13)

 and for arbitrary s ,t , u : A=−i λ̄+D λ̄2+iC (log Λ2

s
+log Λ2

t
+log Λ2

u )+O(λ̄3)  (14)

  

From (13) follows:

−i λ̄=−iλP−D λP
2−i C λP

2 (log Λ2

s0

+ log Λ2

t 0

+log Λ
u0
)+O (λP

3 ) 

and now from (13) , (14) we obtain :

A=−iλP+iC λP
2 (log

s
s0

+log
t
t 0

+ log
u
u0
)+O(λP

3 )  

and we have a cutoff independent description of the scattering amplitude in terms of 
the kinetic s , t, u and the physically measurable quantities λP , s0 , t0 , u0 .
The scattering theory is therefore renormalizable cutoff independent when the 
magnitude order of the measurable λP coupling constant which is given by the 
effective amplitude A = -i λP is increased requiring higher order approximation.

Consider now the k- four-momentum propagation process which corresponds to 
zero-th, first and second order in λ Feynman diagrams respectivefig.(g) , fig.(c) and 
fig.(j) ( with k1

a = k1
b = k   , k1

i = q in fig.(c))

                           k                                                                        q
                                                                                                   
                            fig.(g)
                                                                                k                   r                   k
                                                                                                   p           

                                                                                                        fig.(j)
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For fig.(j) diagram, the cutoff dependent amplitude (with k on mass shell,
J (k)=(k 2−m2)P  , C=Z (0 ,0)) is given by

A2=−C ( i
2 )

5 (−iλ)2

2!
1
5!

1

(2π)12 25(52)(32)2!(∫
Λ

∫
Λ 1

p2−m2+iε
1

q2−m2+iε
1

(p+q+k)2−m2+iε
d4 p d4 q)P P∗ d4 k=i C λ2 1

(2π)4 I (k ,m ,Λ)P P∗ d4 k    (15)

 

The total amplitude for fig.(g) and fig.(c) diagrams, the cutoff dependent amplitude 
(with k on mass shell) is (as we already determined in (12’)) :

A0+A1=− i
(2π)4 C (k 2−m2+ i

2
λ

(2π)4 (∫Λ 1
q2−m2+i ε

d4 q))P P∗ d4 k  

In order zero for λ theory of momentum on mass shell propagation the amplitude is

A0=− i
(2π)4 C (k2−m2+iε)P P∗ d4 k  and k 2−m2+iε= 1

D(k)
 is the inverse 

propagator.
In order 2 for λ theory of momentum on mass shell propagation the amplitude will be

A0+A1+A2=− i
(2π)4 C (k 2−m2+iλ S(Λ , m)−λ2 I (k , m ,Λ))P P∗ d4 k  and so the 

 effective inverse propagator is k2−m2+iλS(Λ ,m)−λ2 I (k , m ,Λ)=
=k2−m2+a+b k2=(1+b)(k2−mP

2 )  where mP  is taken such that mP
2  is a pole of 

 

the effective propagator in k2 and is the physical mass , shifted from the mass m 
because of the quantum fluctuations corresponding to the loops in fig.(c) and fig.(j) 
diagrams and we defined 

S(Λ ,m)=1
2

1
(2π)4∫

Λ 1
q2−m2+iε

d4 q   .  

By Lorentz invariance I ( k , m , Λ ) is a function of k2 which we can expand as 
I (k , m ,Λ)=D (m ,Λ)+E(m ,Λ)k 2+F (m ,Λ)k 4+O(k 6)       (16)
D is just I for k =0 and so it has a superficial degree of divergence 2. E is obtained by 
differentiating I twice with respect to k and setting k = 0. This decreases the powers 
of p and q in the integrand by 2 and so E has a superficial degree of divergence 0 
(depends logarithmically on Λ). In the same way it follows that F has superficial 
degree of divergence -2 and so converges, being cutoff independent as the cutoff goes 
to infinity.
We evaluate S ( Λ , m ) in the Appendix and so we find out that a and b are 
quadratically respective logarithmically cutoff dependent.
Because the coefficient (1 + b ) is no longer equal to 1 we must take the coefficient of
1
2
(∂ φ)2  in an effective Lagrangian density expression considering the quantum  

 fluctuations, not equal to 1  but to (1+b)  . Therefore, with quantum fluctuations 

 

taken into consideration we will make a cutoff dependent renormalization of the field 
theory by taking a perturbed effective Lagrangian density
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ℒ=1
2
((∂φ)2−mP

2 φ2)−
λP

2

4!
φ4+A (∂φ)2+Bφ2+Cφ4       (17)   

where A , B , C are the counterterms cutoff dependent coefficients and mP , λP are 
respective the physical mass and physical coupling which we actually measure.
The physical mass and the physical coupling can be linked to the differential cross 
section of a two mesons scattering into two mesons by the relation we derive in Chap. 
Canonical quantization of a scalar field. Decay rate and cross section :

d σ  = 1
|v1−v2|

1
2ω(k1)2ω(k 2)

d3 k⃗ 3

2ω(k3)
d3 k⃗ 4

2ω(k4)
1

(2π)2
|M|2δ4(k1+k 2−k 3−k4)  

where M=−iλP  , ω(k i)=√ k⃗ i
2+mP

2  , i=1 ,4
k 1 , k 2  incoming four-momenta, k3 , k 4  outgoing four-momenta, 
v 1 , v2  velocities of the incoming particles. 

 

As we derive in Chap. … Decay rate and cross section this leads to a relation satisfied 
in the center of mass frame of the incoming particles :
dσ
dΩ

= 1
|v1−v2|

1
4ω(k1)ω(k2)

1
(2π)2

1
8 Etot

(Etot
2 −4 mP

2 )(1/2)|(−iλP)
2|         (**)  

 with ω(k 1,2)=
mP

√1−v 1,2
2

 ,  Etot=ω(k1)+ω(k 2)  . 

We can determine the physical mass at a given range of momentum or energy 
(expressed through the cutoff parameter Λ) considering collisions of the meson at the 
same energy with another particle having a known mass and applying the energy and 
momentum conservation during the collision process. Once determined the physical 
mass we can extract from (**) the physical coupling by measuring the cross section 
in a meson to meson scattering. (If we count N scattering events in a time interval 
(Δt)’ in the lab frame with a n’ concentration of particles in the incoming beam of 
mesons , considered in the lab frame, then in the center of mass frame with 
w⃗ i=(0 ,0 , wi)  , i=1,2  velocities of incoming mesons in the lab frame 

m̄i=
mP

√1−wi
2

 , vi=
−vC+wi

1−vC wi

  (relativistic velocities addition) i=1,2

vC=
m̄1 w1+m̄2 w2

m̄1+m̄2

 , 

  

 we will have Δ t=
(Δ t )′

√1−vC
2

 , n= n′

√1−vC
2

 , 

σ  = N
n(Δ t)|v 1−v2|

= N
n′(Δ t)′|v1−v2|

(1−vC
2 )  so we have expressed σ  in quantities 

 

which are determuned from the lab frame.)

Suppose now we have determined an effective Lagrangian density with
m , λ  as well as known :
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ℒ N=
1
2
((∂φ)2−m2φ2)− λ

4!
φ4+AN(∂φ)

2+BNφ
2+CNφ

4 

such that taking the inverse effective propagator:
P(k 2)=(1+2 A)k 2−m2+2 B+i(λ−4!C) S̄(Λ ,m)−(λ−4!C)2 Ī (k , m ,Λ)+...=
=PN (k

2, A , B ,C ,m,λ)+O((λ−4!C)N)
  

and the Feynman amplitude for two mesons scattering into two mesons :

M=−i(λ−4!C)+
(λ−4!C)2

(2π)4 ( M̄2(Λ , k1+k 2,m)+M̄2(Λ ,k 1−k3 ,m)+

+M̄ 2(Λ , k1−k 4 , m))+...=M N((k i)i=1 ,4 , A ,B ,C ,Λ , m ,λ)+O((λ−4!C)N)    where 

 

S̄(Λ ,m)= 1
1+2 A

S(Λ ,√ 1−2 B
1+2 A

m)  , M̄2(Λ , K , m)= 1

(1+2 A)2 M2(Λ , K ,√ 1−2 B
1+2 A

)  , 

Ī (k ,m ,Λ)= 1

(1+2 A)3 I (k ,√ 1−2 B
1+2 A

,Λ)  , the physical mass mN and the physical 

coupling λΝ satisfy 
P(mN

2 )=0      (18)  ( we take  PN  to order O(k 3)  , PN=a+b k 2 with a , b not 
depending on k, mN the measured mass and that | MN |2  is linked to the event rate of 
the scattering process for (k i)i=1 ,4  in a specified range of momenta  and for some
particular (k i)i=1 ,4  we have −iλN=M N     (19) ( λN  is the measured coupling ) , 
 for an established value Λ = ΛΝ and A = AN  , B = BN  , C = CN .
From (18) and (19) we can determine m, λ as functions of the measured mP , λP and so 
we can determine a squared mass shift δm2 = mP

2 – m2  and MN  as functions depending 
only on the measurable quantities mP , λP and the already known AN , BN , CN , ΛN .
( M N  depends also on the kinematic variables s=(k 1+k 2)

2  , t=(k 1−k 3)
2  , 

u=(k1−k 4)
2  and (19) leads to O (λN

N)=O((λ−4!CN)
N)    ) .

  

If we change  measuring conditions we can measure another physical mass
mP=mN+1≠mN  and another physical coupling λP=λN+1≠λN  .  
Then we must take higher order approximations (by considering higher order 
Feynman diagrams additionally) and to eliminate the cutoff dependence we will take 
an effective Lagrangian density

ℒ N +1=
1
2
((∂φ)2−m2φ2)−

λN

4!
φ4+AN+1(∂ φ)

2+BN+1φ
2+CN +1φ

4  .

For the measured mP , λP  to be what we say to be we require :
PN +1(k

2 , AN+1 , BN+1 , CN+1 , mN ,λN)=α(k2−mP
2 )        (20)  (again we take an O (k3)

 approximation of  PN+1  ) with α  not depending on k   .
  

M N+1((ki)i=1,4 , AN+1 ,BN +1,CN+1 ,mN ,λN )=−iλP      (21)  for some kinematical 

s=(k 1+k2)
2  , t=(k 1−k 3)

2  , u=(k 1−k 4)
2   .

 Considering that AN+1  , BN+1  , CN+1  , ΛN +1  are taken to be real, the relations 
 (20) , (21)  determine the counterterms coefficients AN+1  , BN+1  , CN +1

 and the cutoff ΛN+1  we must take, in terms of measurable quantities 
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 and M N+1  is a O(λP
N+1)  approximation of M  depending only on measurable 

determined quantities , all this in a specified range of incoming and outgoing 
particles on mass shell four-momenta.
Amplitudes for scattering events with more than four external legs have, according to 
the superficial degree of divergence relation D = 4 – BE we have proven, are 
determined by convergent integrals and so not cutoff dependent. We can calculate the 
amplitudes starting from the  Lagrangian density ℒ N+1  .  

Notice that the form of the Lagrangian density (8) restricts the scattering posibilities 
to an even number of external legs n + s since if r is the number of internal lines and
m is the number of interaction vertices we must have n + s + 2 r = 4 m .

We notice also that we can derive general Feynman rules for computing a Feynman 
amplitude as follows:
Consider a Feynman diagram determined by :
I={x1

a , ... , x n
a}incoming particle endpoints,O={x1

b , ... , xs
b}outging particle endpoitns,

V={w1 , ... ,wm}interaction vertices, k 1
a , ... , kn

a  momenta labels to incoming endlegs,

k 1
b ,... , k s

b momenta labels to outgoing endlegs, 

 

(w0 j ,w1 j)j=1 , r  internal lines sequence with w0 j ,w1 j∈V  such that for 
l j=(w0 j ,w1 j)  , l j  is incoming to w1 j  and outgoing from w0 j  , 
k j  moment label to line l j  , for j=1 , r  , 

Le={(xi
a ,wi

a)|i=1 ,n}∪{(wi
b , xi

b)|i=1 , s} external leg lines .
Associate with each interaction vertex w  the coupling −iλ  and 
(2π)4δ4( ∑

j∈A (w)
k j− ∑

j∈B(w)
k j)  where A(w)={ j∈{1 , ... ,r }|l j  is incoming to w} and 

B(w)={ j∈{1 , ... , r}|l j  is outgoing from w}  ; 

  

 Associate with each internal line the propagator i
k j

2−m2+iε
 ;

Multiply all above associated expressions obtaining an expression E.
Calculate the symmetry factor SF as indicated below :
    Take a( j)=card{q∈{1 , ... ,r }|lq=l j} for j=1 , r  , 
{a1 , ... ,a p}={a( j)| j=1 , r} with a j≠ah  for j≠h  , j , h=1 , p   .
   Take  l=card { j∈{1 , ... , r}| exists w∈V  such that l j=(w ,w)}.

For a real scalar field take SF=2n+ r+ s− l (n+r+s)!
a1!...ap!

  ;

For a complex scalar field take SF=2n+r+s (n+r+s)!
a1! ...ap!

  ;

Multiply E  with SF
1

2n+r+ s

1
(n+r+s)!

   ;  
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 Integrate the resulting expression over each k j  , j=1 , r  variable with measure 

d 4 k j

(2π)4  obtaining after elimination in the integration process of several Dirac  

 distributions an expression (2π)4 M δ4(∑
i=1

n

ki
a−∑

i=1

s

k i
b)    ;

  

The incoming and outgoing four-momenta labels are supposed to be on mass shell 
and M is the resulting Feynman amplitude which is linked to the process probability 
amplitude as shown in Chap. Feynman amplitudes and lattice gauge theory and Chap. 
Canonical quantisation of a scalar field . Decay rate and cross section.

                                      Appendix
                  Calculation of Feynman integrals

 Let Z(J )=∫
−∞

∞

...∫
−∞

∞

exp(i((1 /2)qT A q+JT q))d q1... d qn

 where q=(q j)j=1 ,n  , J=(J k )k=1 ,n  are considered as column vectors in ℝn  
 and A  is a real symmetric n×n  matrix having all leading principal minors ≠0  : 

 

A=(al m)l ,m=1,n  , det (alm)l ,m=1 , k≠0  , ai j=a j i∈ℝ  for i , j , k=1 , n

ei=(δi j) j=1 ,n  for i=1 , n  , q=qi ei  (Einstein summation convention), V =ℝn  
g :V×V →ℝ  , g(ui ei  , v j e j)=ui ai j v j

 

 Since Δk=det (al m)l ,m=1 , k≠0  for k=1 ,n  we can take ( f i)i=1 ,n∈V n  with 

f i=pi
j e j  , P=(pi

j)i , j=1 ,n∈Mn×n(ℝ)  unique determined such that pi
j=0  for j>i  

 and pm
m=

Δm−1

Δm
 for m=2 , n  , p1

1= 1
a11

 , g(e j , f m)=0  for 1≤ j<m  , 

 g(em , f m)=1  for m=1 ,n  .       (1)  

  

 We have g( f k , f m)=∑
j=m

k

pk
j g(e j , f m)         (2) 

Since g( f k , f m)=g( f m , f k )  , we can take in (2) k≤m  and so we have 

g(f k , f m)=0  if k≠m  , g( f m , f m)=pm
m  . 

 

 For P−1=( p̄i
j)i , j=1 ,n  we have p̄i

j=0  for j>i  , p̄m
m= 1

pm
m   and it follows: 

1
2

qT A q+JT q=1
2
∑
k=1

n

pk
k ((∑j=k

n

p̄ j
k q j+

1

pk
k αk)

2

−( 1

pk
k αk)

2)     where αk=∑
j=1

k

pk
j J j  . 

Because of translational invariance , integrating over each qj , j = 1,2,…,n in the Z (J) 
integral expression, we have no dependence on the remaining qk , k > j variables and 
so we have :
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Z(J )=∏
k=1

n

exp(−1
2

i pk
k ( 1

pk
k αk)

2

)∫−∞

∞

exp(1
2

i pk
k ( p̄k

k qk)
2)d qk  . 

 Since ∑
k=1

n

pk
k ( 1

pk
k αk)

2

=∑
k=1

n 1

pk
k αk

2=(P J )T (P A PT)−1(P J )=JT A−1 J  and 

 using the Fresnel integral formula we obtain 

∫
−∞

∞

exp(1
2

i 1
pk

k qk
2)d qk=√2π i pk

k  and since ∏
k=1

n

pk
k=(det A)−1  it follows now : 

  

Z(J )=((2π i)n

det A )
1 /2

exp (−1
2

i JT A−1 J)  which is the formula we used above for 

discretized path integration.

We have further, for the above used Feynman integrals:

2(2π)4 S (Λ ,m)= ∫
‖q‖4<Λ

1
q2−m2+i ε

d4 q=∫
0

Λ

∫
0

π

∫
0

π

∫
0

2π ρ3 sin2(θ)sin (φ)
ρ2 cos(2θ)−A

d ψd φdθdρ=

=4π∫
0

Λ

∫
0

π ρ3sin2(θ)
ρ2 cos(2θ)−A

dθdρ=4π∫
0

Λ

∫
−∞

∞ ρ3

ρ2−A

1

u2−C2

1

1+u2 d u dρ
 

 where A=m2−iε    , C=√ρ2+A

ρ2−A
 with ℑC>0  .   

 For a= A
Λ2  it follows : 

d
d a (2(2π)4 S (Λ ,m)

Λ2 )= ∫
‖q‖4<Λ

1
(q2−m2+iε)2 d4 q=Q(Λ ,m)      (3)

d2

d a2 (2(2π)4 S (Λ ,m)
Λ2 )=2Λ2 ∫

‖q‖4<Λ

1

(q2−m2+iε)3
d4 q=2Λ2 R(Λ ,m)          (4)

  

Using residues theorem we derive :

∫
−∞

∞ 1

u2−C2

1

1+u2 d u=iπ 1

1+C2 ( 1
C
+i)  and so after substitution z=√ ρ2+A

ρ2−A

 and some integration calculus we obtain for b=√ Λ2+A

Λ2−A
:

2(2π)4 S (Λ ,m)=−π2Λ2+π2 A i( 1
b−1

+ 1
b+1

+i+log (b2−1)−log (−2))
2(2π)4 S (Λ ,m)

Λ2 =−π2−(π3+π2)a+π2i√1−a2+π2a i log( a
1−a )     (5)

 

From (3) and then from (4) it follows now :
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Q(Λ ,m)=−(π2+π3)+π2i− π2 i a

√1−a2
+π2 i a

1−a
+π2i log ( a

1−a )     (6)
2Λ2 R(Λ ,m)=π2i

a
+ π2 i

1−a
+ π2 i
(1−a)2−

π2i

√1−a2
− π2i a2

√(1−a2)3
          (7)

 

From (5) we obtain that for A = aΛ ,

 if |aΛ

Λ2|<d<1  when Λ→∞  , then lim sup
Λ→∞ |S(Λ ,√aΛ)

Λ2 |<∞     (8)

 and (considering (6) , (7)) : R (Λ ,√aΛ)=
1
2

H
aΛ

+O( 1
Λ2 )      (9)

Q(Λ ,m)=L+H log (m2

Λ2)+O(m2

Λ2 )  with H=π2i   ,  L=π2 i−π3−π2        (10)

   

By induction we can prove that :
1

x1... x n

=(n−1)!∫
0

1

...∫
0

1

δ(1−∑
i=1

n

αi)
1

(α1 x1+...+αn x n)
n d α1...d αn  and so we have   

1
x y

=∫
0

1 1
(α x+(1−α) y)2 dα

1
x y z

=∫
D

1
(α x+β y+(1−α−β)z)3 d αdβ     where  D={(α ,β)∈(0 ,1)2|α+β<1}

 

M 2(Λ ,m , K )=1
4
∫Λ 1

q2−m2+iε
1

(K−q)2−m2+iε
d4 q=

= 1
4
∫
0

1

∫Λ 1
((q−αK )2+α(1−α)K2−m2+iε)2

d4 q dα     .

 

 In the (0,1)×ℝ4  integration domain we take the cutoff 

BΛ={(α , q)∈(0 ,1)×ℝ4|‖q−αK‖4<Λ} and therfore we can write :  

M 2(Λ ,m, K )=1
4
∫
0

1

Q(Λ ,√m2−α(1−α)K2−iε)dα≈

≈ 1
4

L+ 1
4

H∫
0

1

log (m2+α(α−1)K2−iε
Λ2 )dα

  

 Taking C=√−m2+(1/ 4)K2+i ε  with ℑC>0  and K̄=√K2  we obtain 

 after some calculus J=∫
0

1

log (m2+α(α−1)K2−i ε)d α=

=−2+log (m2−iε)+2 C
K̄
(log ((1 /2) K̄+C)−log (C−(1 /2)K̄ ))   . 

 

We observe that :
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lim
K̄→0

J=log (m2)   and we can therefore take J=log( f (K2 ,m))  with 

lim
K 2→0

f (K 2, m)=m2  such that M 2(Λ ,m , K )=1
4

L− 1
4

H log ( Λ2

f (K2 ,m))     . 
  

 For the I (K ,m ,Λ)  integral we have:   

4(2π)8 I (K ,m,Λ)=∫Λ∫Λ 1
p2−m2+iε

1
q2−m2+iε

1
(K− p−q)2−m2+iε

d4 p d4 q=

=∫
D
∫Λ∫Λ d4 p d4 q

(α p2+βq2+2(α+β−1)(p q−K (p+q))+(α+β−1)K 2−m2+iε)3

 (11)

 where D={(α ,β)∈(0,1)2|α+β>1}  . 
For each (α ,β)∈D  we can take an orthogonal transformation of the ℝ4×ℝ4 space,

T (α ,β) :ℝ4×ℝ4→ℝ4×ℝ4  with φ  depending on (α ,β)
T (α ,β)(p ,q)=(p cos(φ)−q sin (φ) , p sin (φ)+q cos(φ))  such that for 

2μ=α+β−√(β−α)2+4(α+β−1)2  , 2η=α+β+√(β−α)2+4(α+β−1)2  , 
(p′ ,q′)=T (α ,β)(p , q)  we have 

  

α p2+βq2+2(α+β−1)(pq−K (p+q))+(α+β−1)K2−m2+iε=
=μ(p′−γK)2+η(q′−δK )2−ρK2−m2+iε  , ρ=1−μ−η+γ2μ+δ2η  ,  (12)

γ=μ+η−1
μ (cos (φ)−sin (φ))   ,  δ=μ+η−1

η (cos(φ)+sin (φ))  , 

η> 1
2

 and since the integral in (11) is symmetric in α ,β  we can integrate in (11) 

 over β≥α  and multiply the result with 2 to get the (11) expression result. 
 Therefore we can consider 2μ≥α+β−β+α−2(α+β−1)=2(1−β)      (13)

 

We take a cutoff of the ( α , β , p , q ) integration space: 
BΛ={(α ,β , p , q)∈D×ℝ4×ℝ4|α ,β∈(εΛ ,1−εΛ)  , β≥α  , 

(p ,q)∈(T (α ,β))−1(B4(γK ,Λ)×B4(δ K , RΛ))}  with

B4(z ,Λ)={x∈ℝ4|‖x−z‖4<Λ} , lim
Λ→∞

εΛ=0  , lim
Λ→∞

ΛεΛ=∞  , lim
Λ→∞

Λ
RΛ

=0   

 (14)

Because of (13) , on the cutoff we have μ>εΛ  and so for Λ→∞  we will have:  

Λμ>ΛεΛ→∞  , RΛμ→∞  , 
γ K
Λ →0  , 

δ K
RΛ

→0  and so  the cutoff becomes the whole 

integration space as Λ goes to infinity.
Also it follows ρμ≤γ2μ2+δ2ημ≤4+16=20  ,  

lim
Λ→∞

μ( p′−γK )2−ρK 2−m2+iε
RΛ

2 =0  and so (9), (11) , (12) lead to :
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I=4(2π)8 I (K ,m ,Λ)=2∫
DΛ

1

η2 ∫
B4 (0 ,Λ)

(1
2

H

μ p2−ρK2−m2+iε
+O( 1

RΛ
2 ))d4 p dαdβ   . 

 where DΛ=(εΛ ,1−εΛ)
2∩D∩{(α ,β)∈ℝ2|β>α}  . 

Hence we obtain :

I

Λ2=∫
DΛ

1

η2μ2 H
2(2π)4 S(Λ√μ ,√ρK2+m2+iε)

Λ2 dα dβ+O (Λ
2

RΛ
2 )   .    (15)

 Since ∫
DΛ

| 1

η2μ|dαdβ≤1
4
∫
εΛ

1/2

∫
1−α

1−εΛ 1
1−β

dβdα+ ∫
1/2

1−εΛ

∫
α

1−εΛ 1
1−β

dβdα< 1
2
|log(εΛ)|  . 

Considering (14) , (15) and (8) it follows now that I (K , m , Λ) increases not faster 
than C Λ2 log Λ with C an independent positive constant as Λ goes to infinity.
This result remains valid if in (14) we take instead of the condition

lim
Λ→∞

ΛεΛ=0  the conditions lim
Λ→∞

ΛεΛ=c>0  with 
√2‖K‖4

c
=a<1  and in that case 

we obtain lim sup
Λ→∞ |ρK2+m2−iε

Λ2μ |≤lim
Λ→∞

2‖K‖4
2

Λ2εΛ
2 =a2<1  and 

‖γ K‖4≤
√2
μ ‖K‖4≤

√2‖K‖4Λ
ΛεΛ

≤1+a
2

Λ<1  for sufficiently large Λ  and so 

   

 for any z∈ℝ4  , for sufficiently large Λ  we have ‖z−γ K‖4≤‖z‖4+
1+a

2
Λ≤Λ  .  

Since in the given conditions for the cutoff it is obvious that also lim
Λ→∞

‖δ K‖4

RΛ
=0   ,

 we can derive that the cutoff becomes the whole integration space as Λ→∞  . 

 

Because ΛεΛ→c  and εΛ→0  when Λ→∞  we derive in the cutoff that 
Λ√μ→∞  , RΛ√η→∞  when Λ→∞  and the proof follows as above and we have 

I (K ,m ,Λ)∼C Λ2logΛ  as Λ→∞   .
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                          Canonical quantization of a scalar field
                                  Decay rate and cross section

We consider as in Chap. … Quantum field theory … the space-time coordinates 
x=(xα)α=0 ,3=(t , x⃗)  Minkowski space  with  metric coefficients (ηαβ)α ,β=0 ,3=

=diag(1 ,−1 ,−1 ,−1)  corresponding to a choosing of time and lenght measuring 
units such that ℏ=1  (reduced Planck constant) and c=1  (speed of light in vacuum 

 

constant).
Consider a quantum field system described by a  real scalar field φ=φ(t , x⃗)  with  

 Lagrangian density ℒ=1
2
((∂ φ)2−m2φ2)− λ

4!
φ4+J φ   (where ∂=( ∂∂ xα )α

 and J=J (t , x⃗)  is a sources field of the theory). 

 The free scalar field theory with ℒ=1
2
((∂ φ)2−m2φ2)  leads to a motion equation 

 (Euler-Lagrange equations) which is the Klein-Gordon equation for φ  : 
(∂2+m2)φ=0  (where ∂2=∂α∂

α=□  is the D'Alembert operator ) and has solutions 

 

 in Fourier expansion given by 

φ(t , x⃗)=∫ d3 k⃗
(2π)3 /2(2ωk )

1 /2 (a( k⃗)exp(−i(ωk t−k⃗⋅⃗x))+a+ ( k⃗)exp(i(ωk t−k⃗⋅⃗x)))    (1) 
 

 where ωk=√k⃗ 2+m2  and as usual we will use greek letters for indexing from 0  to 3
 and latin letters for indexing from 1  to 3   . 

 

 As in Chap. ... Quantum field theory we will have the corresponding field operator 
 function φ̂=φ̂(t , x⃗)  defined according to (1) by an operator function â=â(k⃗ )

 

For a discretization of the field we have quantum system with generalized

 
 coordinates q=(qk( t))k=1 ,N  a discretized  Lagrangian L=L(q , q̇)  , 

 generalized momenta p=(pk (t))k=1 ,N=
∂ L
∂ q̇

     (see Chap. Feynman diagrams and 
 

lattice gauge theory).
The canonical commutation  relation [ p̂k (t) , q̂ j (t)]=−i δk j  becomes in the   

 continuous field formulation [ π̂ (t , x⃗) , φ̂(t , x⃗′)]=−i δ3( x⃗−x⃗′)    (2)  where 

π̂ (t , x⃗)= ∂ ℒ̂
∂(∂0φ)

(t , x⃗)=∂0 φ̂(t , x⃗)
  

With the (1) relation, the (2) relation can be satisfied if we have the commutation 
 relation [a( k⃗) , a+ (k⃗ ′)]=δ3( k⃗−k⃗′)  for any k⃗ , k⃗′∈ℝ3  .   (3)
We consider our system enclosed in a box, say a cube D with sides of length L 
disposed along the spatial axes. ( L is considered to be much larger than the 
characteristic size of our system)
 For periodic boundary conditions we have φ(t , x⃗+(δi j) j=1,3 L)=φ( t , x⃗)  for i=1 ,3   
We will have a Fourier expansion:
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φ(t , x⃗)=∑⃗
k

exp(i k⃗⋅⃗x)∫φ(t , x⃗) 1
V

exp(−i k⃗⋅⃗x)d3 x⃗   where  k⃗=2π
L
(n1 , n2 , n3)  with 

(n1 ,n2 ,n3)∈ℤ
3    ,   V=L3   and so considering (1) we obtain 

φ(t , x⃗)=∑⃗
k

1

V 1 /2
1

√2ωk

(~a (k⃗ )exp(−i k x)+~a + ( k⃗)exp(i k x))   where 

k x=ωk t−k⃗⋅⃗x   ,  ωk=√ k⃗ 2+m2   ,  ~a ( k⃗)=((2π)3V )
1 /2

a( k⃗)   . 

 

 We have obviously by discretization V
(2π)3

δ k⃗ k⃗′=δ
3( k⃗−k⃗′)  and therefore the  

 normalized creation and anihilation operators ~a + ,~a  satisfy the commutation  

 relation [~a (k⃗ ) ,~a + (k⃗ ′)]=δ k⃗ k⃗′  for any k⃗ , k⃗′=2π
L
(n1 , n2 , n3)  , n j∈ℤ   . 

  

We will have a ground state |0 ⟩  with a( k⃗)|0 ⟩=0  for any k⃗∈ℝ3 and the single particle 
of momentum k⃗   state |k ⟩=~a + ( k⃗)|0 ⟩  which according to  the above relations is 
properly normalized ,  having ⟨k|k′⟩=δ k⃗ k⃗′   with   k=(kα)α=(ωk , k⃗)   .

As we have seen , for periodic boundary conditions for φ with the system enclosed  in 
the box D , the allowed momentum plane wave states are with momenta 

p⃗=2π
L
(n1 , n2 , n3)   with  n j∈ℤ  . The allowed values of momentum form a lattice 

 of points in momentum space with spacing 
2π
L

 between points. We measure  

 momentum with finite resolution, small, but much larger than 2π
L

.  Thus an  

 infinitesimal volume d3 p⃗  in momentum space contains d3 p⃗ /(2π /L)3= V
(2π)3

d3 p⃗  

states. Because V=∫d3 x⃗  , requiring one single state V d3 p⃗
(2π)3

=1  we notice that the 

 minimum accesible volume in phase-space ( x⃗ , p⃗)  of a particle can be considered 
 to be (2π)3  ( or restoring the Planck constant in the relations by dimensional 
analysis it will be (2πℏ)3  i.e. a factor of 2πℏ  for each degree of freedom). 

 

 It follows also ⟨0|φ̂(t , x⃗)|k ⟩= 1
V 1/2

1

√2ωk

exp (−i(ωk t−x⃗⋅⃗k))  which we could  

think of as the relativistic wave function of a single particle with momentum k .
If we define the time-ordered product 
T (φ̂(x)φ̂( y))=θ(x0−y 0)φ̂(x)φ̂( y)+θ( y 0−x0)φ̂( y)φ̂(x)  with θ  , the Heaviside 
 function , we find out (see Chap. ... Quantum field theory ...) that 
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⟨0|T (φ̂( t , x⃗)φ̂(0 , 0⃗))|0⟩=i D(x)  where D(x)  is the propagator for a particle to go 
 from 0  to x  we obtained using the path integral formalism. This further justifies  
 by the way of contour method integration (see Chap. ...Quantum field theory ...)  
the iε  with ε>0  prescription in the propagator formula 

D(x)= 1
(2π)4

∫ exp (−ik x)
k2−m2+iε

d4 k

 

with the physical meaning that we always create (operator function a+) before we 
anihilate (operator function a) , a form of causality as formulated in quantum field 
theory. 
 For any function f=f (k 0 , k⃗)  we have 

∫θ(k0)δ(k 2−m2) f (k 0 , k⃗)d4 k= ∫
{z>0 }×  ℝ3

δ(z−k⃗ 2−m2) 1
2√z

f (√z , k⃗ )d z d3 k⃗=

=∫ 1
2ωk

f (ωk , k⃗)d3 k⃗   . 

 

 For k 2=m2  we have k2>0  and so exists a Lorentz transformation k
T0

→
 

k′  such 

 that k ′=(k′0 ,0 ,0 ,0).
  Lorentz transformations k′→k″  do not change the sign of k′0  : sign k′0=sign k″0  
  and therefore sign k′0=sign k0  and considering for a Lorentz transformation 

k
T
→
 

p  the Lorentz transformation k′
T ∘T 0

−1

   →
 

p  we obtain sign k′0=sign p0  . 

 Hence Lorentz transformations do not change the sign of k0  if k2=m2  and so 
θ(k 0)δ(k2−m2) f (k0 , k⃗ )d4 k  is Lorentz invariant if f  is Lorentz invariant  

 following now that 
d3 k⃗
2ωk

 is a Lorentz invariant measure . 

 

For the system considered above we look at a scattering process of two mesons 
having four-momenta k1  ,  k2 on mass shell into two mesons having four-momenta
k3   ,   k4  on mass shell . The theory Hamiltonian is 

H=∫d 3 x⃗ ( ∂ℒ∂(∂0φ)
∂0φ−ℒ )=∫ (12 ((∂0φ)(∂0φ)+(∇ φ)⋅(∇ φ)+m2φ2)+ λ

4!
φ4)d 3 x⃗  

and we calculate the transition amplitude 
A=⟨k 3 , k 4|exp(−i Ĥ T )|k 1 , k2⟩=⟨0|~a (k⃗ 4)~a ( k⃗3)exp (−i Ĥ T )~a ( k⃗2)~a ( k⃗1)|0⟩

 

 Turning the large transition time T  into ∫d x 0  and expanding in λ  we get the  only 
relevant for the scattering term 
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A=−i λ
4!∫ ⟨k 3 , k 4|φ̂

4(x)|k1 , k2⟩d
4 x        (4)   

To avoid unnecessary complications we consider k1 ,  k2  ,  k3 ,  k4  to be distinct. 
Then the only non-vanishing terms in developing the right member of (4) with (1) 
expresion for φ are those containing the factor

−i λ
4!
⟨0|~a (k⃗ 3)~a (k⃗ 4)a

+ ( k⃗ 4)a
+ ( k⃗3)a( k⃗ 2)a( k⃗ 1)~a

+ ( k⃗2)~a
+ ( k⃗1)|0⟩

exp (i(k3+k 4−k1−k 2)x)  where we integrate over x∈(0 ,T )×D  
  

(Obviously we also consider the commutation [a( k⃗) , a(k⃗ ′)]=0  for any k⃗ , k⃗′∈ℝ3)  
a + ( k⃗ 4)  can come from any of the 4 factors φ̂  in φ̂4  , a+ (k⃗ 3)  from the remaining 3, 

a(k⃗ 2)  from the remaining 2 and a(k⃗ 1)  from the remaining 1 factor 

 occuring in φ̂4 .  Therfore we have a coefficient 4! which cancels the 4! 

 denominator from −i λ
4!

 and we have considering the commutation relations that 

 

A= 1

V 2 (∏i=1

4 1

√2ωki
)AF  where AF=(2π)

4M δ4(k 4+k 3−k 1−k2)  with M=−iλ  is  

 the Feynman amplitude for the scattering process. 

 

For the field system we considered we have an “energy of the vacuum” given by

⟨0|Ĥ|0⟩=∫ 1
2
⟨0|(∂0 φ̂)

2+(∇ φ)2+m2φ2|0⟩d3 x⃗  and after some calculus we obtain  

⟨0|Ĥ|0⟩=V∫ d3 k⃗

(2π)3 2ωk

1
2
(ωk

2+k⃗ 2+m2)=∫ V

(2π)3
1
2
ℏωk d3 k⃗

   ( after restoring the Planck constant) . 

 

 Since as we proved above V
(2π)3

d 3 k⃗  is the number of individual states contained 

 in the infinitesimal volume d3 k⃗  of the momentum space we recognize the vacuum 

 

energy as the zero point energy of the harmonic oscillator integrated over all 
momentum modes and over all space. The integral over the momentum space clearly 
diverges but the energy of any physical configuration is to be measured relative to 
this “energy of the vacuum” and we could define the correct Hamiltonian as 
Ĥ−⟨0|Ĥ|0⟩   .   

For a complex scalar field system with Lagrangian density 

ℒ=(∂φ)+ (∂ φ)−m2φ+ φ− λ
2!2!

(φ+ φ)2+J + φ+J φ+      with φ=φ1+iφ2    ,  

the free field theory leads also to the Klein-Gordon equation for the complex field as 
a motion equation and the canonical commutation relations in the continuous field 
theory are 

[ ∂ ℒ
∂(∂0φa)

( t , x⃗),φb(t , x⃗′)]=−i δabδ
3( x⃗− x⃗′)   ,  a ,b=1,2   ,  t∈ℝ   ,  x⃗ , x⃗′∈ℝ3    
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Therefore we will have for the field operator function an expression as 

φ̂(t , x⃗)=∫ d3 k⃗
(2π)3 /2(2ωk)

1 /2 (a( k⃗)exp(−i k x)+b+ (k⃗ )exp (ik x))     with 

k x=ωk t−k⃗⋅⃗x   ,  ωk=√ k⃗ 2+m2

a( k⃗) , a+ ( k⃗)   anihilation , creation operators for a system particle of momentum k⃗  
b(k⃗ ), b+ (k⃗ )  anihilation , creation operators for a system anti-particle of  

 momentum k⃗  satisfying commutation relations : 

 

[a( k⃗) , a+ ( k⃗′)]=[b( k⃗) , b+ ( k⃗′)]=δ3(k⃗−k⃗ ′)  
[a( k⃗) , a(k⃗ ′)]=[b(k⃗) , b( k⃗′)]=[a(k⃗ ), b( k⃗′)]=[a(k⃗ ) ,b + ( k⃗′)]=0  

  

Considering as above the system enclosed in the cube D with sides of length L along 
the axes , volume V = L3 and periodic boundary conditions we will have in a similar 
way as above that :

φ̂(t , x⃗)=∑⃗
k

1
V 1 /2

1

√2ωk

(~a (k⃗ )exp (−i k x)+~b + ( k⃗)exp(i k x))   with  

~a ( k⃗)=((2π)3V )
1 /2

a( k⃗)   ,  ~b (k⃗ )=((2π)3V )
1/2

b(k⃗ )

k⃗=2π
L
(n1 , n2 , n3)   ,  n j∈ℤ  , k=(ωk , k⃗)

 

Obviously the normalized anihilation and creation operators satisfy
[~a ( k⃗) ,~a + ( k⃗′)]=[~b (k⃗ ) ,~b + (k⃗ ′)]=δ k⃗ k⃗′   

~a + (k⃗ )  creates a normalized particle with four-momentum k  on mass shell state 

 and ~b + (k⃗ )  creates a normalized anti-particle with four-momentum k  on mass 

 shell state and we have a ground state such that a( k⃗)|0 ⟩=0   and  b( k⃗)|0 ⟩=0
 for any k⃗∈ℝ3.

 

The free theory Lagrangian density is invariant under the  field transformations
φ→exp(iθ)φ   ,  θ  ∈  ℝ   that is φ1→φ1−θφ2+O(θ2)   ,  φ2→φ2+θφ1+O(θ2)  
 and the Noether conserved current corresponding to this transformation is 

(Jμ)μ=(−2((∂μφ1)φ2−(∂
μφ2)φ1))μ=(i(φ

+ ∂μφ−∂μφ+ φ))μ

 

We can verify through the Klein-Gordon equation that the current is conserved:
∂μ Jμ=0  which leads to a time independent charge Q=∫ J 0(t , x⃗)d3 x⃗   
After some calculus we derive,  disposing of a time independent constant vacuum 
 charge ∫δ3( 0⃗)d3 k⃗  a time independent charge operator  with expression :

Q̂=∫ Ĵ 0(t , x⃗)d 3 x⃗=∫(a+ ( k⃗)a( k⃗)−b + ( k⃗)b(k⃗ ))d3 k⃗  and we will have 

Q̂~a + ( k⃗)|0 ⟩=~a + ( k⃗)|0 ⟩   ,  Q̂~b (k⃗ )|0 ⟩=−~b + ( k⃗)|0 ⟩
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We conclude that the field operator φ̂+  creates particles with one unit of positive 
 charge and anihilates anti-particles with one unit of negative charge . The field 
 operator φ̂  does the opposite. 

 

Hence for a complex scalar field we have one particle in the box D since the particles 
come in units of charge.

We can consider the more general case of a system of h interacting complex scalar 
fields with a Lagrangian density 

ℒ=∑
j=1

h

((∂ ξ j)
+ (∂ ξ j)−m j

2ξ j
+ ξ j)+P((ξ j

+ ,ξ j)j=1 ,h)+∑
j=1

h

(J j
+ ξ j+J j ξ j

+ )    where  

P  is a polynomial in (ξ j
+ ,ξ j)j=1 ,h=(φ j)j=1 ,2h  , P=∑̄

m
∑

f ∈Sm̄ f ,2h

m f=m̄

gf∏
i=1

m f

φf (i)

 with Sm̄,2h={1,2 , ... ,2h}{1 ,2, ... , m̄}   ,  P  expresses the field to field interactions. 

  

For a process with incoming paricles j1 , j2 , … , jn having four-momenta on mass shell
q1 , q2 , … , qn  and outgoing particles l1 , l2 , … , ls  having four-momenta on mass 
shell p1 , p2 , … , ps  , just as in Chap. Feynman amplitudes and lattice gauge theory 
we derive that the relation between the total transition probability amplitude A for a 
given couplings orders and the total Feynman amplitude AF  corresponding for all 
Feynman diagrams in the same couplings orders, computed using Feynman rules (see 
Chap. … Quantum field theory … Feynman amplitudes and Chap. Feynman 
amplitudes and lattice gauge theory) is given by 

A=V−(s+n)/2(∏k=1

n 1

√2ωqk j k
)(∏k=1

s 1

√2ωp k lk
) AF    , AF  having as we know the form 

AF=(2π)
4M δ4(∑

k=1

s

pk−∑
k=1

n

qk)    with ωq j=√q⃗2+m j
2

 (5) 

Consider the particular case of the decay of a ξ1 field meson having four-momentum 
on mass shell k into a ξ2 field meson and a field ξ3  meson having four-momenta on 
mass shell p  respective q and the interaction term is P=g(ξ2

+ ξ3
+ ξ1+ξ2ξ3ξ1

+ ) . 
The Feynman amplitude at first order in g of the process is
AF=(2π)

4i gδ4(p+q−k)   ,  M=i g   and so the transition probability is 

|A|2= 1
V 3

1
8ωkωpωq

|M|2((2π)4δ4(p+q−k))2
  

Taking T as the transition time we have :
((2π)4δ4(p+q−k))2=(2π)4δ4(p+q−k)∫d4 x exp(i(p+q−k)x)=
=(2π)4δ4(p+q−k)V T  and so the transition decay rate is therefore 

|A|2

T
= 1

V 2

1
2ωk 2ω p 2ωq

(2π)4|M|2δ4(p+q−k)
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 Recall that there are V
(2π)3

d3 p⃗  states in the volume d3 p⃗  in momentum space.   

Therefore the differential decay rate of a meson with momentum k⃗  into two    
 mesons carrying momenta in some specified ranges d3 p⃗    ,  d3 q⃗    around 
 the values p⃗  respective q⃗  is given by  

  

d Γ= 1
2ωk

d 3 p⃗
(2π)3 2ωp

d3 q⃗
(2π)3 2ωq

(2π)4|M|2δ4(p+q−k)  

We notice that the factors of V cancel. The decay rate for a moving particle is smaller 
than that of a resting particle by a factor of m / ωk  from which we can derive time 
dilation. To obtain the total decay rate we integrate over the p⃗ , q⃗  variables  
considering that the p , q four-momenta are on mass shell.
Consider now the particular case of a scattering process of two incoming complex 
scalar field particles with four-momenta on mass shell k1 , k2 into outgoing complex 
scalar field particles with four-momenta on mass shell p1 ,  p2 , … , ps . We compute 
the total Feynman amplitude to a specific couplings order for corresponding Feynman 
diagrams, using the Feynman rules, and obtain

AF=(2π)
4M δ4 (k 1+k 2−∑

j=1

s

p j)  .   

Then the transition probability for the considered process at the desired order in 
coupling constants will be according to (5) :

|A|2= 1
V 2+ s

1
2ωk 1 2ωk 2

(∏j=1

s 1
2ωp j

)((2π)4δ4(k 1+k2−∑
j=1

s

p j))
2|M|2  .      (6)

The process can be viewed as a beam of k1 particles crashing with velocity v1 into a k2 

particle having velocity v2  . The density of the k1 particles in the beam is n . The flux 
of the beam F  is the number of k1 particles crossing an unit area surface normal to
 the relative velocity v⃗ 1−v⃗2    ( we consider |⃗v 2|≪c=1  )  and solidar to the 
k 2  particle. We assume that v⃗1  and v⃗2  point in opposite directions and take a  
 collinear frame (the mass center frame or the k2  particle at rest frame ) in which 

k 1=E1(1 ,0 ,0 , v 1)  , k2=E2(1 ,0 ,0 , v2)  and we have that F=n|v1−v2| . 

 

The cross section σ of the scattering process is defined as the measured event rate 
divided by the flux of the beam . Obviously σ has the dimension of an area.
With N event particles crossing normal in time interval Δt the area ΔS we have

Γ= N
Δ t

 the event rate, n v=F= N
Δ tΔ S

 where v=|v1−v2| , σ  = N
n vΔ t

 , Γ=nσ  v   

 and so σ=ΔS   . Thus a k2  particle sweeps in time Δ t  through a volume 
Δ S|v1−v2|Δ t=σ  |v1−v 2|Δ t  which contains nσ  |v1−v2|Δ t  particles. 

 

 For T=Δ t  , having V
(2π)3

d3 p⃗ j   p j  particle states in the d3 p⃗ j  volume in    

momentum space it follows from (6) that the differential event rate of k1 , k2 mesons 
scattering into p1 ,  p2 , …, ps mesons in some specified ranges 
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d3 p⃗1 , d3 p⃗2 , ... , d3 p⃗s  around the values p⃗1 , p⃗2, ... , p⃗s  respective is given by 

dΓ= 1
V

1
2ωk1 2ωk2 (∏j=1

s d3 p⃗ j

(2π)3 2ωp j
)δ4(k1+k 2−∑

j=1

s

p j)|M|
2

 and since n= 1
V

 , having one particle in the box, the differential cross section is 

dσ  = dΓ
n|v1−v2|

= 1
|v1−v2|

1
2ωk 1 2ωk2 (∏j=1

s d3 p⃗ j

(2π)3 2ωp j
)δ4(k1+k 2−∑

j=1

s

p j)|M|
2

  

 Because ωk i=Ei  , k⃗i=Ei(0 ,0 , vi)  , ωk i=√ k⃗ i
2+mi

2  for i=1 ,2  we have 

(k 1 k2)
2−m1

2 m2
2=(E1 E2(v 1−v2))

2  we have a more Lorentz invariant looking form 
 of the ωk 1ωk 2|v1−v2| factor showing that the differential cross section is 

 

invariant under Lorentz boosts in the direction of the beam.

 ( Recalling that 
d3 p⃗
2ω p

 is a Lorentz invariant measure).  

In particular we can consider the scattering of two particles into two particles in the 
center of mass frame of the incoming k1 , k2    particles.
We consider the p1 particle detector spanning a solid angle d Ω = sinθ d θ d φ  in the 
p1 directions space and count the number of events per unit time detected within the 
considered solid angle.
 We have d3 p⃗1=p1

2 d p1dΩ  if we take p1=‖p⃗1‖ 

 and in the mass center frame k⃗1+k⃗2=0  and so if M  not depends on p1 , p2  
 integrating the differential cross section over p⃗2  and taking 

ω=√ p⃗1
2+m1

2+√ p⃗1
2+m2

2  we will have p1=p1(ω)  , ω1=√ p⃗1
2+m1

2  , ω2=√ p⃗1
2+m2

2  

dω=p1

ω1+ω2
ω1ω2

d p1  , E tot=E1+E2

  

d3 p⃗1

2ωp1

d3 p⃗2

2ω p2

δ4(k 1+k 2−p1−p2)=
p1(ω)
4ω δ(ω−E tot)dωdΩ=

p1(Etot)
4 Etot

dΩ    

 Solving for p1(ω)  we obtain finally 
dσ
dΩ
= 1
|v 1−v 2|

1
4ωk 1ωk 2

1

(2π)2
1

8 Etot
2 ((Etot

2 −(m1+m2)
2)(Etot

2 −(m2−m1)
2))1/2|M|2  

 with ωk 1=
m1

√1−v1
2

 , ωk 2=
m2

√1−v 2
2

 , Etot=ωk1+ωk 2

 

v1 and v2 are velocities in the center of mass frame.
 If w⃗1=(0 ,0 ,w1)   ,  w⃗2=(0 ,0 ,w2)  are the incoming velocities in the lab frame,  
we can take

Page 8 of 9 88 of total 515  Gh.V.B. Introd. to...QFT 



m̄i=
mi

√1−wi
2

  for  i=1,2  , v c=
m̄1 w1+m̄2 w2

m̄1+m̄2

 , 

vi=
w i−v c

1−vc wi

  for  i=1,2   ,   v c  mass center velocity in the lab frame. 

  

At the end we must notice that in computing the effective transition probability 
amplitude according to (5) the initial and final state ψI respective ψF must be 
normalized.
 We have ψF= ⟨0|~a l1( p⃗1) ...~a l s( p⃗s)   and  ψi=~a j 1

+ ( q⃗1)...~a jn
+ ( q⃗n)|0 ⟩   and we require 

⟨ψ I|ψI ⟩=⟨ψF|ψF ⟩=1.  Using the commutation relations we derive 

⟨0|~a j
l (q⃗)~a j

l+ ( q⃗)|0⟩=l!  . Therefore we must normalize ψF  and ψI  with a factor 

 of 1

√l!
 for each occurence of l  identical particles with the same momentum and 

 

of the same sort in the outgoing or incoming particles sets and the corresponding 
transition probability | A |2 must be adjusted by a statistical factor (eliminating double 
counting of events)   given by :

 S=∏
j

1
l j!

 where l j  is an occurence number of identical particles having the same  

sort and momentum.
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                                        Energy-momentum tensor

Consider the space-time continuum of special relativity as the Minkowski space with 
signature (+,-,-,-) of relativistic space-time coordinates (c t , x , y , z) , (c speed of 
light in vacuum). A collection of relativistic particles is determined by the number 
flux four vector field (Nt , Nx , Ny , Nz) and the four momentum vector field
(Pt , Px , Py , Pz) where Nt is the particles density times c and (Nx , Ny , Nz) is the 
particles flux vector :

N t= ' number of particles in volume V=Δ xΔ yΔ z  ' 
Δ xΔ yΔ z

×c  

N x=
 ' number of particles passing the area A x=Δ yΔ z  in time Δ t  ' 

Δ c t Δ y Δ z
×c  

 similar definitions are considered for N y  , N z .

 

 We have N=N (ct , x , y , z)   ,  P=P(ct , x , y , z)  for a particle at (ct , x , y , z)   
coordinates.

 Taking U=( c

√1−v2

c2

,
v x

√1− v2

c2

,
v y

√1− v2

c2

,
vz

√1− v2

c2 )  the four-velocity field (see Chap.

 Relativistic dynamics ) we will have N=n U   ,  P=mU   
where n  is the rest number of particles density and m  is the rest mass of a particle.

 

So it follows m n = ρ , the rest mass density of the particle collection.
The energy-momentum tensor component Tα β will be defined as the amount of 
α -momentum, Pα c going through a 3D -unit volume of constant β coordinate.
For dust, a collection of particles not exerting pressure on each other the 
 energy-momentum tensor will be T=P⊗N=ρU⊗U  .  
Choosing Δ t , Δ x , Δ y , Δ z such that the number of particles in volume V is 1 and 
the number of particles passing the area Ax in time Δ t is 1 (and a similar condition for 
directions y , z) we will have  Δ x=v x Δ t  , Δ y=v y Δ t  , Δ z=v z Δ t  and :  

T t t= Pt c
Δ xΔ yΔ z

  -energy density 

T t x= Pt c
Δ c t Δ y Δ z

  -energy flux × 1
c

 

 

T xt= P x c
Δ xΔ yΔ z

  -momentum density ×c  

T x y= P x c
Δ c t Δ xΔ z

 -shear stress 

T x x= P x c
Δ c t Δ y Δ z

  -strech-compression stress 
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It follows that the energy-momentum tensor is symmetric : Tβ α = Tα β and the 
conservation in time of total energy and momentum of particles in any space region is 
equivalent with the fact that the energy-momentum tensor is a conserved tensor field, 

 that is ∂T αβ

∂ xβ =0  for α=0,3  with Einstein summation convention for 

(xβ)β=0 ,3=(ct , x , y , z)  noticing that according to definition (Tαβ)α ,β  is a  

 

contravariant Lorentz tensor.
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                   Electromagnetic four-potential. Electromagnetic tensor
                               Lagrangian of electromagnetism
                     Energy-momentum tensor of elecromagnetic field

By a suitable choice of time measuring units we can consider for the speed of ligh in 
vacuum c = 1 and by a suitable choice of electric charge measuring units we can 
consider the electric permittivity in vacuum ε = 1 . Therefore, because 
1
c
=√ε  μ  for the magnetic permeability of vacuum we have also μ=1  .  

The Maxwell equations for a electromagnetic field in vacuum will then become :

 ∇×E=− ∂B
∂ t

       (1) 

 ∇⋅B=0                  (2) 
 ∇⋅E=ρ                  (3) 

 ∇×B= j⃗+∂E
∂ t

      (4) 

 

 with (t , x)∈ℝ4  , t∈ℝ  , (t , x)=(xα)α=0 ,3  -time space coordinates 

E=(Ei)i  , E=E (t , x)∈ℝ3  -electric intensity field 

 B=(Bi)i  , B=B (t , x)∈ℝ3  -magnetic induction field 
 ρ=ρ(t , x)∈ℝ  -charge density 
 j⃗= j⃗ (t , x)∈ℝ3  -current density (charge flux vector) 

 We have also the charge conservation law 
∂ρ
∂ t

+∇⋅⃗ j=0      (5) expressing the fact 

 

that in any space domain the total charge is conserved in time.
We consider the Minkowski space-time with signature (+,-,-,-) denoting the 
 metric as (ηαβ)α ,β  ; we denote indices from 1 to 3 by latin letters and indices 
 from 0 to 3 by greek letters. 

 

Considering (1) and (2) it follows that we can take a four-potential (Aα)α auch that

Bi=ϵi jk A, j
k   ,  Ei+A,0

i =−A, i
0   ( where as usual F,α  denotes ∂F

∂ xα   ) for i=1 ,3   .  

(Aα)α is considered Lorentz contravariant so that the Maxwell system is Lorentz 
invariant. 
From (3) and (4) we obtain now
−A ,0 i

i −A, i i
0 =ρ        (5) 

A, p k
k −A,q q

p +A,0 0
p +A, p 0

0 = j p      (6) 

 and so if Aα
α=0  we have       □A=(ρ , j⃗)=J  with □=∂α∂α=∂

2  . 

 

Taking the covariant antisymmetric electromagnetic tensor field
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(Fαβ)α ,β=(
0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0
)   ,  Fαβ=∂α Aβ−∂β Aα  ,  

The Maxwell equations can be written as
∂α Fαβ=Jβ         (7) 
∂α ϵ

α βγδ Fγδ=0      (8) where (Jβ)β=(ρ , j⃗)
 with ϵαβγδ  the Levi-Civita symbol (signature of permutation) 

ϵαβγδ=ηα νηβμ ηγρηδε ϵνμρε  . 

 

It is obvious that if we take a gauge transformation of A given by 
Aα→A′α=Aα+∂αΨ  the electromagnetic tensor field not changes. 

 Therefore we can take the Lorentz gauge in which ∂α Aα=∂α Aα=0  and so in the 
 Lorentz gauge we have □Aα=Jα         (9) .

 

 Solutions of the equations (9) , if exists M>0   such that ‖(ρ , j⃗)(t , x′)‖< M
‖x′‖3   

 for ‖x′‖ sufficiently large, are given by 

A0=φ(t , x)= 1
4 π∫

ρ(t−‖x−x′‖, x′)
‖x−x′‖

d3 x′   

(Ai)i=(A i(t , x))i=
1

4 π∫
j⃗ (t−‖x−x′‖, x′)

‖x−x′‖
d3 x′

 For a concentrated at x′=x′O  stationary charge Q  we see that φ  is the  

 Coulomb potential φ(x)= Q
4π‖x−x′O‖

  . 

 

Consider the Lagrangian density (see Chap. Lagrangian field theory) 

ℒ(A ,∂ A)=− 1
4

Fμν Fμ ν−Jα Aα  we notice that the corresponding 

 Euler-Lagrange equations ∂ℒ
∂ Aν

−dμ( ∂ℒ
∂(∂μ Aν))=0  are equivalent to J ν=∂μFμν  . 

 

 With Fμν=∂μ Aν−∂ν Aμ  the (8) equations are automatically satisfied.  
Hence we choose for the Lagrangian density of the electromagnetic field the 

 expression ℒ=− 1
4

Fμν Fμν−Jα Aα  .  

Taking a gauge such that A0 = 0 we notice that for the field 

A⃗=(A i(t , x))i=
~⃗A cos(ω t−k⃗⋅x)  we have for 

J=0  , ω2=k⃗ 2  (electromagnetic wave) that 

ℒ=1
4

sin2(ω t−k⃗⋅x)(~⃗A2ω2−( k⃗×~⃗A)2)= 1
4

sin2(ω t−k⃗⋅x)(~⃗A2(ω2−k⃗ 2)+(k⃗⋅~⃗A))  

 and so the action ∫ℒ d t d3 x  has a minimum at k⃗⋅~⃗A=0  . 

 

Hence we have chosen the right sign for the Lagrangian density. 
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 Considering a charge density ρ=ρ(t , x)  , charged particles system having a 
 motion described by the velocity field v⃗= v⃗(t , x)  we will have J=(ρ ,ρ v⃗)  and  
 the Lorentz forces density vector field f =ρ(E+ v⃗×B)  . 

 

The power transmitted from the electromagnetic field to the charged particles 
contained in the volume element d V  is given by 
d P=ρ(E+ v⃗×B)⋅⃗v d V=J i Ei d V  and so if W  represents the energy of the 

 particles in a domain Dt⊂ℝ
3  we have d W

d t
=∫

Dt

J i Ei d V=

=∫
D t

(−E⋅∂E
∂ t

+E⋅(∇×B)−B⋅(∇×E+∂B
∂ t

))d V=

=− ∂
∂ t

1
2
∫
D t

(E2+B2)d V−∫
∂Dt

(E×B)⋅ndσ  

 

 with n  the outwards normal on ∂Dt  . 

 Therefore we take w=1
2
(E2+B2)  the energy density of the electromagnetic field, 

S=E×B  the energy flux of the electromagnetic field which is also the  
 momentum density of the electromagnetic field. 
 (see Chap. Energy-momentum tensor) S  is called the Poynting vector of the  
 electromagnetic field. 

 

Also after some calculus we obtain :

f =(∇⋅E)E+(∇×B−∂E
∂ t )×B=∇⋅(− I w+B⊗B+E⊗E)−∂ S

∂ t
 with I=(δi j)i , j  .  

We define therefore the energy-momentum tensor of the electromagnetic field in 
vacuum :

(T αβ)α ,β=(w S
S Iw−B⊗B−E⊗E)            having the relation 

T    ,β
αβ +Gα=0     with (Gα)α=( j⃗⋅E , f )

 

For a non-relativistic spinless charged particle in an electromagnetic field we 
consider the Lagrangian

L(x , ẋ)=1
2

ẋi ẋi+q ẋi Ai−q A0    where (Aα)α  is the four-potential of the  

 electromagnetic field, q  is the charge of the particle, m  is the mass of the particle, 
 and x=(xi)i  are the Carthesian coordinates of the particle . 

 

The motion equations are given by the Euler-Lagrange equations 

0=∂L
∂ xi

− d
d t ( ∂L

∂ ẋi
)=q v k A , i

k−q A, i
0−m ẍi−q A,0

i −q v k A , k
i    and so by the 

 four-potential definition we recover the Lorentz force in the motion equations: 

m ẍ=q E+q v⃗×B      with v⃗=d x
d t

=ẋ   .  
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 The canonical momenta are pi=
∂L
∂ ẋi

=m ẋi+q A i  and the Hamiltonian is 

H= ẋi pi−L= 1
2m

(pi−q Ai)(pi−q Ai)+q A0  . 
 

Therefore we must consider in an electromagnetic field a coupling which replaces the 
canonical momentum with the gauge invariant kinetical momentum pi + q Ai  and 
adds to the Hamiltonian the potential term q A0 .
 In other words, considering the momentum and energy operators acting on 
 wave functions ψ=ψ(t , x)  with the Schroedinger equation 

i∂0ψ=Ĥ ψ= 1
2m

( ^⃗p+q(Ai)i)
2+q A0    with ^⃗p=−i(∂k)k  , we introduce gauge  

 invariant kinetical momentum −i D j=−i∂ j+q A j  and energy i D0=i∂0−q A0  
 that is we replace the ∂  operator in the definition of momentum and energy 
 operators by ∂→D=∂+iq(Aα)α  . 

 

Under a gauge transformation we must take:

ψ(t , x)→exp (iΛ(t , x))ψ(t , x)   ,  Aμ→Aμ−
1
q
∂μΛ  .  
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                              Electric dipole. Magnetic dipole
                  Dipole radiation. Macroscopic Maxwell equations

An electric dipole consists of two equal and opposite point charges +q  and – q 
placed at the ends of a rigidised segment A+ and A- .
 With d=⃗A− A +  the electric dipole moment is p=q d  . For a neutral distribution 
of charge ρ=ρ(r)   ( r  position vector) the associated electric dipole moment will 
 be p=∫ρ r d3 r  . One should always consider the 'dipole limit' where the distance 

 

between the generating charges should converge to 0 while the charge strenght should
 diverge to ∞  such way that the product q d  remains constant.  
Such dipole moments appear on molecules due the non-uniform distributions of 
positive and negative charges on the various atoms.
Therefore in an electromagnetic material, an electric field can induce a electric dipole 

density as a polarization density field P=P(r)= d p
d V

 , the amount of electric dipole   

moment which appears at position r in the volume element d V(r) = d3 r .
 The polarization density field P=P(t , r)  ( t  time coordinate ) must depend on 

the history of electric intensity field Et=(E(τ))τ< t ( E( τ)=E(τ , r)  electric intensity

 vector) having P=f (Et)  and we will have an electric induction vector field 
D=ε0 E+P  where ε0  is the electric permittivity of vacuum with 
∇⋅D=ρf   ,  ∇⋅P=−ρb  , ρf=ρf (t , r)   - the free charges distribution , 
ρb=ρb(t , r)  -the bound in dipoles charges distribution 
ρ=ρf+ρb  -the total charges distribution. 

 

There can be also permanent dipoles when two atoms in a molecule have 
substantially different electronegativity, causing also a polarization density field P.

A magnetic dipole is the closed circulation of an electric current system.
In the Amperian loop model, the magnetic dipole moment is given by

m=1
2
∫ r× j⃗ d3 r  where j⃗= j⃗ (r)  is the electric current density vector field.  

 For a uniformly as ρ  distributed charge we have j⃗=ρ v⃗ (t , r)  with v⃗=v⃗ (t , r)  -the 
 velocities field and so the magnetic moment is proportional to the angular  
 momentum L⃗=∫ r×μ v⃗ d3 r  when μ  is a uniform mass distribution in fact 

we have m= Q
2 M

L⃗  with Q  charge and M  mass. 

 

The current density is supposed to be localized on a circular loop wire so that if the
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 circle is {(r cosα ,r sinα , 0)|α∈(0 , 2π)} we can approximate 

2 m=∫
0

2π

r(α)× j⃗ (α) A r dα  

      where r(α)=(r cosα , r sinα , 0)  , j⃗ (α)=(− jsinα , jcosα , 0)  and  A  is the 
 area of the wire transversal section, I= j A  is the electric current intensity 

 

through the wire. Thus we will have, in the Amperian loop model of magnetic 
moment that:
m=π r2 j A e3=I S e3  with S=π r2  the area of the loop circle and ek=(δk i)i=1 ,3  .  
The magnetic dipole limit will be obtained for S convergent to 0 while the current 
intensity diverges to infinity such that m remains constant.
The magnetic properties of a material are mainly due to the magnetic moments of 
their atoms orbiting magnetic moments (both orbital angular momentum and intrinsic 
spin magnetic moments).
Therefore in an electromagnetic material we will have a magnetic dipole moment 

density as a magnetization density field M=M (r)=d m
d V

 (the amount of magnetic 

 moment at position r  in the volume element d V (r)=d3 r  ) .

 

Sometimes, either spontaneously, or owing to an applied external magnetic field of 
intensity H each electron magnetic moments will be on average lined up. The 
magnetization density field M=M (t , r)  must depend on   the history of magnetic 
 intensity field H t=(H (τ))τ< t  ( H ( τ)=H (τ , r)  magnetic intensity vector field)  

 having M=f (H t)  and we will have B=μ0 H+μ0 M  where μ0  is the magnetic 

 permeability of vacuum, ∇×M= j⃗b−
∂P
∂ t

  ,  ∇×H= j⃗f+
∂D
∂ t

 , 

j⃗b  -the bound charge current density , j⃗f  -the free charge current density ,

j⃗= j⃗f+ j⃗b   -the total charge current density .

 

Thus we have a macroscopic formulation of Maxwell’s equations for materials with 
polarization and magnetization : 
∇⋅D=ρf       Gauss law 
∇⋅B=0        Gauss law for magnetism 

∇×E=− ∂B
∂ t

        Faraday law of induction 

∇×H= j⃗f+
∂ D
∂ t

      Ampere circuital law 

D=ε0 E+P  , H= 1
μ0

B−M  electromagnetic constitutive laws for the material 

j⃗b=∇×M +∂P
∂ t

  ,  ρb=−∇⋅P   ,  ρ=ρb+ρf   ,  j⃗= j⃗b+ j⃗f

 

and we can derive the charge conservation laws :
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∂ρb

∂ t
+∇⋅j⃗b=0   ,  

∂ρf

∂ t
+∇⋅j⃗f=0   ,  

∂ρ
∂ t
+∇⋅⃗j=0  .  

Consider an electric dipole generated by the dipole charge distribution
ρ(r)=qδ3(r−r + )−qδ3(r−r− )  with q>0  , d p=r +−r −  . 

 A stationary electric field E  produces forces F +=q E  , F−=−q E    acting 
 on the ends of the rigid segment A + A−  which rotate the dipole in the (E , d p)  
 plane to a stable equilibrium at which the angle between E  and  d p  is 0 .

 

 Taking the coordinate system such that r + +r −=0   ,  E=(−~E ,0 ,0)  , ~E>0  , 

r +=(
dp

2
cosα ,

dp

2
sinα ,0)  we have that during a rotation of angle dα  of the 

 segment A− A +  around the mass center (0 ,0 ,0)  in the (e ,d p)  plane, the system  
 does the work L=q d p E sinα dα=−d U  where U  is the potential energy of the 

 

dipole in the electric stationary field.
Therefore for the potential energy of the electric dipole in a electric field we have
U=∫−d p

~E sinα dα=d p
~E cosα=−p⋅E   ,  U=−p⋅E         (1) 

p  electric dipole moment , E  electric intensity field  . 
 

Consider now a magnetic dipole in the Amperian loop model given by 
I= j Am  the electric current intensity through the wire loop 
r (α ,θ)=(−rm sinα ,rm cosαsinθ ,−rm cosαcosθ)  
j⃗ (α ,θ)=(− j cosα ,− jsinαsinθ , jsinαcosθ)  . 

 A stationary magnetic field B=(0,0 ,~B)  produces by the Lorentz forces a total 

moment acting on the dipole M⃗O=∫
0

2π

r×( j⃗×B)Am rm dα=∫
0

2π

j⃗ (r⋅B) Am rm dα=
 

=~B π Am rm
2 j cosθe1=MO e1  .  

The dipole rotates therefore around the Ox1 axis with θ as a motion parameter to an 
 equilibrium position at θ=− π

2
 if ~B>0  and at θ=π

2
 if ~B<0  . 

 Hence if ~B>0  during a rotation of  −d θ  the system does the work 
L=−MO dθ=−d U  where U  is the potential energy of the dipole in the  

 

stationary magnetic field.
 For the potential energy we will have U=∫M O dθ=π~B Am rm

2 j sinθ=−m⋅B  

 If ~B<0  we have L=MO dθ  during a rotation of dθ  and we have again 

U=−π~B Am rm
2 jsin θ=−m⋅B

 

 Thus U=−m⋅B      (2) with m  magnetic moment , B  magnetic induction field .  
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For a dielectric material in a slow changing electric field E = E (t, r) we will have a 
induced variable polarization density P = f (Et) which according to (1) produces a 
variation of the potential energy of each dipole in the material system with 

p= p(t , r)  electric dipole moment at position r  by an amount of − ∂ p
∂ t
⋅E(t , r)d t  . 

 Having p(t , r)=P(t , r)d V (r)  the heat dissipated energy from polarization  
 processes in the material during a polarization cycle Γ :(E( τ , r), P(τ , r))τ∈(0 ,T )  , 
E(0 , r)=E (T , r)  in the  (E , P)  plane will have a density 

∫
0

T

E⋅ ∂P
∂ τ d τ  =∮

Γ
E⋅d P=∮

Γ
E⋅d (−ε0 E+D)=∮

Γ
E⋅d D  . 

 

The dissipated energy density is  therefore ∫
0

T

E⋅ ∂D
∂ τ d τ  .   

 If  E=E0 exp(−iω t )+E0
∗ exp(iω t)  with E0=E0(r )∈ℂ  is a real harmonic 

 oscillating electric  field , the time averaged dissipated power density for T=2π
ω  : 

1
T∫0

T

E⋅ ∂D
∂ τ d τ  will be non-zero only if ∂D

∂ τ  has a component which has the same 

 phase as E  .  Therefore we consider a constitutive relation for polarisation such 
 that D=εE0 exp(−iω t)+ε∗E0

∗ exp(iω t)  with ε  =εreal+iεimag  a complex  

 

dielectric constant.
In that case the time averaged dissipated power density is 
1
T
∫
0

T

(E0 exp(−iω t)+E0
∗ exp (iω t))iω(ε∗ E0

∗ exp (iω t)−εE0 exp(−iω t))dt=

=2ωεimag|E0|
2 .

 

For a material with magnetic ordering (like ferromagnetic materials) in a slow 
changing magnetic field H = H (t,  r) we will have the induced variable 
magnetization M = f (Ht) which according to (2) , in the same way as for dielectric 
materials above, leads to a dissipated energy density

∮
Γ

B⋅d M=∮
Γ
μ0 H⋅d M  during a magnetization cycleΓ : (H (τ , r ), M (τ , r))τ∈(0 ,T )  , 

H (0 , r)=H (T , r)  in the  (H , M )  plane. 
 

                         M   
                                          C 

                                  
                 D         B                               Η   
                Γ 
           A
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 We note that ∮

Γ
H⋅d M  is the 'area' of the region surrounded by the hysteresis 

cycle in the (H ,M )  plane: Γ(A B C D A)  . 
 

Consider now a harmonic oscillating electric dipole p(t)= p0exp (−iω t)  with  
constant p0 and mass center at the origin of the coordinate system.
The dipole can be considered given by a ρ = ρ(t, r) neutral variable charge 
distribution and as two in opposite directions oscillating charges q , -q having 
position coordinates variable r+(t) , r-(t) . Therefore we have a charge density
ρ(t , r)=qδ3(r−r + (t))−qδ3(r−r − (t))  and a current density 

j⃗( t , r)=qδ3(r−r + (t)) ṙ + (t)−qδ3(r−r− (t)) ṙ− (t)  . 
 

 It follows ṗ( τ)=∫ ∂ρ
∂ t
( τ , r)r d3 r=q( ṙ + ( τ)− ṙ − (τ))=∫ j⃗( τ , r)d3 r  .  

The oscillating dipole generates a variable electromagnetic field which in the Lorentz 
gauge (see Chap. Electromagnetic four-potential) has a four-potential 
(Aα)α=0 ,3=(

φ
c

, A)        (denoting A=(A i)i=1 ,3  )  given by 

φ( t , R)= 1
4 πε0

∫
ρ(t−‖R−r‖

c
, r)

‖R−r‖
d3 r  

A (t ,R)=
μ0

4π∫
j⃗ (t−‖R−r‖

c
, r)

‖R−r‖
d3 r  , 

 where R , r∈ℝ3  denoting r=‖r‖ , R=‖R‖

 For large R  , r
R
≪1  we will have: 

φ= 1
4 πε0

∫(ρ(t−R
c

, r)+ ∂ρ
∂ t
(t−R

c
, r)R⋅r

c R )( 1
R
+ 1

R3 R⋅r)d3 r+O(( r
R )

2

)=
= 1

4πε0
( p(τ)⋅R

R3 +
ṗ(τ)⋅R

c R2 )+O(( r
R )

2

)
A=

μ0

4π∫( j⃗ (t−R
c

, r)+ ∂ j⃗
∂ t
(t−R

c
, r)R⋅r

c r )( 1
R
+ 1

R3 R⋅r)d3 r+O(( r
R )

2)=
=
μ0

4π
ṗ(τ)

R
+O( r

R )  
 where τ  =t−R

c
 and after some calculus, for the generated electromagnetic field, 

 for large R :
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E (t , R)=−∇φ−∂ A
∂ t
=

=(3(R̂⋅p0) R̂−p0

R ( c2

ω2 R2−
i c
ωR )+(R̂× p0)×R̂

R )ω2

c2

exp(−iω τ)
4πε0

     (3) 

B (t , R)=∇×A=
R̂× p0

R (1+ ic
ωR )ω

2

c3

exp(−iω τ)
4πε0

                         (3')

 where R̂=R
R

 . 

 

 For Rω
c
≫1  the far field has the form of a radiating 'spherical wave' with angular 

 dependence embedded in the cross product: 

B=
R̂×p0

R
ω2

c3

exp(−iω τ)
4π ε0

    ,    E=c B×R̂   ,  R̂×E=c B   ,  E×B=1
c

E2 R̂  , 

R̂=vers (E×B)   ,  E⋅B=R̂⋅E=R̂⋅B=0  , E2=c2 B2  (taking for E ,B  the real 
 parts of the (3) respective (3') expression approximations ).  

 

The time averaged energy flux Poynting vector is 

⟨SP⟩=
1
μ0
⟨E×B⟩= 1

μ0
c ⟨B2⟩ R̂=

μ0

c
p0

2 ω4

R2

sin2θ
32π2 R̂   where  p0=p0 e3   ,  

R̂=(sin θcosψ, sinθ sinψ ,cosθ)   in spherical polar coordinates  (R ,θ ,ψ) .
 

Hence the total time averaged power radiated by the field is 

P=∫
0

2π

∫
0

π

⟨SP⟩R2sinθd θdψ=
μ0ω

4 p0
2

c
1

32π2 4π∫
0

1

(1−x2)dx=
μ0ω

4 p0
2

12π c
       (4) .  

When coming from the Sun in the Earth’s atmosphere, the lightwaves oscillating 
electric field acts on the charges within each polarizable air molecule, causing them 
to move at the same frequency. The particle therefore becomes a small radiating 
dipole whose radiation we see as scattered light having the same frequency as the 
incoming lightwaves. Light of higher frequency is therefore scattered by the radiating 
dipoles in all directions with more radiating power and thus the light received from 
the sky not directly from the Sun appears more in the higher frequency domain and so 
it appears in the blue zone of the visible spectrum (the sky is blue).  This scattering of 
sunlight (Rayleigh scattering) removes a significant proportion of the shorter 
wavelenght (blue and green) from the direct path from the Sun to the observer and the 
reddening of the Sun is intensified when the Sun is near the horizon because the light 
received directly from it must pass through more of the atmosphere. So the Sun 
appears yellow on day time and red on morning and evening time. 

The above relations (3) , (3’) lead in the case of a stationary electric dipole moment
(ω = 0) for large R to expressions of potential and electric field as :
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φ= 1
4π ε0

p⋅R̂

R2   ,  E=3(R̂⋅p)R̂−p

4π ε0 R3          (5)  

For a stationary magnetic dipole given in the Amperian loop model by :
r(α)=(−rm sinα , rm cosα ,0)  , j⃗ (α)=(− j cosα ,− j sinα ,0)  , I= j Am  we have 
 the vector potential at large R  expressed as 

A(R)=
μ0

4π∫
j⃗ (r)

‖R−r‖
d3 r≈

μ0

4 π∫ j⃗(r)( 1
R
+ R̂⋅r

R2 )d3 r=

=
μ0

4π (∫ − R̂×(r× j⃗ (r))
R2 d3 r+∫ R̂⋅⃗j (r)

R2 r d3 r)=
=
μ0

2π
m×R̂

R2 +
μ0 rm

2 Am j

4 R2 (R̂2 , R̂1 ,0)  where 

m=π rm
2 Am j(0,0 ,1)  and m×R̂=π rm

2 Am j(− R̂2 , R̂1 ,0)  and so for large R :

A=
μ0

4π
m× R̂

R2  , B=∇×A=
μ0

4 π
3(R̂⋅m) R̂−m

R3         (5') . 

 

Considering the Amperian loop model for a magnetic dipole , the torque acting on a 
magnetic dipole with magnetic moment m in a magnetic field B=(0,0 ,~B)  will be  
 as we already computed above T⃗=∫

C

r×( j⃗×B)d s=π rm
2 Am j~B sinθe1=m×B  

 where θ  is the angle between m  and  B  and C  with arc element d s  is the  
loop defining cycle .

 

Since the potential energy of a magnetic dipole in a magnetic field B is U = -m.B ,
the force acting from a magnetic dipole m located at point P, on a magnetic dipole m1 
located at point P1 will be given by 
F⃗=−∇ RU=∇R(m1⋅B(R))  with R=P⃗ P1  at large R  and B(R)=B  given by (5'). 
Also the torque acting on the m1 magnetic dipole from the m magnetic dipole will be
 T⃗=m1×B(R)  in the same conditions as above.  
In a similar way, we derive for the force and torque acting from a electric dipole p 
located at a point P on a electric dipole p1 located at P1 that 
F⃗=∇R(m⋅E (R))  , T⃗= p1×E(R)  with E (R)=E  given by (5).  

 We consider now a material domain D⊂ℝ3  with no free charges and polarization 
 density P=P(r)  , r∈D .  The polarization generates an electrostatic field with 

 potential φ=φ(R)= 1
4πε0

∫
D

P(r)⋅(R−r)
‖R−r‖3 d3 r    ( according to (5) )

 

Thus we will have :
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φ(R)= 1
4π ε0

∫
D

P(r)⋅∇ r( 1
‖r−R‖)d3 r= 1

4 πε0
(∫D ∇ r⋅( P (r)

‖r−R‖)d3 r−∫
D

∇ r⋅P(r)
‖r−R‖

d3 r) 
If the polarization density is constant on D , P (r) = P it follows:

φ(R)= 1
4π ε0

∫
∂D

P⋅n
‖r−R‖

dσ(r)     ( with n  the outward normal versor on the  

 surface ∂D  , d σ   the surface area element on ∂D  , which is the field created by 
 a surface charge distribution P⋅n dσ  on the boundary ∂D  of the domain. 
 The electric intensity field due the surface charge distribution is 

E(R)=− 1
4πε0

∇R∫
∂D

P⋅n
‖R−r‖

d σ(r)  so if D  is a ball, at its center the field  

 intensity is E=− P
3 ε0

 . 

 

We take the example of a dielectric ball in an uniform electric field.
 Therefore D={r∈ℝ3|‖r‖≤R} . The external electric field is (0 ,0 , E∞)  which is  
 created by the potential φ∞=−E∞ z  . We consider spherical coordinates (r ,θ ,ψ)  
z=r cosθ   ,  y=r sin θsin ψ   ,  x=r sinθcosψ  . 

 

We assume for the dielectric the linear constitutive equation for the electric induction 
 field D=κε0 E   ,  κ  -dielectric constant.  (There must be no confusion between the 
dielectric ball D which is notation for a set and the electric induction D which is 
notation for a vector field.)
 Outside the sphere we have D=ε0 E  and we assume also that the electric field  
 in z  direction E∞  induces a constant polarization density field on the domain D   

 and in the samedirection P=3ε0
C

R3 E∞ e3  . Hence the potential outside the sphere 

is φe(r)≈−r E∞ cosθ+ 1
4πε0

∫
∂D
(1r + r′⋅r

r3 )(P⋅n)dσ (r′)=−r E∞cosθ+R3 (P⋅r)
r3

1
3ε0

 

φe(r)≈−r E∞ cosθ+C

r 2 cosθ            (  with C  a constant) . 

 

In the interior of the sphere, having no free charge we have ∇⋅D=0  and so  
∇⋅κε0 E=0   ,  −∇2φi=0  for φi  the potential inside the sphere. 
 Therefore we can take φi(r)=A z=A r cosθ    ( A  constant ) considering 
 a z  dependence of the field. 

 

We must have the continuity of potential and radial component of the electric 
induction field D at the boundary of the sphere (see Appendix : electromagnetic 
boundary conditions). 
Therefore we have 
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−R E∞+
C
R2=A R   ,   κε0 A=−ε0 E∞−2

ε0

R3 C   

 leading to  A=− 3
κ+2

E∞    ,   C=κ−1
κ+2

R3 E∞

 

 Taking P= p
V

 with V=4
3
π R3  the domain volume and p  the induced polarization 

 we have p=4π ε0
κ−1
κ+2

R3 E∞  and we see that the induced polarization flips sign 

 if κ<1  which happens in the case of two different dielectrics separated by a 

 

spherical surface and κ replaced by the ratio of the inner to outer region dielectric 
constants , ε0  replaced by the outer electric permittivity . 

 We have φi=−
3
κ+2

E∞ r cosθ    and the electric field intensity inside the sphere is 

−∇φi=
3
κ+2

(0,0 , E∞)=(1−κ−1
κ+2 )(0 ,0 , E∞)  , 

φe=(−r+κ−1
κ+2

R3

r2 )E∞ cosθ  . 

 

The surface charge density is the difference between the radial field components at 
the boundary :

(ε0φi , r−ε0φe,r)
 
 |r=R

=(−1+κ−1
κ+2

+1+2 κ−1
κ+2 )ε0 E∞cosθ=3 ε0

κ−1
κ+2

E∞ cosθ=P⋅n   

Thus the dielectric constant treatment is equivalent to the uniform electric dipole 
moment and leads to zero charge everywhere except for the surface charge at the 
boundary of the sphere.

 Consider now a metalic conductor material domain D⊂ℝ3  in an electrostatic  
 field E=E(R)  , R∈ℝ3  , E=−∇φ   ,  φ=φ(R)∈ℝ .

 

If the electric field would not vanish inside the domain we would have a  electric 
charges transport inside the domain. But in the electrostatic case, an equilibrium is 
achieved so that no electric charges transport exists inside the metal domain. The time 
interval needed for the redistribution of conduction electrons inside the metal so that 
no charge currents exist inside the metal is called relaxation time.
Due the redistribution of electric charges , since according to Ohm’s law we have

J=σc E  ( σc  -conductivity of the metal , J  -electric charge current density or  
 charge flux vector field) and since the charge current density vanishes on D  after 
equilibrium is achieved it follows that at equilibrium we have 
 E(R)=0  for any R∈D .

 

Thus inside the domain D , the potential φ is constant and since the potential must be 
a continuous function it follows that the potential is equal on the boundary of D with 
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the same constant as in the interior of D . Hence the tangential component of the 
 electric field Et=E−(E⋅n)n  (n  -outwards normal versor on ∂D ) which as we  
prove in the Appendix is continuous when passing the boundary of D , must vanish 
on the boundary of the domain.
 Let Eext (R)= lim

r→R
r∈ℝ3∖D

E(r)  , E int(R)= lim
r→R
r∈D

E (r)   for R∈∂ D  . 

 Then Eext=(Eext⋅n)n=En    on ∂D  . 

 

 Considering the electric induction field D=D(R)  we must have 
D int=0   (since Eint=0   ) and Dext=εEext    with ε  -electric permittivity of vacuum 

 

exterior of the domain and as we prove in the Appendix 
Dext⋅n−Dint⋅n=σ f    on ∂D  , where σ f  is the free charge 

 density on ∂ D , so En=
σf

ε n  . 
 

 Thus when we have the conductor charged with uncompensated electric charges 
 we have a zero density of charges ρ=∇⋅D  in the interior of the conductor  

 

domain and the electric charges concentrate on the external surface of the conductor 

 as a free charge surface density σf  on ∂D  so that Eext  
 |∂D

=En=
σ f

ε  n  .  

Let E’ the electric field created in exterior of the domain by the electric charges that 
are located on the infinitesimal surface element d σ of the domain boundary and E’’ 
the electric field created by the rest of electric charges. Then on d σ we will have 

 Eext=En=E′+E″   ,  E int=0=E″−E′  and so E″=1
2

En=
σf

2ε
n  . 

 The force acting on the electric charged surface element dσ  since the total 

 charge of the element is σ f dσ  will be therefore d F⃗=σf d σ E″=
σf

 2 dσ
2ε n  . 

 

 Hence on ∂D  we will have a normal electrostatic pressure acting towards the  

 exterior of D  having the value p=
σ f

 2

2ε
 . If we have a metal conductor with  

 

uncompensated electric charge the electrostatic pressure pushes the electric charges 
towards the external surface of the metal. Thus if electric charges are communicated 
to a metal through interior cavities, the charges will pass immediately on the external 
surface of the metal and the external surfaces of the metal can be charged at high 
potentials.
 The potential φ  is as we proved constant on D∪∂D  ( we assume obviously that 

D  is connected ) and we define C=Q

φ  where Q  is the total uncompensated 
 

electric charge of the metalic domain , the electric capacity of the domain which 
depends only on the geometry of the conductor (when we define the potential with 
the condition that it vanishes at infinit large distances).  
 If D={r∈ℝ3|‖r‖<R} is a ball of radius R  considering σ f  the constant free  

 electric charge density on ∂D  we have Q=4 πR2σ f  and computing the external  
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electric field generated by the constant electric charge density taking the integral
 on ∂D  summation of infinitesimal contributions of the Coulomb fields 

d E (r)=
σ f

4πε‖r−R n‖3 (r−R n)dσ (R n)  we obtain Eext (r)= Q
4 πε‖r‖3 r  and so 

φ(r)= Q
4π ε‖r‖

 for r∈ℝ3∖D  leading since the potential is continuous to a  

 capacity of the sphere C=4 πεR .

 

The value of free charge density on the surface of a conductor can have different 
values from surface point to surface point.
Let σj the free electric charge surface density at point Pj , j=1,2 on the metal external 
surface such that in Pj the surface has mean curvature 1 / Rj . The infinitesimal 
surface region around Pj can be considered as a spherical surface with radius Rj . 

 Therefore the potential around P j  is φ j=
4π R j

2σ j

4πεR j

 . Because the potential is  

 constant on the whole surface we have φ1=φ2  and so R1σ1=R2σ2 .

 

The free electric charge surface density is proportional to the mean curvature of the 
surface and the electric charges tend to concentrate at the spikes of the external 
surface of the metal.

   Appendix : boundary conditions for E , D , B , H at a separation surface between
                         domains with different electromagnetic properties

Suppose we have two electromagnetic mediums 1 and 2 with constitutive equations
Di=εi Ei   ,  Bi=μi H i   ,  εi  electric permittivities, μi  magnetic permeabilities 

Di  electric induction fields , Ei  electric intensity fields, 
Bi  magnetic induction fields, H i  magnetic intensity fields, i=1 ,2  . 

 

We consider the separation surface as a layer of thickness δh in the direction of the 
normal at the actual median separation surface, on which layer E , D , B , H change 
 continuosly and then take δh→0  .  
 We take a region S  of the separation surface, and the layer volume element W δh  
 of height δh  upon S  . Let δS  the area of S  , δSδh  the volume of W δh.

 

The Gauss laws for electric and magnetic induction lead to 
∫
∂W δh

D⋅nd σ  =∫
W δh

∇⋅D d3 r=∫
W δh

ρf d3 r  , 

∫
∂W δh

B⋅nd σ  =∫
W δh

∇⋅B d3 r=0
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 and we have lim
δh→0

∫
∂W δh

D⋅nd σ  =n⋅(D1−D2)δS  , 

                     lim
δh→0

∫
∂Wδ h

B⋅n dσ  =n⋅(B1−B2)δS  , 

                    lim
δh→0

∫
W δh

ρf d3 r=σ f δS  where σf= lim
δh→0

ρf δh  is the surface free charge  

 density on the separation surface, dσ  is the surface element on S  and n  is the 
 normal on S  pointing from medium 2 to medium 1. 

 

Therefore on the separation surface we have 
B1⋅n=B2⋅n   ,  D1⋅n−D2⋅n=σ f  .  

We take now on the separation surface a path s with τs tangent versor and consider the 
surface S made by rising from the points of s segments of length δh/2 normal to the 
separation surface in both medium domains 1 and 2 . Let Γ the rectangular contour 
 ∂S  having tangent versor τ  and lenght element d s  and let δ s  be the lenght of s. 
We choose the orientation of Γ such that in the medium domain 1 the orientation of τ 
on the parallel to s edge of Γ is opposite to τs .
Let ns the normal on S inducing directly the chosen orientation of Γ and also let dσ  
the surface element on S. 
 Then if n  is the normal on the separation surface with orientation from medium 
 2 to medium 1 , we have ns=τ s×n  . 

 

We have also τ s⋅(H
2−H1)δ s= lim

δh→0
∫
Γ

H⋅τ d s= lim
δh→0
∫
S

(∇×H )⋅ns dσ  =

= lim
δh→0

(∇×H )⋅(τ s×n)δ sδh  . 
 

By Ampere circuital law follows :

(H2−H1)⋅τ s= lim
δh→0 ( j⃗ f+

∂D
∂ t )⋅( τ s×n)δh= lim

δh→0
δh(n× j⃗ j)⋅τ s  where we used the 

 fact that ∂D
∂ t

 is obviously bounded. 

 

Since τs can be taken any versor with  n .τs = 0 we derive 
n×(H1−H 2)= j⃗ s    where j⃗ s= lim

δh→0
(n×( j⃗ f×n))δh= lim

δh→0
( j⃗ f−( j⃗ f⋅n)n)  is the   

surface free charge current density on the separation surface. The tangential to the 
surface component of H , namely H – (H . n) n has a jump at the separation surface 
 given by j⃗ s×n  .  
In the same way, using the Faraday law of induction we prove that the tangential 
component of E , namely E – (E . n ) n is continuous when passing the separation 
surface.
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                                 Quantum harmonic oscillator

For a harmonic oscillator we have the classic law of thespatial coordinate evolution in 
 time: x(t)=A sin(ω t+φ)  for a particle of mass m0  under a elastic force 

Fe=−k e x  having ω=√ k e

m0

  and the potential energy of the oscillator 

V (x)=
m0ω

2 x2

2
 . Thus we have for the quantum harminic oscillator a Hamiltonian 

 operator Ĥ=
p̂x

2

2m
+

m0ω
2 x 2

2
 with p̂x=−iℏ ∂

∂ x
 which leads to the time independent 

 Schroedinger equation 
d2ψ
d x 2 +

2m0

ℏ2 (E−
m0ω

2 x2

2
)ψ=0        (1)  and 

~ψ=~ψ(t , x)=exp (−i E t)ψ(x)  the E  -eneregy level wave function of the oscillator. 

 

 Let α=
2m0 E

ℏ2    ,  β=
m0ω
ℏ = 1

x0
2   ,  λ=αβ=

2 E
ℏω  , ξ= x

x0

   and (1) becomes 

d2ψ
d ξ2 +(λ−ξ

2)ψ=0      (2) . 

 

 Taking ψ(ξ)=ψ0 exp(− ξ
2

2
)u(ξ)    we obtain the equivalent to (2) equation 

d2 u
dξ2−2ξ d u

d ξ
+(λ−1)u=0       (3) . 

 

 If u=u(ξ)  is a solution of (3) , then v=u(−ξ)    is also a solution of (3) and so, 
 the solutions of (3) are linear combinations of even an odd solutions of (3). 

 Searching for solutions u(ξ)=∑
j=0

∞
b j ξ

j  and plugging in (3) we obtain 

 the recurence relation b j+2=
2 j+1−λ
( j+1)( j+2)

b j    for j∈ℕ  and so with 

ε=0  for even solutions and  ε=1  for odd solutions we have 

u(ξ)=bε ξ
ε+∑

k=0

∞ ∏
l=0

k

(4 l+2ε+1−λ)

(2k+ε+2)!
bε ξ

2 k+ε+2=

=bε ξ
ε+∑

k=0

p−1

bε

∏
l=0

k

(4 l+2ε+1−λ)

(2 k+ε+2)!
ξ2k+ε+2+

+∑
k=0

∞
bε

(∏
l=0

p−1

(4 l+2ε+1−λ))(∏
l=0

k

(4 l+2ε+4 p+1−λ))

(2 k+ε+2 p+2)!
ξ2k +ε+2 p+2   

 

Page 1 of 5 112 of total 515  Gh.V.B. Introd. to...QFT 



 where p=max{⌊λ /4 ⌋ ,1} . 
 Suppose bε≠0  and 4 l+2ε+1−λ≠0  for any l∈ℕ   and we will have a polynomial 
Pλ ,ε=Pλ ,ε(ξ)  of degree 2 p+ε  and a non-zero positive constant Cλ ,ε  such that 

|u(ξ)|≥−|bε|Pλ ,ε(|ξ|)+∑
k=0

∞

|bε|Cλ ,ε
k !|ξ|ε−2

4p+2((k+ p+2)!)2
|ξ|2(k +p+2)≥

≥|bε|Qλ ,ε(|ξ|)+∑
k=0

∞

|bε|Cλ ,ε
|ξ|ε−2

4 p+2

1
(p+2)! (23 )

k+2 p+4 1
(k+3 p+6)!

|ξ|2(k +3 p+6 )=

=|bε|
~Qλ ,ε(|ξ|)+|bε|Bλ ,εexp (2

3
ξ2)   

 where Qλ ,ε ,
~Qλ ,ε  are polynomials of degree 3 p+8+ε  and 

Bλ ,ε  is a non-zero positive constant. 

 

Thus under the supposition we made, the ψ = ψ (ξ) function would be a non-
normalizable function because of the behaviour at infinity . Hence we must have 
n∈ℕ  such that λ−1=2n  and for k+1=⌊n /2⌋  , 2(k+1)+ε=n  it follows 

u(ξ)=bε∑
l=0

k +1 (k+1)!
l!(n−2 l)!

(−1)l 2−ε(2ξ)n−2l  and we can take the solutions of (3) given 

 by the Hermite polynomials: u(ξ)=H n(ξ)=(−1)nexp (ξ2) dn

dξn exp (−ξ2)

Hn(ξ)=∑
m=0

⌊n/2 ⌋

n! (−1)m

m!(n−2 m)!
(2ξ)n−2 m .

 

 The Hermite polynomials (Hn)n∈ℕ  are a complete orthogonal system in 

L
exp(−ξ2)
2 (ℝ)  , having ∫

−∞

∞

H n(ξ)Hm (ξ)exp(−ξ2)dξ=√π 2n n!δnm

 

 Therefore the energy levels of the quantum harmonic oscillator are quantized as 

En=
ℏωλ

2
=(n+ 1

2)ℏω  with the normalized n  -th level wave function defined by 

ψn(x)=
exp (− 1

2 ( x
x0
)

2

)

√ x0√π  2n n!
 H n(

x
x0

).

 

 We observe that we have a zero level energy E0=
ℏω
2

 which can also be justified 

 by the correlation and uncertainity relations 

[ p̂x , x̂ ]=−i ℏ  , ⟨(Δ p̂ x)
2⟩ ⟨(Δ x̂)2⟩≥ℏ

2

4
        (4) 

  (see Chap. Quantum mechanics formalism) as follows. 

 

Thus , if the oscillator fluctuates in a ground state ψ0  , for the average spatial 
coordinate and the average momentum we have
⟨ x̂ ⟩=⟨ψ0|x̂|ψ0⟩=0    ,   ⟨ p̂x ⟩=⟨ψ0|p̂x|ψ0⟩=0    and so  
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⟨(Δ x̂)2⟩=⟨ x̂2⟩    ,   ⟨(Δ p̂x)
2⟩=⟨ p̂ x

2⟩  and from (4) follows ⟨ p̂ x
2⟩≥ ℏ2

4 ⟨ x̂2⟩
  ,  

E=⟨Ĥ ⟩=
⟨ p̂x

2⟩
2 m0

+1
2

m0ω
2 ⟨ x̂2⟩≥ ℏ2

8⟨ x̂2⟩m0

+ 1
2

m0ω
2⟨ x̂2⟩  and so for abitrary dispersion 

 of the spatial coordinates fluctuations ⟨ x̂2⟩1/ 2  we have a minimum value of the 

 zero point energy which is E0=
ℏω
2

 interpretable as the vacuum energy of the 

 oscillator, the average energy of the ground state. 

 

 We take ᾱ , β̄∈ℝ  such that for 

â=ᾱ x̂−β̄ i
ℏ p̂ x    ,   â+=ᾱ x̂+β̄ i

ℏ p̂ x   ,  x̂= 1
2 ᾱ
(â+â+ )    ,   p̂x=

1
2 β̄

i ℏ( â−â+ )   

 we have [ â , â+ ]=1  and the â2   and  â +2    terms in Ĥ=
p̂ x

2

2m0

+ 1
2

m0ω
2 x̂2  vanish. 

 

 It follows ᾱ=1
2 (

m0ω
ℏ )

1 /2

   ,   β̄=1
2 ( ℏm0ω )   ,  Ĥ=(â+ â+ 1

2
)ℏω    .  

 Consider a complete set of eigenfunctions for Ĥ  , (|ν ⟩)ν   ,  Ĥ|ν ⟩=Eν|ν
 ⟩  .  

 We have Ĥ â|ν ⟩=ℏω( â â+−1
2) â|ν  ⟩=â Ĥ|ν ⟩−ℏω â|ν  ⟩=(Eν−ℏω)|ν

 ⟩   

 and in a similar way Ĥ â+|ν ⟩=(Eν+ℏω)|ν
 ⟩  . 

 

 Taking N̂=â+ â  we have [N̂ , Ĥ ]=0  and so (|ν ⟩)ν  is a complete set of  
 eigenfunctions for N̂  and since as we proven the energy levels are quantized as 

En=(n+ 1
2 )ℏω  we take must take Eν=(ν+ 1

2)ℏω    ,   N̂|ν  ⟩=ν|ν  ⟩   ,  

â â+|ν  ⟩=(ν+1)|ν  ⟩   , â|ν  ⟩=cν|ν−1 ⟩   ,  â+|ν  ⟩=c′ν|ν+1 ⟩  , 
ν=⟨ν|â + â|ν⟩=|cν|

2=c′ν−1cν   ,  ν+1=⟨ν|â â +|ν⟩=|c′ν|
2

 

 Since the |ν  ⟩  is determined to multiplication with a complex number of unitar 

 absolute value we can take    â|ν  ⟩=√ν |ν−1 ⟩    ,   â+|ν ⟩=√ν+1|ν+1 ⟩  . 
 

 Acting on a quantum state |ν  ⟩  the operator â+  increases its energy level with a 
 quantum ℏω  and the operator â  decreases its energy level with a quantum ℏω .  

 

Therefore the energy states of a quantum oscillator are made of one quantum particle 
states with energy h ω .
 The operator N̂=â+ â  can be interpreted as the particle number operator  
 (population number) , the operator â+  as the creation operator and the operator â  
 as the anihilation operator. 
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    Quantum rotator 

Consider first a rotation with fixed rotation axis.
Let the rotation axis be Oz in a cartesian Oxyz frame.
The Hamiltonian is 

Ĥ=
L̂z

2

2 I
   where I  is the moment of inertia and L̂z  is the O z  axis angular 

 angular momentum operator: L̂z=−iℏ (x ∂
∂ y
−y ∂

∂ x )=−i ℏ ∂∂φ
   with x=r cosφ   ,  y=r sinφ    ,   z=z   .  
 The time independent Schroedinger equation is 
d2ψ
d φ2 +k2ψ=0   where ψ=ψ(φ)    ,   k2=2 I

ℏ2 E

 

 We must have ψ(φ)=ψ(φ+2π)  and therefore the solution is ψ=ψ̄0 exp(i k φ)   
 with 2 k π=2πn   ,  n∈ℤ  . The energy being quantized as 

En=
ℏ2

2 I
n2  , ψn=ψ̄0 exp(i nφ)  and we have also a quantized angular momentum 

L̂zψn=ℏ nψn  . 

 

Consider now a free axis quantum rotator.
In a spherical coordinate system ( r , θ , φ  ) 
x=r sinθcosφ   ,  y=r sinθ sinφ   ,  z=r cosθ  the rotator is localized at 
 a position vector r⃗ (x , y , z)  and rotates with instataneous rotation axis around 
 the position vector. 

 

 The Hamiltonian operator is Ĥ=
^⃗L2

2 I
 with ^⃗L= r⃗×^⃗p  angular momentum operator, 

^⃗p=−i ℏ ∇  , I -momentum of inertia with respect to the instantaneous rotation axis. 

 

 We have ^⃗L2=−ℏ2( 1
sin θ

∂
∂θ (sin θ ∂∂θ )+

1

sin2θ
∂2

∂φ2 )   and the eigenfunctions of ^⃗L2   

 the spherical functions Y l
m (θ ,φ)=Pl

m(cosθ)exp(i mφ)
 with m∈ℤ  , l∈ℕ  , |m|≤l  , Pl

m  -the associated Legendre polynomials , 

∫
0

2π

∫
0

π

Y l
m (θ ,φ)Y k

n(θ ,φ)sin θdθdφ= 4π(l+m)!
(2 l+1)(l−m)!

δm nδk l  , 

^⃗L2 Y l
m=ℏ2l(l+1)Y l

m  and the energy levels are quantized as El=
ℏ2

2 I
l(l+1)  and 

 energy level is degenerated gl=2 l+1  times.

 

(see Chap. Representations of the rotations group) 
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 For l ,m∈ℕ  , Pl
m  is defined as 

Pl
m(x)=

(−1)m

2l l!
(1−x2)m/2 dl+m

d xl+m (x
2−1)l=

=(−1)m 2l (1−x2)m/2∑
k=m

l k!
(k−m)!

x k−m( lk)(l+k−1
2
l )    

 where x∈[−1,1]  and (αk )=
α(α−1)... (α−k+1)

k!
 for α∈ℝ  , k∈ℕ∗   ;  (α0 )=1

 

Pl
−m=(−1)m

(l−m)!
(l+m)!

Pl
m  .  
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                                     Electromagnetic waves
                  Quantization of an electromagnetic field

In the absence of charges and current in vacuum we will have the Maxwell equations
∇⋅D=0           (1) 
∇⋅B=0           (2) 

∇×E=− ∂B
∂ t

           (3) 

∇×H=∂D
∂ t

               (4) 

 with constitutive vacuum relations D=ε0 E       (5) and   μ0 H=B           (6) 
E  -electric field intensity field, D  -electric induction field 
H  -magnetic field intensity field, B  -magnetic induction field 
ε0  -electric permittivity of vacuum 
μ0  -magnetic permeability of vacuum 

 

(E , B ,D ,H )=(E , B , D , H )(t , x)∈ℝ12  , x=(x1 , x2 , x3)∈ℝ3  , t∈ℝ  , 
(E ,B , D , H )=(Ei ,Bi ,D i , H i)i=1 ,3

 

 Applying ∇×  in (3) from (1)-(6) follows 

−ε0μ0
∂2 E
∂ t2 =−

∂
∂ t

(∇×μ0 H)=∇×(∇×E)=∇(∇⋅E)−∇ 2 E=−∇ 2 E       and so 

1
c2

∂2 E
∂ t2 −Δ E=□E=0             (7)  where c= 1

ε0μ0

 

 In a similar way, applying ∇×  in (4) we obtain 
1

c2

∂2 B

∂ t 2 −Δ B=□B=0        (8)  

 We have the potentials φ   ,  A=(Ai)i=1,3  such that 

E=−∇φ−∂ A
∂ t

   ,   B=∇×A   ,  (φ , A)=(φ , A)( t , x)∈ℝ4  

  (see Chap. Electromagnetic four-potential ) 

 

E ,B  remain the same under a gauge transformation 

φ′=φ−∂ψ
∂ t

   ,   A′=A+∇ ψ   with  ψ=ψ(t , x)∈ℝ  . 
 

Therefore we can have a Lorentz gauge such that 
1
c2

∂φ′
∂ t

+∇⋅A′=0        (9) 

□A′=0   ,  □φ′=0        (10) 

 

The (10) equations have plane wave solutions
φ′=φ′0exp (−i(ω t−k⃗⋅x))+φ′0

∗ exp(i(ω t−k⃗⋅x))  
A′=A′0 exp(−i(ω t−k⃗⋅x))+A′0

∗ exp(i(ω t−k⃗⋅x))  
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 with k⃗=(ki)i=1 ,3∈ℝ
3   ,  k=‖k⃗‖ , ω=k c   ,  φ′ , A′0 i∈ℂ  , A′0=(A′0 i)i=1,3   

 ( z∗  the complex conjugate of z  ) 
 

Taking a gauge transformation defined by

ψ=
φ′0
ω iexp (−i(ω t−k⃗⋅x))−

φ′0
∗

ω iexp (i(ω t−k⃗⋅x))  

φ=φ′−∂ψ
∂ t

  ,  A=A′+∇ ψ  we obtain 

φ=0  , □A=0   ,  □ψ=0   ,  ∇⋅A=0

 

Therefore we have plane wave solutions of the Maxwell system given by 

E=− ∂ A
∂ t

  ,  B=∇×A       with 

A=A0 exp(−i(ω t−k⃗⋅x))+A0
∗ exp (i(ω t−k⃗⋅x))  , A0=(A0 i)i=1 ,3∈ℂ

3  , 

k⃗=(k i)i=1 ,3∈ℝ
3  , k=‖k⃗‖  ,  ω=k c  , k⃗⋅A0=0    and it follows 

B⋅E=0  , k⃗⋅E=0  , k⃗⋅B=0  , ωB=k⃗×E  , −k 2 E=ω(k⃗×B)  , 
c(E×B)=E2 vers k⃗  , c2 B2=E2

 (11)

 For any propagtion direction k⃗  we can take two independendent orthogonal 
 polarization directions of  E   :  e k⃗

p∈ℝ3  , p=1,2  with ek⃗
i⋅ek⃗

j=δi j  , k⃗⋅ek⃗
i=0   

  vers k⃗=e k⃗

1×e k⃗

2  for i , j=1 ,2  such that 

 

A0=A0
1 ek⃗

1+A0
2 ek⃗

2   ,  A0
p∈ℂ  , p=1 ,2  

E=E1e k⃗
1+E2 ek⃗

2   ,  Ep=E0
p sin (ω t−k⃗⋅x+αp)   ,  E0

p ,αp∈ℝ  , p=1 ,2  . 
 

From (11) follows that the energy density of the wave field is (see Chap. 
Electromagnetic four-potential Electromagnetic tensor) :

w=1
2
(ε0 E2+ 1

μ0
B2)=ε0 E2  and the energy flux Poynting vector is 

SP=E×H= 1
μ0

E×B= E2

cμ0

vers k⃗=ε0c E2 vers k⃗ .

 

The energy intensity vector of the wave is I=⟨SP⟩=
1
T
∫
0

T

SP d t=ε0c ⟨E2⟩vers k⃗   

 has the propagation direction and the energy intensity of the wave | I | which defines 
the optical behaviour of the wave (visual perception, photochemic and photoelectric 
effects, etc.) depends only on the time-averaged electric intensity

⟨E2⟩= 1
T
∫
0

T

E2 d t=1
2
(E0

12+E0
22)     with T=2π

ω   .  

 We have ∂w
∂ t

+∇⋅SP=0  (see Chap. Electromagnetic energy-momentum tensor) 

SP=w c vers k⃗  is the amount of energy transported by the wave in an unit of time 

 

through an unit of surface element which is normal to propagation direction.
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Consider now two dielectric mediums 1 and 2 , separated by a plane non-absorbant 
surface in the plane x1 O x2 . The mediums have electric permittivities ε1 respective ε2  
and magnetic permeabilities μ1 respective μ2  and so the electromagnetic waves speed 

in the mediums will be c1=
1

√ε1μ1
  and respective  c2=

1
√ε2μ2

 .  

Let be from 1 medium to the separating surface an incident electromagnetic plane 
polarized plane wave which has electric intensity field given by

E=E0 cos(ω t−k⃗⋅x)  and magnetic field intensity H= 1
μ1ω k⃗×E=

=√ ε1
μ1

e⃗×E   where  e⃗=vers k  and so H=√ ε1
μ1

e⃗×E0cos (ω t−k⃗⋅x)    (12) 
 

Then according to wave propagation laws we will have a reflected electromagnetic 
 wave E′=E′0 cos(ω′ t−k⃗′⋅x−φi)  

         H ′=√ ε1
μ1

e⃗′×E′=√ ε1
μ1

e⃗′E′0 cos(ω′ t−k⃗′⋅x−φi)  
 (13) 

and a refracted electromagnetic vave 
E″=E″0 cos(ω″t−k⃗″ x−φr)  

H″=√ ε2
μ2

e⃗″×E″=√ ε2
μ2

e⃗″×E″0cos (ω″t−k⃗″⋅x)  
 (14) 

 where e⃗′=vers k⃗′  , k ′c1=ω′   ,  e⃗″=vers k⃗″  , k″c2=ω″  .  

 We can consider that k⃗  is in the x1O x3  plane ei=(δi j)j=1 ,3  for i=1 ,3  , 
e3  is normal to the separation surface and 
e⃗=e1sin θ+e3 cosθ   ,  e⃗′=e1sin θ′−e3 cosθ′   ,  e⃗″=e1 sinθ″+e3 cosθ″  . 

 

According to the Appendix to Chap. Macroscopic Maxwell equations, since  the 
separation surface x3 = 0 not contains free charges , on x3 = 0 we have:
Et+E′t=E″t   ,  H t+H′t=H″t   

 where Et
( i)=E(i)−(E(i)⋅e3)e3   ,  H t

(i)=H (i)−(H (i)⋅e3)e3  for i=0 ,2  are the  
 

tangential to separation surface components of electric and magnetic field intensities.
 We have k⃗⋅x=k x1 sinθ+k x3cosθ  , 

              k⃗′⋅x=k′ x1sin θ′−k′ x3 cosθ′  
             k⃗″⋅x=k″ x1 sinθ″+k″ x3 cosθ″  

 

 Therefore for any t , x1∈ℝ  we must have 
E0 t cos(ω t−k x 1sinθ)+E′0 t cos(ω′ t−k′ x1 sinθ′−φi)=
=E″0 t cos(ω″ t−k″ x1 sinθ″−φr)        (15) 

 

 Taking ψ=k x 1sinθ   ,  ψi=k′ x1 sinθ′+φi   ,  ψr=k ″x1 sinθ″+φr  , differentiating  
twice with respect to t in (15) for t = 0 we obtain

E0 t cosψ+E′0 t cosψi=E″0 t cosψr  

ω2 E0 t cosψ+ω′2 E′0 t cosψi=ω″2 E″0 t cosψr  

ω4 E0t cosψ+ω′4 E′0 t cosψi=ω″4 E″0 t cosψr  

 (15’)
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 This system for unknowns (E0 t cosψ ,E′0 t cosψi , E″0 t cosψr)  must have a  
non-zero solution and so 

| 1 1 1
ω2 ω′2 ω″2

ω4 ω′4 ω″4|=0    , ( ω=ω′  or ω=ω″  or ω′=ω″  ) .  

Supposing ω = ω’ from the first two equations in (15’) will follow ω = ω’ = ω’’.
The cases ω = ω’’  and ω’ = ω’’  lead in a similar way to ω = ω’ = ω’’.
Differentiating twice with respect to x1 in (15) in the same way as above we obtain

k sin θ=k′sinθ′=k″sin θ″  and since k=ω
c1

=ω′
c1

=k′   ,  k″=ω
c2

=ω″
c2

 it follows 

θ=θ′  , 
sinθ

sinθ″=
sin θ′
sinθ″=

c1

c2

=
n2

n1

 where ni=
c
ci

 is the refraction index of i  medium. 
 

Hence as we expected from waves reflection and refraction laws we have :

ω=ω′=ω″  , θ=θ′  , 
sin θ
sinθ″=

c1

c2

 , n1 sinθ=n2 sinθ″ .

We must have also φi = φr = 0 so that the conditions at the separation surface lead to
E0 t+E′0 t=E″0 t   ,  H0 t+H ′0 t=H″0 t  relations for the tangential components of  
amplitudes for electric and magnetic field intensities.
We consider the transversal magnetic case (TM) : E0⋅( e⃗×e3)=0   ,  E0  in the  
( e⃗ , e3)  plane and so H0  normal to the (e⃗ , e3)  plane  and the transversal electric  
 case (TE): H0⋅(e⃗×e3)   ,  H0  in the ( e⃗ ,e3)  plane and so E0  normal to the 
( e⃗ , e3)  plane. 

 

 We have H 0=√ ε1
μ1

e⃗×E0   ,  √ ε1
μ1

E0=−e⃗×H 0   .   

 In the (TM) case we obtain 
H0 t=H0=H0 s e2  , H ′0 t=H ′0=H ′0 se2  , H″0 t=H″0=H″0 se2  with H0 s

(i)∈ℝ  , 
H0 s+H ′0 s=H″0 s  , 

E0=−√μ1
ε1

H 0 s sin(θ)e3+√μ1
ε1

H0 s cos(θ)e1=E0 p e2×e⃗  

E′0=−√μ1
ε1

H ′0 s sin (θ′)e3−√μ1
ε1

H ′0 s cos(θ′)e1=E′0 p e2×e⃗′  

E″0=−√μ2
ε2

H″0 ssin (θ″)e3+√μ2
ε2

H″0 s cos(θ″)e1=E″0 p e2×e⃗″

 

E0 t=√μ1
ε1

H 0 s cos(θ)e1=E0 pcos (θ)e1  

E′0 t=−√μ1
ε1

H ′0 scos (θ′)e1=−E′0 p cos(θ′)e1  

E″0 t=√μ2
ε2

H″0 scos (θ″)e1=E″0 p cos(θ″)e1    

  

Therefore in the (TM) case we have
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(E0 p−E′0 p)cosθ=E″0 p cosθ″  

√ ε1
μ1

(E0 p+E′0 p)=√ ε2
μ2

E″0 p  
 (16) 

 Taking μ1=μ2=μ  the last equation becomes 
(E0 p+E′0 p)sinθ″=E″0 psin θ         (17) .

 

From (16) and (17) follows now 

E′0 p=
tan (θ−θ″)
tan (θ+θ″)

E0 p      (17') 

E″0 p=
2 cos(θ)sin (θ″)

sin (θ+θ″)cos(θ−θ″)
          (17'') 

 

 At the limit θ→0  with 
sinθ

sinθ″=
n2

n1

=n  we derive now 

E′0 p=
n−1
n+1

E0 p     ,    E″0 p=
2

n+1
E0 p  . 

 

In this case the energy intensities of the waves will be:

|I|=1
2
ε1 c1 E0 p

2   ,  |I′|=1
2
ε1 c1(n−1

n+1 )
2

E0 p
2   ,  |I″|=1

2
ε2 c2

4
(n+1)2 E0 p

2  

 Since ε2 c2=√ ε2
μ = 1

c2μ
= n

c1μ
=nε1c1  we can verify that 

|I ′|+|I″|=|I| which is the expression of energy conservation of the incident wave  
for a non-absorbing separation surface (that is there are no free charges on the 
surface).
In the (TE) case we obtain
E0=E0 t=E0 s e2  , E′0=E′0 t=E′0 se2  , E″0=E″0 t=E″0 s e2  with E0 s

(i)∈ℝ  

H0=√ ε1
μ1

E0 s sin(θ)e3−√ ε1
μ1

E0 s cos(θ)e1  

H ′0=√ ε1
μ1

E′0 s sin (θ′)e3+√ ε1
μ1

E′0 scos (θ′)e1  

H″0=√ ε2
μ2

E″0 s sin (θ″)e3−√ ε2
μ2

E″0 s cos(θ″)e1  

 

H0 t=−√ ε1
μ1

E0 s cos(θ)e1  

H ′0 t=√ ε1
μ1

E′0 s cos(θ′)e1  

H″0 t=−√ ε2
μ2

E″0 scos (θ″)e1  . 

 

Therefore in the (TE) case e have:
E0 s+E′0 s=E″0 s   

√ ε1
μ1

(E0 s−E′0 s)cos(θ)=√ ε2
μ2

E″0 s cos(θ″)  
 (18) 

 Taking μ1=μ2=μ  the last relation becomes 
sin (θ″)cos(θ)(E0 s−E′0 s)=E″0 ssin (θ)cos(θ″)            (19) . 
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From (18) and (19) follows 

E′0 s=−
sin (θ−θ″)
sin(θ+θ″)

E0 s   

E″0 s=
2 sin(θ″)cos(θ)

sin (θ+θ″)
E0 s  . 

 

 At the limit θ→0  with 
sinθ

sinθ″=
n2

n1

=n  we have 

E′0 s=−
n−1
n+1

   ,   E″0 s=
2

n+1
E0 s  and the energy intensities of the waves are 

|I|=1
2
ε1 c1 E0 s

2   ,  |I ′|=1
2
ε1 c1(n−1

n+1 )
2

E0 s
2   ,  |I″|=1

2
ε2 c2

4

(n+1)2
E0 s

2  . 

 

Again we can verify the energy conservation of the incident wave for a non-
absorbing separation surface, as above in the (TM) case:
|I ′|+|I″|=|I| .  
In the general case we will have the sum of transversal and parallel to the incidence 
plane components:
E0=E0 s e2+E0 p e2×e⃗  
E′0=E′0 s e2+E′0 p e2×e⃗′  
E″0=E″0 s e2+E″0 p e2×e⃗″  . 

 

 We can see from (17') that if θ=θB  such that θB+θB″=
π
2

 we have E′0 p=0  and  

the reflected wave will contain only the transversal electric component and will be 
therefore plane polarized in one direction, transversal to the incidence plane.

θB  is the Brewster angle, having n=
sinθB

sin θB″
=tanθB  . The Brewster angle  

 is given by tanθB=n  . 

 

 We explained some phenomenons like refraction , reflection, interference, diffraction 
pf light supposing that light is an electromagnetic wave. Phenomenons like 
photoelectric effect, Compton effect, pressure of light can be explained only 
supposing that electromagnetic radiation transfers energy as a quantized flux of 
particles called photons. With a monochromatic radiation of frequency ν and wave 
 propagation vector k⃗  in vacuum we will therefore associate photons having wave 

 functions of the form ψ=ψ0 exp(− i
ℏ (E t− p⃗⋅x))=ψ0 exp(−i(ω t−k⃗⋅x))  with 

E=ℏω  -energy of the photon ,ω=2π ν  , p⃗=ℏ k⃗  -momentum of the photon, 

k=2π
λ   ,  λ  -wavelenght of the photon .

 

The energy of the electromagnetic wave is therefore quantized in portions of E = h ν 
 ( h=2πℏ  -the Planck constant ) hν  -energy of a single photon of a 
ν  frequency radiation. We have ω=k c  , c  speed of light in vacuum. 

 

Page 6 of 12 123 of total 515  Gh.V.B. Introd. to...QFT 



Because the photon travels with the speed of light, its rest mass m0 must be zero so 

that the momentum relation p⃗=
m0 v⃗

√1− v2

c2

=ℏ k⃗  with  ( m0 c

√1− v2

c2

, p⃗)  the relativistic  

four-momentum, can have sense for v = c.

 Photoelectric effect

Consider a vacuum tube transparent to ultraviolet light. Monochromatized light is 
incident on a emitting electrode E in the vacuum tube which contains also opposite to 
the electrode E a collector catode C whose voltage Vc can be externally controlled. An 
electron within the electrode material can absorbe the h ν energy of a photon from the 
incident radiation, and if this energy is higher than the electron’s binding energy W , 
h ν > W , the electron aquires a maximum kinetic energy Kmax = h ν – W and is likely 
to be ejected from the electrode. A positive external voltage between C and E is used 
to direct the ejected photo-emitted electrons onto the collector. An increasing 
negative voltage prevents all but the highest energy electrons from reaching the 
collector. When no current is observed through the tube, the value of the retarding 
voltage, called the stopping potential V0 is reached. Since the work done by the 
retarding potential is stopping the electron of charge e is e V0 we must have 
e V0 = Kmax and the experiment proves the relation e V0 = Kmax = h ν - h ν0  where
h ν0 = W  and ν0 is the minimum frequency for which a current can be observed 
through the tube.
                                                                                            
                                             A                                             e V0

                                                                                                             e V0 = h (ν - ν0)

                                  C

                                                               ° +                                                                ν
                                                                 Vc

                    ν > ν0                                                           °- 

                                  E
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 Compton effect 

A photon γ with wavelenght λ collides with an electron e in an atom which is treated 
to be at rest. The collision causes the electron to recoil and a new photon γ’ emerges 
at an angle θ from the photon’s incoming path. Let e’ denote the electron after the 
collision.
We have conservation of energy :

Eγ+Ee=Eγ′+E e′         (20) 
 and momentum conservation: 
p⃗γ= p⃗γ′+ p⃗e′             (21) .

 

With m the rest mass of the electron we have :
Eγ=h ν  , Eγ′=hν′  , Ee=mc2  , Ee′=√(pe′c)

2+(m c2)2  
 ( see Chap. Relativistic dynymics )

 

Thus from (20) we obtain 
(pe′c)

2=(h ν−hν′+mc2)2−(m c2)2      and from (21) follows 

(pe′c)
2= pγ

2 c2+ pγ′
2 c 2−2c2 pγ pγ′cosθ  .  

 

 Hence after some calculus we derive c
ν′−

c
ν=

h
m c

(1−cosθ)  . 

 We can observe therefore a wavelenght shift λ′−λ=2
h

m c
sin2(θ

2
)     at an angle 

θ  photon deviation. 

 

 Pressure of light 

Consider a surface of unit area on which a beam of monochromatic light is normal 
incident. 
Let n0 the number of photons hitting the surface in an unit time interval. A fraction R 
of them is reflected : nR = R n0  . nR the number of reflected photons from the unit 
surface in unit time interval , nA = (1 – R) n0 the number of photons absorbed from the 
unit surface in unit time interval.
Each reflected photon experiences during the reflection a momentum variation of
2ℏω

c
 and for each absorbed photon there is a momentum variation of ℏω

c
 in the   

surface.
The total momentum variation in unit time on unit surface, gives the exerted pressure 

 of light and will be p=2ℏω
c

nR+
ℏω
c

nA=
n0 ℏω

c
(1+R)  . 

n0ℏω=|I| is the energy intensity of the incident beam and so for the pressure of  

 light we have derived the formula p=
|I|
c
(1+R)  . 
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R -reflexion coefficient of the surface ;
| I | -intensity of normal incident light on the surface.
If the beam is incident at θ angle from the normal to the surface we must take
|I|cos2θ  instead of energy intensity |I| . 
 Indeed, if S0  is the unit surface transversal to the beam  and the beam is incident 

 at angle θ  with intensity |I|=n0 ℏω  then n0  photons hit an area of S= 1
cosθ  

 in an unit time interval. 

 

The normal to S   exerted pressure by the reflected photons is 

pR=((2ℏωc
cosθ)/S)n0 R .

 The normal to S  exerted pressure by the absorbed photons is 

pA=(( ℏωc cosθ)/S)n0(1−R) .

 Therefore the pressure exerted by the light beam of monochromatic light with  

 intensity |I|=n0ℏω  incident at θ  angle will be p=|I|
c
(1+R)cos2θ  . 

 

   Quantization of an electromagnetic field 

Consider an electromagnetic field in a cubic box D of edge length L , volume V =L3 

 determined by the potentials (φ′ , A′)=(φ′ , A′)(t , x)  in the Lorentz gauge with 
A′=(A′i)i=1 ,3   ,  x=( xi)i=1 ,3( see Chap. Electromagnetic four-potential ) satisfying 

 the boundary conditions (φ′ , A′)(t , x)=(φ , A′)( t ,(xi+Lδi j)i)  for any j=1,3

 

We consider the electromagnetic field I absence of free chatges and currents 
 ( ρ=0   ,  j⃗=0  )  in vacuum and as we have seen in Chap. Electromagnetic 

 four-potential we have □φ′=0   ,  □A′=0    with □= 1

c2
∂2

∂ t2−
∂
∂ xi

∂
∂ xi  . 

 

Therefore expanding in Fourier series we have 
φ′=∑⃗

k

φ′k⃗ exp(−i(ω k⃗ t−k⃗⋅x))+φ′ k⃗

∗ exp(i(ωk⃗ t−k⃗⋅x))   

A′=∑⃗
k

A′ k⃗ exp(−i(ω k⃗ t−k⃗⋅x))+A′ k⃗

∗ exp(i(ω k⃗ t−k⃗⋅x))   

 with A′ k⃗=(A′ k⃗

i )i∈ℂ
3   ,  φ′k⃗∈ℂ  , 

k⃗=2π
L
(n1e1+n2 e2+n3 e3)   ,  ni∈ℤ  , ei=(δi j) j  for i=1 ,3  , ωk⃗=k c  , k=‖⃗k‖ . 

 

We have the Lorentz gauge relation 1
c2

∂φ′
∂ t

+∇⋅A′=0  .  

We can consider a gauge transformation given by 

φ=φ′−∂ψ
∂ t

 , A=A′+∇ ψ   ,   
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 where ψ=−(A′0⃗+A′0⃗
∗)⋅x+(φ′0⃗+φ′0⃗

∗ )t+

+∑⃗
k

i
ω k⃗

(φ′k⃗ exp(−i(ωk⃗ t−k⃗⋅x))−φ′ k⃗
∗ exp(i(ωk⃗ t−k⃗⋅x)))   

 and we will have φ=0  , 
∂ψ
∂ t

=φ′  , □ψ=0  , □A=0  , ∇⋅A=0  . 

 

 Also we have ∫
D

exp(−i( k⃗−k⃗′)⋅x)d3 x=δ k⃗ k⃗′V       (22) 

A=∑⃗
k≠0⃗

A k⃗ exp(−i(ω k⃗ t−k⃗⋅x)+A k⃗
∗ exp (i(ω k⃗ t−k⃗⋅x)))     and since ∇⋅A=0  

∑⃗
k≠0⃗

k⃗⋅Ak⃗ exp (−i(ωk⃗ t−k⃗⋅x))−k⃗⋅A k⃗
∗ exp(i(ω k⃗ t−k⃗⋅x))=0    (23) . 

 

 Multiplying (23) with exp(−i k⃗′⋅x)  and integrating over x  on D  we obtain: 
k⃗⋅A k⃗ exp(−iωk⃗ t)+k⃗⋅A− k⃗

∗ exp(iωk⃗ t)=0    for any t∈ℝ  and any k⃗≠0⃗     (24) 
 

Differentiating (24) with respect to t and taking t = 0 we obtain:
k⃗⋅A k⃗+k⃗⋅A−k⃗

∗ =0   ,  ω k⃗ k⃗⋅Ak⃗−ωk⃗ k⃗⋅A−k⃗

∗ =0  and so it follows 

k⃗⋅A k⃗=0  for any k⃗≠0⃗  , ( k⃗=2π
L
(n1 e1+n2 e2+n3 e3)  , ni∈ℤ  ) .

 

 For any k⃗≠0⃗  we can choose two polarization versors ek⃗

p  , p=1,2  such that 

Ak⃗=Ak⃗
1 e k⃗

1+A k⃗
2 ek⃗

2  , k⃗⋅ek⃗
p=0   ,  ek⃗

p⋅ek⃗
q=δ pq  for p ,q=1,2  , 

  e k⃗
1×ek⃗

2=vers k⃗  , vers k⃗×e k⃗
1=ek⃗

2  , vers k⃗×ek⃗
2=−ek⃗

1

A=∑⃗
k≠0⃗

∑
p=1

2

ek⃗

p(Ak⃗

p exp (−i(ωk⃗ t−k⃗⋅x))+Ak⃗

p∗ exp(i(ωk⃗ t−k⃗⋅x)))  . 

 

 Taking A⃗ k⃗
p=A k⃗

p ek⃗
p  the electric intensity field and the magnetic intensity field are 

E=− ∂ A
∂ t

= ∑
k⃗ , p−i

ωk⃗ ( A⃗ k⃗
p exp(−i(ω k⃗ t−k⃗⋅x))− A⃗ k⃗

p∗ exp(i(ω k⃗ t−k⃗⋅x)))

H= 1
μ0

∇×A= i
μ0
∑⃗
k , p

( k⃗× A⃗ k⃗
p)exp(−i(ω k⃗ t−k⃗⋅x))−(k⃗× A⃗ k⃗

p∗ )exp(i(ωk⃗ t−k⃗⋅x))

 

 Integrating the energy density of the electromagnetic field w=1
2
(ε0 E2+μ0 H2)  

 over x  on D  , considering (22) and ω k⃗=
1

√ε0
 μ0

k  we obtain after some calculus 

 that the energy of the electromagnetic field is is 
W=∫

D

w d3 x=2ε0 V ∑⃗
k , p

ωk⃗
2 Ak⃗

p A k⃗
p∗        (25) .
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 Considering the transformation to xk⃗
p , p x k⃗

p ∈ℝ  variables defined by 

Ak⃗

p=1
2 ( m

ε0 V )
1/2(x k⃗

p+i
p x k⃗

p

ω k⃗ m )  the relation (25) for energy becomes 

W=∑⃗
k , p

(mωk⃗
2 xk⃗

p2

2
+ 1

2m
p x k⃗

p2)    which is the form for the energy of a system of linear 

 

harmonic oscillators (see Chap. Quantum harmonic oscillator). 
Therefore we can consider a system of quantum oscillators with creation and 
anihilation operators given by 

âk⃗
p=(mωk⃗

2ℏ )
1 /2

( x̂k⃗
p+ i

mωk⃗

p̂x k⃗
p )=(2ε0ωk⃗ V

ℏ )
1 /2

Â k⃗
p   

âk⃗
p+=(mωk⃗

2ℏ )
1 /2

( x̂k⃗
p− i

mωk⃗

p̂ x k⃗
p )=(2ε0ωk⃗ V

ℏ )
1/2

Â k⃗
p+  

 where Âk⃗
p  is a quantum operator associated to Ak⃗

p  variable. 

 

 We must assume the commutation relations [ âk⃗
p , âk⃗′

p′+ ]=δ k⃗ k⃗′δ p p′  suitable for  

creation and anihilation operators and the electromagnetic field in the D box is 
described as a quantum system with Hamiltonian operator

Ĥ=∑⃗
k , p

ℏωk⃗ (âk⃗
p+ âk⃗

p+ 1
2
)  .  (like the system of quantum oscillators)

 The field has a ground state (the vacuum state) |0 ⟩  in which no field is detected 
 and â

k⃗
p+|0 ⟩  is the single particle state that corresponds to one photon of energy 

ℏωk⃗  and polarization p .  Also we must have âk⃗
p|0 ⟩=0  for any k⃗ , p .

N̂ k⃗
p=âk⃗

p+ âk⃗
p  is the photon particles of energy ℏωk⃗  and polarization p  number 

 

operator and its eigenvalues represent the number of photons of the respective energy 
and polarization from the field. (see Chap. Quantum harmonic oscillator)

 The vacuum fluctuations give a vacuum energy ∑⃗
k , p

1
2
ℏωk⃗=E0  and the energy   

levels of the field are measured relative to this level , which level generally not 
affects the energy transfer between field and substance, despite the fact that this 
energy level associated to the electromagnetic field must be infinite.
The field operator function of the electromagnetic field is
Â= Â(t , x)=∑⃗

k , p

e k⃗

p( Â k⃗
p exp(−i(ω k⃗ t−k⃗⋅x))+ Â k⃗

p∗ exp(i(ω k⃗ t−k⃗⋅x)))   

 and it acts on a Hilbert space H  which contains the vacuum state |0 ⟩  and the  
 single photon wave functions âk⃗

p+|0 ⟩  . 
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 We can verify that for the state |ψN ⟩=∏
i=1

N

âk⃗ i
p i+|0 ⟩  we have 

Ĥ|ψN ⟩=∑
i=1

N

ℏω k⃗ i|ψN ⟩    and 

N̂ k⃗
p|ψN ⟩=nk⃗

p
|ψN ⟩  where nk⃗

p=card { j∈{1 ,2 ,... ,N }|k⃗ j=k⃗  and p j=p} . 

 

The electromagnetic field in the box D can be indeed considered as a system of 
photons with different wave numbers k⃗ i  and polarizations pi  .  
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                          Doppler effect for electromagnetic waves
                     Relativistic dynamics. Compton wavelenght

Consider an electromagnetic field in vacuum, the Minkowski space considered with 
signature (+,-,-,-) and space-time coordinates (xα)α=0 ,3=(c t , x , y , z)  , c  speed of  
light in vacuum.
We have the electromagnetic tensor (see Chap. Electromagnetic tensor) :

(Fαβ)α ,β=(
0 −

E1

c
−

E2

c
−

E3

c
E1

c
0 −B3 B2

E2

c
B3 0 −B1

E3

c
−B2 B1 0

)  , F0 i=−F i0=−
Ei

c
 , Fi j=−ϵi jk Bk  , F00=0  

  α ,β=0,3   ,  i , j , k=1 ,3
E=(Ei)i   electric field intensity , B=(Bi)i  magnetic induction field. 

 

Considering the inertial frames R and R’ such that a point at rest in R moves with 
 velocity (vi)i=1 ,3= v⃗  in the frame R′  , the coordinates transformation 
 from R  to  R′  is given by x′α=M αγ xγ  (we use Einstein summation convention 
 and Greek letters for indexing from 0 to 3 ,Latin letters for indexing from 1 to 3) 

 

M i j=δi j+
β−1

v2 vi v j   ,  M i 0=
β vi

c
  ,  M 0 i=

βv i

c
 , M 00=β  with β= 1

√1− v2

c2

 .  

(see Chap. Special relativity. Lorentz transformations) 
The electromagnetic tensor transforms like 

F′αγ=Mα δM γ ε Fδε  and after some calculus we find out that E  and B  transform 

 like E′=β(E−v⃗×B)+ 1−β
v2 ( v⃗⋅E) v⃗   (1) ,  B′=β(B+ 1

c2 (v⃗×E))+ 1−β
v2 ( v⃗⋅B) v⃗   (2) 

 

Consider now a particle M with rest mass m0 and charge q which moves in the frame 
R  on trajectory (xM

α )α=(c t , xM
1 (t) , xM

2 (t) , xM
3 (t))t  under the action of an  

 electromagnetic field with E=E(t , x)  , B=B(t , x)  electric field intensity  
 respective magnetic induction field in the frame R  , x=(xi)i  . 

 

At time moment t0 we have an instantaneous rest frame R’0 of the particle which
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 moves with the velocity (vi)i=(vi(t0))i=(d xM
i

d t
(t 0))

i

 relative to frame R  and 

 therefore the coordinates trandform from R  to R′0  will be x′α=M αγ xγ  with 

M i j=δi j+
β−1

v 2 vi v j   ,  M i0=M0 i=−
β vi

c
 , M00=β= 1

√1−v 2

c2

 . 

 (*) 

 Since c2(d t)2−d xi d xi  is a Lorentz invariant we can take the proper time of 

 the particle d τ=√1−v 2

c2 d t  as a Lorentz invariant and the four-momentum 

(pα)α=(m0
d xα

d t )
α
=(m0 cβ ,m0β v1 ,m0β v2 ,m0β v3)  , 

p⃗=(pi)i=1 ,3  the relativistic momentum. 

 

 We have xα=M αγ
∗ x′γ  where M i j

∗=δi j+
β−1

v2 v i v j  , M0 i
∗=M i 0

∗=
β v i

c
 , M 00

∗ =β  .  

 For (vi)i=(vi (t0))i  as instantaneous R′0  rest frame velocity we have for the 
frame R  coordinates of the particle M evolution: 

 

d t
d t ′

=M00
∗ +

M0 i
∗

c
d x′i

d t ′
  

d xi

d t
=(M i j

∗ d x′j

d t′
+M i0

∗ c) 1

M 00
∗ + 1

c
M0 i

∗ d x′i

d t′

  

d2 xi

d t 2 =
M i j

∗ d2 x′ j

d t′2 (M 00
∗ +1

c
M0k

∗ d x′k

d t′ )−1
c

M0 j
∗ d2 x′ j

d t′2 (M i j
∗ d x′ j

d t ′
+M i0

∗ c)
(M00

∗ + 1
c

M 0 i
∗ d x′i

d t′ )
3

 . 

 

 In the rest frame we have 
d x′i

d t′
(t 0)=0  and therefore for the acceleration in the  

 frame R  at t 0  , if  a′=(d2 x′i

d t′2 (t 0))
i

 is the acceleration in the instantaneous 

 rest frame R′ , we have: 

a= d2 x i

d t 2 =
M i j

∗ M00
∗ a′ j−M 0 j

∗ a′ j M i0
∗

M 00
∗3   

a=β−3(βa′+
1−β

v2 ( v⃗⋅a′) v⃗)          (3) 
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At time moment t0 in the rest frame we must have :
m0 a′=q E′(t′0 ,0)     (4)  where E′=E′(t′ , x′)  , B′=B′(t′ , x′)  are the   
electric intensity field and the magnetic induction field in the instantaneous 
rest frame R’0 . Thus with 
E′=E′(t′0 ,0)  , B′=B′(t′0 ,0)  , E=E(t 0 , xM)  , B=B(t 0 , xM)  since 

 according to (1), (2) E=β(E′−v⃗×B′)+ 1−β
v2 ( v⃗⋅E′) v⃗  and 

B′=β(B− 1

c2 ( v⃗×E))+ 1−β
v2 ( v⃗⋅B) v⃗   from (3) , (4) follows 

β3 m0 a=q E+qβ2( v⃗×B)−q
β2

c2 v⃗×(v⃗×E)  . 

 

In the frame R we have the Lorentz force
f =q E+q v⃗×B  . 

 Let as=
1

v2 (a⋅⃗v) v⃗  , ap=a−as  , f s=
1

v2 (f⋅⃗v) v⃗  , f p=f −f s  and after some 

 calculus we obtain β3 m0as=f s     (5) and   βm0 ap=f p    (6) . 

 

At time moment t0 we have also:

d p⃗
d t

= d
d t

v⃗

√1−v 2

c2

=βm0
d v⃗
d t

+
β3m0

c2 ( v⃗⋅d v⃗
d t ) v⃗=βm0 a p+βm0( v⃗⋅d v⃗

d t )( 1
v2+

β2

c2 ) v⃗=

=βm0 a p+β
3 m0 as   and so from (5) and (6) we obtain  d p⃗

d t
=f      (7) 

 

Taking E=
m0 c2

√1−v2

c2

  we have  d p⃗
d t

⋅⃗v=βm0( v⃗⋅d v⃗
d t )(1+β

2

c2 v 2)=β3 m0( v⃗⋅d v⃗
d t )=dE

d t
  

 and so 
dE
d t

=f⋅⃗v  . E=
m0 c2

√1−v 2

c2

   (8) is the energy of the particle in the frame R  , 

 since f⋅⃗v  is the work done by the Lorentz force in unit time in the frame R .

 

If we have an electromagnetic plane wave in the frame R given by 
E=E0 cos(ω t−k⃗⋅x)  , B=B0 cos(ω t−k⃗⋅x)   with  

E0 , B0∈ℝ3  , k⃗=(k1 , k 2 , k 3)∈ℝ3  , ω=‖k⃗‖c  taking (Kα)α=(ω
c

, k 1 ,k 2 , k3)  , 

(xα)α=(ct ,−x1 ,−x2 ,−x3)  we will have for the electromagnetic tensor the  
 Lorentz invariant relation of the wave: F=F0cos (Kα xα)
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 where F0=(
0 −E0 1/c −E0 2/c −E03/c

E0 1/c 0 −B03 B02

E0 2/c B03 0 −B01

E0 3/c −B02 B01 0
)  .  

If R’ moves with velocity v⃗=(vi)i  in the frame R  then in the frame R′  the same  
electromagnetic wave will be given by :
E′=E′0 cos (ω′ t′−k⃗′⋅x′)   ,  B′=B′0 cos(ω′ t′−k⃗′⋅x′)  where 

E′0=β(E0+ v⃗×B0)+
1−β

v 2 ( v⃗⋅E0) v⃗  

B′0=β(B0−
1

c2 ( v⃗×E0))+
1−β

v 2 ( v⃗⋅B0) v⃗  

ω′=c M0 i ki+M 00ω   
k′i=M i j k j+M i 0

ω
c

 with M  , β  defined by (*). 

 

Thus in the relativistic electromagnetic wave propagation we have the Doppler effect 

 relation ω′=βω(1−v
c

cosθ)  where θ  is the angle between v⃗   and k⃗  : 

 the observer in R′  moves in the frame R  in which the source is at rest with 
 velocity v⃗  and the wave vector in R  is k⃗  . 

 

 For θ∈{0 ,π} we have the longitudinal Doppler effect relation ω′=ω√ 1∓ v
c

1± v
c

    : 

 if the observer moves away from the source we have  ω′<ω  and so a red shift 
 of the wave in R′  relative to R .

 

For θ=π
2

 we have the transversal Doppler effect relation ω′= ω

√1−v 2

c2

=ω+O( v2

c 2 )

 The transversal Doppler effect is a second order in v
c

 effect and we have ω′>ω .

 

Suppose now the particle M moves with constant velocity 
v⃗=(vi)i  in the frame R  and   and emits electromagnetic waves. Then the particle 
remains at rest in a frame R’0 with spatial origin at M which moves 
 with velocity v⃗  relative to the frame R  and by symmetry reasons, the emitted  
electromagnetic waves must be, in the R’0 frame, identical packets of waves emitted 
in opposite directions. The packets consist of photons  with energy ℏω′  emitted  
 in directions at angles θ′ ,π+θ′  to the velocity v⃗′=− v⃗  . The energy of these 
 photons in the frame R  will be 
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ℏωθ′=βℏω′(1− v
c

cos θ′)   and  ℏωπ+θ′=βℏω′(1+ v
c

cosθ′)  . 

 Therefore if W ′  is the total emitted energy in the rest frame R′0  then the energy  
 emitted in the frame R  is 

W=∑
ω′
(β ℏω′(1− v

c
cosθ′)+βℏω′(1+ v

c
cosθ′))=β∑

ω′
2ℏω′=βW ′  

 and so W=βW ′ .

 

According to (8), since v is constant, the energy variation of the particle must be
W=βΔm0 c2  where Δm0  is the variation of the rest mass of the particle. 

 Hence W ′=Δ m0 c2  . W ′  is the variation in rest energy of the particle which is 

 at rest in the frame R′  and so for the rest energy of the particle we take m0 c2  , 

 

proving the equivalence between rest mass and rest energy.

 In conclusion, for a force f  in the frame R  we have 

d p⃗
d t

=f   ,  dE
d t

=f⋅⃗v      with p⃗=
m0

√1−v2

c2

v⃗  momentum, E=
m0 c2

√1−v 2

c2

 energy,  

 the four-momentum Lorentz vector (Pα)α=(E
c

, p⃗)  , 

  the Lorentz invariant proper time d τ  =√1− v2

c2 d t  , velocity v⃗=(d xi

d t )i
 , 

 the four-velocity Lorentz vector (V α)α=(d xα

d τ )
α
=( c

√1− v2

c 2

,
v⃗

√1−v 2

c2 )  , 

 the four-acceleration (W α)α=(d2 xα

d τ2 )
α

 so that we have 

 

Pα=m0
d xα

d τ
  ,  (m0 W α)α=β(d Pα

d t )
α
=(β f⋅⃗v

c
,β f )   with  β= 1

√1−v2

c2

 , 

m0W=F   ,  F=(β f⋅⃗v
c

,β f )  is the Lorentz vector four-force, 

E2= p⃗2 c2+m0
2 c4                    (9). 

 

Replacing in (9) the energy and momentum with the corresponding quantum 
operators for a quantum particle with rest mass m, taking therefore

E→iℏ ∂
∂ t

   ,   p⃗→−iℏ ∇ x  we find out that the 

 wave function ψ=ψ(t , x)  of a mass m  particle quantum system should 
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satisfy the following Klein-Gordon equation

(□+m2 c2

ℏ2 )ψ(t , x)=0   

 where  □= 1
c2

∂2

∂ t 2−
∂
∂ x i

∂
∂ xi=

1
c2

∂2

∂ t2−∇ x
2   .  

 

 With c=1   ,  ℏ=1  as we can have by suitable choosing of time and lenght 
 measure units, the Klein-Gordon equation becomes: (∂2+m2)ψ=0.

 

 A mode with energy E=m+ε  would oscillate in time as ψ∝exp(−i E t)  .  
In the non-relativistic limit the kinetic energy ε is much smaller than the rest mass m.
It makes sense to write 
ψ(t , x)=exp(−i mt )φ( t , x)  with the field φ  oscillating in time much more slowly 
 than exp (−i mt)  . Thus the Klein-Gordon equation becomes :

(−i m+ ∂
∂ t )

2

φ−∇ x
2 φ+m2φ=0 .

 Dropping the term ( ∂2

∂ t2 )φ  as much smaller than −2 i m( ∂∂ t )φ  we find 

 the Schroedinger equation i ∂
∂ t

φ=−
∇ x

2

2 m
φ .

 

Having absorbed this we can easily take the non-relativistic limit of a quantum field 

theory plugging ψ(t , x)= 1
√2 m

exp(−i m t)φ(t , x)  in the Lorentz invariant scalar  

field theory with Lagrangian density 
ℒ=(∂ψ)+ (∂ψ)−m2ψ+ ψ−λ(ψ + ψ)2   (see Chap. Quantum field theory ,  
 Path integral formalism) which reduces to 

ℒ≈1
2

i(φ+ ∂φ
∂ t

−∂φ +

∂ t
φ)− 1

2m
∂iφ

+ ∂iφ−g2(φ + φ)2      where g2= λ
4 m2

 

After integration by parts in the action S=∫ℒ(φ ,∂φ)d t d3 x  we can define   
the theory by the Lagrangian density

ℒ=iφ + ∂0φ−
1

2m
∂ iφ

+ ∂iφ−g2(φ + φ)2  .  (**) 

The theory defines a conserved Noether current (for invariance under the 
 transformation ( t̄ , x̄)=(t , x)   ,  ψ̄=exp(iω)ψ=ψ+iωψ+O(ω2)  , ω∈ℝ  (see  
Chap.Lagrangian field theory. Noether theorem)): Jμ=i(ψ+ ∂μψ−∂μψ

+ ψ)  which 
 for the (**) Lagrangian density becomes J 0=φ+ φ  (as expected the probability  

 density) and J k=
i

2m
(φ+ ∂k φ−∂k φ

+ φ)   ,  k=1 ,3  the charge current. 
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We can measure the position of a particle by bouncing light of it, but measuring the 
position accurately requires light of short wavelenght. Light with a short wavelenght 
consists of photons of high energy. If the energy of these photons exceeds mc2 ( m the 
mass of the particle) when one hits the particle whose position is being measured, the 
collision may yield enough energy to create a new particle of the same type. This 
renders out the question of the original particle’s location.
Suppose we wish to measure the position of a particle with an accuracy Δx . Then the

 uncertainity relation for position and momentum says that Δ x Δ p≥ℏ
2

 so the 

 uncertainity in the particle's momentum satisfies Δ p≥ ℏ
2Δ x

 . 
 

Having the relativistic relation between energy and momentum 
E2=(p c)2+(m c2)2  , when Δ p  exceeds m c  , the uncertainity in energy is greater 

 than m c2  which is enough energy to create another particle of the same type. 
 

This greater energy uncertainity must be excluded by the creation of one or more 
additional particles to keep the uncertainity of each particle’s momentum at or below 
m c .
It follows that there is a fundamental minimum for Δ x  when Δ p≤m c :    

Δ x≥ ℏ
2Δ p

≥ ℏ
2 mc

 . The wavelenght of a photon with the same energy as the rest 

 mass of the particle is 
h

m c
 and 

ℏ
m c

 is the so called reduced Compton wavelenght 

 of the particle. 

 

Thus the uncertainity in position must be greater than half of the reduced Compton 
wavelenght.
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15. Free quantum particle. Potential gap.
      Potential barrier.Tunnel effect 
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               Free quantum particle. Potential gap for a quantum particle 
                                 Potential barrier. Tunnel effect 

The Hamiltonian operator for a free one-dimensional particle is

Ĥ= p̂2

2 m0

     with p̂=−i ℏ d
d x

 , m0   mass of the particle .

 For the wave function ψ=ψ( t , x)∈ℂ  , t∈ℝ  , x∈ℝ  the Schroedinger equation is: 

 

i ℏ
∂ψ
∂ t

=− ℏ2

2 m0

∂2ψ
∂ x2  which leads to a time independent Schroedinger equation: 

d2ψ
d x2 +k x

2 ψ=0    where k x
2=

2 m0

ℏ2 E  and the solution for the energy level E  will be 

ψ(t , x)=A exp (− i
ℏ (E t−ℏ k x x))+B exp( i

ℏ (E t−ℏ k x x))  . 

 

The regresive wave (with coefficient B) has no physical meaning and so the energy 

 level E  solution is ψ(t , x)=A exp (− i
ℏ (E t−ℏ k x x))  the free quantum particle 

 having a continuous energetic spectrum E=ℏ2 k2

2m0

  ,  k∈ℝ  . 
 

The model can be applied to study conduction electrons in metals. For the wave 
functions ψ of conduction electrons in a one-dimensional crystal grid of latticial  
constant a and length L we must have ψ(x+L)=ψ(x)  so k x L=2πnx  , n x∈ℕ  ,  

 the energy levels being quantized as En=
ℏ2 2π2

m0 L2 n2   ,  n∈ℕ  .  

The electrons can absorb or release energy quantums ε in transition from one level to 

 another ε=En+1−En=
2π2ℏ2

m0 L2 (2n+1)   ,  n∈ℕ  .  

For macroscopic large L we can see that the spectrum will be quasicontinuous.

A potential gap is determined by a Hamiltonian operator 

Ĥ= p̂2

2m0

+V (x)  where V (x)={V 0  for x<0
0   for x∈[0 , a]

V 0  for x>a

       with V 0∈ℝ  a constant.  

Such potential gap appears for example in ionic crystals in an anionic vacancy (when 
a negative ion is missing from the lattice, leaving an empty space where the electrons 
coming from the neighbouring positive ionised atoms are trapped).
The corresponding time independent Schroedinger equation is 
d2 ψ
d x2 −

2 m0

ℏ2 (V (x)−E)ψ=0  and with k1
2=

2 m0

ℏ2 E   ,  k 2
2=

2m0

ℏ2 (V 0−E)    
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 the solutions are 

ψ=exp(− i
ℏ E t)ψ1(x)  , ψ1(x)=A1exp (−k 2 x)+B1 exp(k2 x)     for x<0  

ψ=exp(− i
ℏ E t)ψ2(x)  , ψ2(x)=A2exp (i k1 x)+B2exp (−i k1 x)      for x∈[0 , a ]  

ψ=exp(− i
ℏ E t)ψ3(x)  , ψ3(x)=A3 exp(k2(x−a))+B3 exp(−k 2(x−a))    for x>a  

 

 The function ψ  must be bounded for x→±∞  and so A3=A1=0  . 
The function ψ  must be also continuous differntiable in x=0  and x=a  and so 
B1−A2−B2=0   
A2 exp(i k1 a)+B2exp (−ik 1 a)−B3=0  
k 2 B1−i k1 A2+i k 1 B2=0  
ik 1 A2exp (i k1 a)−i k 1 B2 exp(−i k1 a)+k 2 B3=0  .  

 

This system in B1 , A2 , B2 , B3  has a non-zero solution if and only if 

tan (k 1 a)=tan (2α)  where tanα=
k 2

k 1

 and therefore k 1a=2α+nπ  with n∈ℤ  . 

 The energy levels E= ℏ2

2m0

k 1
2  are therefore quantized and we see that if V 0=∞  , 

 we have k 1a=nπ  , n∈ℤ  leadind to quantized energy levels as En=
ℏ2

2m0

π2

a2 n2  . 

 

The absorption or releasing energy quantums only in amounts of ε = En+1 – En gives 
the crystal its color since a is a small quantity, determining a discrete spectrum.

 For V 0=∞  follows also k2=∞  , B1=0  , ψ1=ψ3=0  , ψ2(x)=A sin(nπ
a

x) .  

The potential gap can be generalized to a three-dimensional gap for wave functions

ψ=ψ(t , x , y , z)  and a hamiltonian operator Ĥ= p̂2

2m0

+V (x , y , z)  , p̂=−i ℏ ∇  

V (x , y , z)={0  for x , y , z∈[0 , L]
∞  for (x , y , z)∈ℝ3∖[0 , L]3

 

The time independent Schroedinger equation is 

∇2 ψ+ ℏ2

2m0

(E−V )ψ=0    which for k 2=
2m0

ℏ2 E  , E  -energy level ,

 leads to solutions ψ=A exp (− i
ℏ En t)ψn(x , y , z)  with n=(nx ,n y , nz)∈ℕ

3  , 

k⃗=(k x , k y , k z)=
π
L
n  , En=

ℏ2

2m0

(nx
2+n y

2+nz
2)  , 

ψn=( 2
L)

3 /2

sin (
πnx x

L
)sin (

πn y y

L
)sin (

πnz z

L
)          (*) 

 

The solutions (*) form a complete orthonormal system of eigenfunctons of the 
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 operator Ĥ=− ℏ2

2m0

∇ 2  on the Hilbert space L2([0 , L ]3)  .  

There are more than one normalized wave functions corresponding to an energy level
En giving a degeneration of the energy level gn .
gn=card {(nx , n y , nz)∈ℕ

3|nx
2+n y

2+nz
2=n2}  .  

The spectrum is quasicontionuous for macroscopic large L and we have an energetic 

 density of states ρ(E)=
d nx d n y d n z

d E
=( L

π )3 4π k 2 d k
d E

= 4

π2

V

ℏ3 √2m0
3 E  with V=L3  .  

In the case of a one-dimensional potential barrier the free quantum particle 
encounters at x = 0 a repulsive force field having a potential V0 > E ( E -energy level 
of the particle) on the interval [0 , a] . The solution for the whole spatial x -axis not 
vanishes for x > a and so with a non-zero probability, the particle can pass through 
the potential barrier even if V0 > E , which gives the tunnel effect. 
For the wave function ψ we will have 

ψ=exp (− i
ℏ E t)ψ1(x)  for x∈(−∞ , 0 )  , ψ=exp(− i

ℏ E t)ψ2(x)  for x∈[0 ,a ]   , 

 ψ=exp(− i
ℏ E t )ψ3(x)  for x∈[a ,∞ )

 

The time independent Schroedinger equations are 
d2ψ1,3

d x2 +
2m0

ℏ2 Eψ1 ,3=0       on ℝ∖[0 , a]   

dψ2

d x2 −
2m0

ℏ2 (V 0−E)ψ2=0          on [0 , a]  

 

 For k 1
2=

2m0

ℏ2   ,  k2
2=

2 m0

ℏ2 (V 0−E)  the solutions are  

ψ1(x)=A1exp (ik 1 x)+B1 exp(−i k 1 x)     with x<0   
ψ2(x)=A2exp (−k 2 x)+B2 exp(k2 x)        with x∈[0 , a]   
ψ3(x)=A3exp (i k1(x−a))+B3 exp(−i k1(x−a))       with x>a  

 

 We can obviously drop the regresive wave on [a ,∞ )  and take B3=0  .  
The function ψ must be continuous differentiable in x = 0 and  x = a and so :
A1+B1=A2+B2    
ik 1(A1−B1)=k2(−A2+B2)    
A2 exp(−k2 a)+B2 exp(k2 a)=A3    
−k2(A2exp (−k 2a)−B2exp (k2 a))=i k1 A3     

 

 Let n=
k 1

k 2

  ,  k 2 a≫1  and we derive 

B2=
1+in

2
A3exp (−i k2 a)≈0   ,  A2=

1−in
2

A3exp (k 2a)  , 

A1=
i+n
2 n

A2   ,  B1=
n−i
2n

A2
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Tunnel effect processes (like α -decay or cold electron emission) depend on the 
transparency coefficient of the barrier which can be computed as 

T=
|ψ3(a)|

2

|ψ1(0)|
2   and we obtain  T=

A3 A3
∗

(A1+B1)(A1
∗+B1

∗ )
= 4

1+n2 exp (−2k 2 a)  .  
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16. Thermodynamics
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                                        Thermodynamics

In thermodynamics we describe systems as a union of macroscopic parts which are in 
local thermodynamical equilibrium, that is the state of a part Pi of the system S will 
be described by a set of extensive parameters Xi

0  ,  Xi
1  , … , Xi

n . An extensive 
parameter depends on the size o the part which it describes and is additive with 
respect to parts. So if X1

m  , X2
m are the m-th extensive parameter for a part P1 

respective a disjoint part P2 then the considered value Xm of the m-th extensive 
parameter for the system P1∪P2  is Xm=Xm

1 +Xm
2   .  

Extensive parameters are the internal energy U , the entropy S of the system, the 
volume occupied by the system V , or the particles number N of the system.
The macroscopic state of the system will be described by its total internal energy U, 
its total entropy S and the values of the extensive parameters of its parts. The fact that 
such state parameters exist can be resumed as 
P1. There exist so called equilibrium states of a system in which , if the system 
interacts only with itself (that is the system is isolated) then the extensive parameters 
of each part of the system do not evolve in time.

A system in thermodynamical equilibrium will be described macroscopically by its 
total internal energy U, its total entropy S and its other extensive parameters X1 , X2 , 
… , Xn  (we take X0  = U). It follows that a system is in thermodynamical equilibrium 
if and only if any subsystem of it is in thermodynamical equilibrium.
A quasistatic thermodynamic process is a continuous differentiable evolution in time 
of the extensive parameters (X k

j)k , j  of the parts and we will have:  
P2. If the system is at thermodynamical equilibrium or it experiences a quasistatic 
thermodynamic process then for the whole system (and for each part of the system), 
the entropy is a continuous differentiable homogeneous of degree 1 function of the 
internal energy and the other extensive parameters.
Therefore we can write :
S=S(U , X1 , ... , Xn)                     (1) 
λS=S (λU ,λ X1 ,... ,λ Xn)    for any  λ∈ℝ             (2) 

 

Moreover we have an intensive parameter T , the thermodynamical temperature, such 

that T > 0 and  1
T

= ∂ S
∂U

(U , X1 ,... , Xn)  .  

Hence from (1) and (2) we obtain 
U=U (S , X1 ,... , Xn)                 (3) 
λU=U (λ S ,λ X1 , ... ,λ Xn)         (4) 

T=∂ U
∂ S

(S , X1, ... , Xn)        (5) 

T (λ S ,λ X1 ,... ,λ Xn)=T (S , X1 ,... , Xn)    for any   λ∈ℝ∗       (6) .
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We can consider also the other intensive parameters :

Pi=
∂U
∂ Xi

(S , X1 , ... , Xn)  

F i=
∂S
∂ X i

(U , X1 , ... , Xn)  . 

 

 For Xi=V   we have P=−Pi  where P  is the thermodynamical pressure. 
 For Xi=N k  we have μk=Pi  where μk  is the chemical potential of particles 
 denoted by k  having N k  the number of such particles. 

 

We will have obviously :
Pi(λS ,λ X1 , ... ,λ Xn)=Pi(S , X1 , ... , Xn)  , 
F i(λU ,λ X1 , ... ,λ Xn)=F i(U , X1 , ... , Xn)  for any λ∈ℝ∗  . 

 

Differentiating (2) and (4) with respect to λ and taking λ = 1 we obtain 
d U=T d S+Pi d X i          (7) 

d S= 1
T

d U +Fi d X i=
1
T

d U−
Pi

T
d X i         (8) 

Fi=−
Pi

T
        (9) 

 

Also since from the above results the vanishing of the total differential of
H=U−T S−Pi X i  as a function in (S , X1 ,... , Xn)  and taking λ=0  in (4)  we  

 obtain H (0 , 0 ,... , 0)=0  we can derive 
U=T S+Pi X i          (10) 

S= 1
T

U +Fi X i       (11) ( in all above relations we take summation over i  index ) . 

 

We will assume also that :
P3. If the system is at thermodynamical equilibrium with constant internal energy 
then the entropy has a maximum when unrestrained varying the other extensive 
parameters.
Therefore at equilibrium we have 

( ∂S
∂ X )

U =const

=0  and ( ∂2 S

∂ X2 )
U=const

<0  (negative definite) . 

 
P4. (The third principle of thermodynamics)  If T→0  then S→0  .  

The second princple of thermodynamics:
If a system interacts only with itself (the system is isolated) then the entropy can only 
increase during any natural process. (The entropy remains constant for reversible 
natural processes). 
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The first principle of thermodynamics:
A system can exchange energy with the environment only by the variation of entropy 
in which case the energy infinitesimal variation is given by the heat exchange
d U=δQ=T d S  or by the variation of the other extensive parameters in which case  
the internal energy infinitesimal variation is given by the work exchange 
d U=δL=Pi d X i  ( for X i=V  the work will be δL=−P d V   ) .  
The total infinitesimal internal energy variation is given by 
d U=δQ+δ L=T d S+Pi d X i   .  
An isolated system has therefore constant internal energy and by the second principle 
of thermodynamics evolves naturally to an equilibrium state in which the entropy is 
maximal.
If an isolated system consists for example of two parts we may consider the case in 
which the separation between the two parts is permeable only to the extensive 
parameters Xk

i , k = 1,2 , that is the system evolves such that for the i indexed 
parameters we have Xi

1+X i
2=X i=constant  i n  time  and the other extensive  

parameters X1
j , X2

j are constant in time, then we must consider for the equilibrium 
state to which the system naturally evolves a restrained maximum condition for the 
entropy function 
S=S1(X i

1 , X j
1)+S2(Xi

2 , X j
2)  with the restraints X i

1+X i
2=X i=constant            (12) .  

 Therefore for the function ψ=S−λi(X i
1+X i

2)  depending on the variables X i
k , X j

k  
 and on the λi  Lagrange coefficients additional parameters we must have: 

 

∂ψ
∂ X i

1 =
∂ψ
∂ X i

2 =0  and so 
∂S1

∂ X i
1=

∂S2

∂ X i
2 =λi   ,   Fi

1=F i
2    (13) .  

The restraints (12) and the (13) relation determine the parameters X1
i  , X2

i at 
equilibrium.
 For Xi

k=U k  the internal energy of part k  , k=1,2  that is the separation is  
diathermal and the two parts exchange energy by heat it follows T1 = T2 at 
equilibrium: Two systems exchanging energy  by heat have at equilibrium the same 
temperature and if the separation is also mobile ( that is V 1+V 2=V =constant   ) then 
at equilibrium the pressures must also be equal ( since we must have 
P1

T1 =
P2

T 2    and so P1=P2  ) .  

If the separation is Xi permeable the whole system evolves according to second 
principle of thermodynamics and the total entropy is increasing. We have
Δ X i

1+Δ X i
2=0  , where Δ X i

k  is the variation of X i
k  parameter in the system's 

evolution process,(since X i=X i
1+X i

2=const . ) and so at first order approximation 

0<ΔS=Δ S1+ΔS2= ∂ S1

∂ X i
1 Δ X i

1+ ∂ S2

∂ X i
2 Δ X i

2=(F i
1−F i

2)Δ X i
1  . 

 

Therefore the natural evolution of the system is such that the extensive parameter Xk
i 

is increasing in that part of the system which has the higher conjugate intensive 
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parameter Fk
i . In particular for Xi = U the internal energy increases or decreases in 

that part of the system which has the lower respective higher temperature.
We observe also that, for the infinitesimal heat exchange differential form we have

δQ=T d S   ,  1
T

δQ=d S= ∂ S
∂U

d U + ∂ S
∂ X i

d X i   and so  1
T

 is an integration factor  

for the heat differential form.

Consider now a monothermal engine, that is an isolated system which consists of a 
thermostat reservoir system RT with temperature T , a mechanical system M and a 
engine system E such that E exchanges energy only in form of heat Q with RT and 
only in form of work - L with M in a cyclic process. (The engine E receives heat Q 
and delivers work L ) .
The process being cyclic the internal energy variation of E is zero:
0=ΔU=Q−L   and so  Q=L  .   
From the second principle of thermodynamics we have :
Δ Sr+Δ S+Δ Sm≥0  .  
Because E exchanges only work with M , the heat exchange amount with M will be 
zero : 0=−Qm=T Δ Sm  . 
 We have also −Q=T Δ Sr   , the heat exchange amount with the reservoir R  . 

 

The process experienced by E is cyclic and so the entropy variation of E , which we 
denoted ΔS vanishes: ΔS = 0 .

 Therefore we have 0≤Δ Sr=− Q
T

  ,  Q≤0   ,  L≤0  and we derived the Kelvin  

principle:
“ There is no cyclic monothermal process experienced by a monothermal engine 
which transforms received heat in effectuated work.”
Consider now a bithermal engine E which receives heat Q1 from the thermostat R1 

at temperature T1 , delivers heat Q2  to the thermostat R2  at temperature T2 and 
effectuates work L on mechanical system M in a cyclical process.
 We have ΔU=Q1−Q2−L  by the first principle of thermodynamics and 

Δ S1+ΔS2+ΔS+ΔSm≥0  by the second principle of thermodynamics. 
 

 With the mechanical system we have zero exchanged heat: Qm=0  and so 

Δ Sm=− Qm

T
=0  for the variation in entropy of the mechanical system. 

 

The process being cyclic we have ΔU = 0  ,  ΔS = 0 .

 Obviously Δ S1=−
Q1

T 1

  ,  Δ S2=
Q2

T 2

 for the entropy variations of the thermostate 

 systems and so Q1−Q2=L  , 
Q2

T 2

−
Q1

T1

≥0  . 

 

If L = 0 , the engine delivers naturally heat from thermostate R1 to thermostate R2 
with Q = Q1 = Q2 > 0 and therefore follows T1≥T2  and we have the Clausius   
principle formulation:
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“There is no cyclic process which delivers naturally heat from a source with lower 
temperature to source with higher temperature.”
 If L>0  the engine transforms received heat Q1  partially in delivered work L  and 

 for the efficiency η  of the engine we will have η= L
Q1

=1−
Q2

Q1

≤1−
T 2

T 1

 . If the 

 cyclic process is reversible we will have Δ S1+ΔS2=0  and so the efficiency 

 will be maximal η=1−
T2

T1

 . Obviously , to deliver work by the engine we  

 must have Q1>Q2  and so T2<T1  . To deliver heat from a lower temperature T 2   
 source to a higher temperature T 1  source, the mechanical system of the engine 
 must deliver work on the engine system so that L=Q1−Q2<0  . 

  

If we assume now that a system is in diathermal contact with a thermostat reservoir R 
having temperature T r and δQ is the amount of heat which the system receives from 
the thermostat, then the infinitesimal variation of entropy of the reservoir will be 

d Sr=− δQ
T r  . The system and the thermostat forming a whole isolated system, the 

 second principle of thermodynamics leads to d S+d Sr≥0  where d S  is the  

 

infinitesimal variation of the entropy of the system.

 Therefore d S≥δQ
T r         (14) . If the system is supposed to be at equilibrium with 

the reservoir then we have T r=T  the temperature of the system and d S≥δQ
T

 (14').

 

We can assume that the system is in contact with many sources Ri having respective 
temperatures Ti , receiving heat amounts δQi from the source Ri (if the source Ri is 
instead receiving the heat we take δQi < 0)  through its separation surface ∂ D  .  

 Then the relation (14') takes the form d S≥∑
i

δQi

T i

    (15) or 

d S≥∫
∂ D

δQ
T

dσ            (16) which is known as the Clausius inequality. 

  

We can have also radiative heat terms in (15) in which the heat exchange is volumic 
distributed in the domain D of the system and so we will have a heat flux vector 
q⃗  on the separation surface ∂ D  and a radiation volumic density ρr  on the  
 domain D  such that if  n⃗  is the outwards normal on the surface ∂ D  , relation (16) 

 

becomes the Clausius-Duhem inequality
d S
d t

≥∫
∂ D

− q⃗⋅⃗n
T

dσ  +∫
D

ρ r
T

d V       (17)  

 where q⃗  is the amount of heat delivered from the domain D  of the system to its 
exterior through an unit surface element normal to vers q⃗  in an unit of time interval,

 

ρ  is the mass density of the system, 
r  is the amount of heat generated in an unit mass element in an unit of time 

 

interval inside the system,
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T is the temperature field defined on the domain D of the system in local equilibrium 
with the thermostat reservoir,
t is the time variable.
(17) is equivalent to
d S
d t

≥∫
D

(− ∇⋅( q⃗
T )+ρr

T )d V         (18) .  

Consider that we have a system E in diathermal contact with a temperature reservoir 
R , the separation between system and reservoit being also Xi permeable.
We suppose that we deliver to the  whole system E∪R  energy in form of work L .   
With r index reffering to the reservoir, we will have:
L=Δ(U+U r)    ,   ΔU r=T r Δ Sr+Pi

r Δ X i
r  .  

Then we let the system evolve to equilibrium with the reservoir.
 The X i  permeability condition X i+X i

r=const .  leads to Δ X i=−Δ X i
r  and because 

 the environment not exchanges heat with the entire system E∪R  the entire entropy 
 variation is Δ S+ΔSr≥0  and so Δ Sr≥−Δ S  by the second principle. 

 

We also suppose that during the work delivering process, the environment, the system 
and the reservoir reach to an equilibrium at which we will have T = T r , Pi =Pr

i . 
 Therefore, under this conditions we will have L≥Δ(U−T S−Pi X i)  and the 
 minimal possible to be delivered work to the system is Lmin=Δ Ū   where  
Ū  is the potential Ū=U−T S−Pi X i  . 

 

We have L = Lmin if the work delivering proces is reversible.
In the same way we can conclude that the maximal possible to be effectuated work by 
 the system is Lmax=−ΔŪ  .  
If the connection with the reservoir is only diathermal we have 
Ū=U−T S   , the free energy potential and if the connection is diathermal and the 
separation between system and reservoir is mobile (that is volume V  permeable) 
 then Ū=U−T S+P V   , the Gibbs potential.  

 

Suppose a system can be described by s + 1 extensive parameters denoted as:

(X i)i=0 , s   with  X0=S  . Then from the relations Pi=
∂U
∂ X i

(S , X1 ,... , X s)  we can  

 express X i=X i(P0 , P1 , ... ,Pn , Xn+1 ,... , X s)  with P0=T  , for i=0 ,n

 

 Let Ū=U−∑
i=0

n

Pi X i  . 

 Considering (10) we obtain d Ū=−∑
i=0

n

X i d Pi+ ∑
i=n+1

s

Pi d X i  , 

Ū=Ū (P0 ,P1 ,... , Pn , Xn+1 , ... , X s)  and by the mixed derivatives symmetry we have  
 the Maxwell relations: 
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∂ X i

∂ P j

=
∂ X j

∂ Pi

    for  i , j=0 , n  

∂ Pi

∂ X j

=
∂ P j

∂ X i

     for  i , j=n+1 , s  

∂ X i

∂ X j

=−
∂ P j

∂ Pi

    for   i=0 , n   ,  j=n+1 , s  . 

 

 Consider a system with S=S(U , X)  where X  denotes the other reduced   
unrestrained extensive variables. If the system is at equilibrium with equilibrium 
internal energy Ue and Xe equilibrium other reduced unrestrained extensive variables, 

according to P3 we have ( ∂S
∂ X )

U

(U e , X e)=0   and  ( ∂2 S

∂ X2 )
U

(U e , X e)<0  .   

 From S=S (U (S , X ) , X)  we obtain 

(∂U
∂ S )

X
= 1

( ∂S
∂U )

X

=T    ,   (∂U
∂ X )

S
=−T ( ∂ S

∂ X )
U

   and so (∂U
∂ X )

S
(Se , X e)=0  ,  

(∂
2U

∂ X2 )
S

=−( ∂2 U
∂ S∂ X )( ∂ S

∂ X )
U

−T (( ∂2 S
∂ X ∂U )(∂U

∂ X )
S

+( ∂2 S
∂ X2)

U
)   , 

(∂2U

∂ X2 )
S

(Se , X e)=−T ( ∂2 S

∂ X2 )
U

(U e , X e)<0  . 

 

Therefore the internal energy has a minimum at equilibrium, when unrestrained 
varying the other than entropy extensive parameters . (Minimum energy principle).

Suppose a system is in contact with a temperature T and intensive parameters Pi 
reservoir. The other than internal energy unrestrained reduced extensive parameters 
are denoted by x . At equilibrium we have the system’s entropy S = Se  , the extensive 
parameters Xi = Xe

i and the reduced unrestrained parameters x = xe and 
∂U
∂ S

(Se , X i
e , xe)=T   ,  ∂U

∂ X i

(S e , X i
e , x e)=Pi  .  

Therefore , considering also stability criterions, the expression
Ū=U−T S−Pi X i  will have a minimum when we vary S  and X i  at equilibrium: 

Ū (Se , X i
e , xe)=  

 
min
S , X i

(U (S , X i , xe)−T S−Pi X i)
 

By the above derived minimumenergy principle we have at equilibrium:

U (Se , X i
e , xe)=  

 
min

x
U (Se , X i

e , x)    .   
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Hence at equilibrium we will have:

Ū (Se , X i
e , xe)=  

 
  min
S , X i , x

(U−T S−Pi X i)=  
 
min

x

~U (x)  where ~U  is the potential 

~U= 
 
min
S , X i

(U−T S−Pi X i)

 

 For the free energy potential we have generally with U=U (S , V ,N ) :  
F=U−T S  , F=F(T ,V , N )
d F=−S d T−P d V +μ d N

∂ F
∂T

=−S   ,  
∂ F
∂V

=−P  - the thermodynamical pressure , 

∂ F
∂ N

=μ  - the chemical potential of the particles from the system . 

 

 For the macrocanonical potential we have with U=U (S ,V ,N )
Ω=U−T S−μ N   ,  Ω=Ω(T ,V ,μ)

dΩ=−S d T−N dμ−P d V  
∂Ω
∂T

=−S   ,  ∂Ω
∂V

=−P   ,  ∂Ω
∂μ =−N  . 

 

 For the Gibbs potential we will have: 
G=U−T S+P V   ,  G=G (T , P ,N )

d G=−S d T+V d P+μ N
∂G
∂T

=−S   ,  
∂G
∂ P

=V   ,  
∂G
∂ N

=μ  . 

 

 For the enthalpy potential we have: 
H=U+P V   ,  H=H (S , P , N)

d H=T d S+V d P+μ d N  
∂ H
∂S

=T   ,  
∂ H
∂ P

=V   ,  
∂ H
∂ N

=μ  . 
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                       Classical statistical ensemble. Probability density.
                      Liouville theorem. Macrocanonical distribution.
                                             Gibbs theorem

We consider physical systems described by a phase space of qi – generalized 
coordinates and pi – generalized momenta : ((qi , pi)i=1 , s) ,qi , pi∈ℝ  ( for a N   
particles system we will have s = 3 N ), a Hamiltonian H = H (q , p) and a statistical 
 ensemble of M  microstates ((qi

a , pi
a)i=1, s)a=1 ,M  (with large M ) of such physical 

 systems, all prepared in the same given macrostate described by thermodynamical 
 parameters (U ,S , X ) ,  with X=(X i)i=1 ,n  the other extensive parameters than  
 internal energy U  and entropy S  ( see Chap. Thermodynamics). 

 

 For a domain Dt⊂ℝ2 s  in phase space we take  

M̄ (Dt )=card {a∈{1,2 ,... , M }|(qi
a , pi

a)i=1 , s∈Dt} and 

Ω(Dt)=∫
Dt

∏
i=1

s

d qi d pi    - the measure in phase space 

 with (qi
a , pi

a)=(qi
a( t), pi

a(t))  for time variable t ∈ℝ  , i=1 , s  , a=1 , M  , 

 

 so we can have P(Dt , t)= lim
M →∞

M̄ (Dt)
M

 as the probability that a microstate 

(qi(t) , pi( t))i=1 , s  at time moment t  , prepared in the given macrostate 
(U (t) , S(t) , X (t))  belongs to Dt  . 

 

The probability density for the given macrostate will be defined as

ρ( x ,t)= lim
Ω(Dt )→0 , x∈Dt

P(D t ,t)
Ω(Dt)

   with   x=(xi)i=1 ,2 s=(qi , pi)i=1 , s  and we have 

ρ(x ,t)≥0    ,   ∫ρ(x , t)d2 s x=1  . 

    

 The microstates evolution in time x=x(t)=(qi( t) , pi(t))i=1 , s  satisfies the 
 Hamilton-Jacobi system 

 (*) {ṗi=− ∂ H
∂qi

          

q̇i=
∂ H
∂ pi

 , i=1 , s

  

 Therefore we can define for any t∈ℝ  the evolution operator on the phase space 
~H=~H (t)  such  that x(t)=~H (t) x  with  x(t)=(qi (t) , pi( t))i=1 , s  , as a function of 
 time variable t  , is the unique solution of the Cauchy problem  defined by the 
system (*) and initial conditions (qi(0), pi(0))i=1 , s=x   for given x∈ℝ2 s  . 

 

 Let Dt=
~H (t )(D)  for D⊂ℝ2 s  and it follows :  
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Ω(Dt)=∫
D t

d2 s x(t)=∫
D

J (t ,0)d2 s x    where J (t , t′)=det ( ∂ xi (t)
∂ x j(t′))i , j=1 ,2s

 for t , t′∈ℝ . 

 We have J (t ,0)=J (t , t′)J (t ,0)   ,  J (t ,t)=1             (1) 

d
d t

J ( t ,0)|
t=t ′

= ∂J (t , t′)
∂ t |

t= t′
J (t′ ,0)                   (2) 

 

and further , because of (1) , follows :
∂ J (t , t′)
∂ J i j(t , t′)|t=t′

=δi j  , 

∂ J (t ,t ′)
∂ t |

t=t ′
=∑

i , j

∂ J (t ,t′)
∂ J i j(t , t′)

∂J i j(t ,t′)
∂ t |t=t ′

=∑
i=1

2 s ∂ J ii(t ,t′)
∂ t |

t=t ′
=

=∑
i=1

s (∂ q̇i(t′)
∂qi(t′)

+
∂ ṗi(t′)
∂ pi(t′))=∑

i=1

s ( ∂2 H
∂ qi ∂ pi

− ∂2 H
∂ pi ∂qi

)(q(t′), p(t′))=0  . 

 

Therefore from (1) and (2) we can derive now J (t ,0)=1  for any t ∈ℝ  and so  
Ω(Dt)=Ω(D)  for any t∈ℝ   ,  D⊂ℝ2 s  .  
Because of the unicity of solutions for the Cauchy problem (*) for any given x in the 
phase space we have that the evolution operator is bijective at any time moment, 
 having (~H (t))−1=~H (−t )  . Also, for suitable smooth H  , ~H (t)  must be  
 continuous from ℝ2 s  to ℝ2 s  and so by a known theorem, ~H (t)  is a  

 homeomorphism from ℝ2 s  to ℝ2 s .  Therefore for any M∈ℕ∗   , t∈ℝ   , D⊂ℝ2 s  
 we will have P(Dt , t)=P(D ,0)  and since Ω(Dt )=Ω(D)  we obtain 

ρ(x(t) , t)=ρ( x ,0)   for any  x∈ℝ2 s  , t∈ℝ                (3) . 

 

Differentiating (3) with respect to time variable and using Hamilton-Jacobi relations 
we obtain also :
∂ρ
∂ t

+[ρ , H ]=0        (4) where  [ρ , H ]=∂ρ
∂q

⋅∂ H
∂ p

− ∂ρ
∂ p

⋅∂ H
∂q

   is the Poisson bracket.

The (3) , (4) relations represent the Liouville theorem for the probability density.

We notice that from the Hamilton-Jacobi system  follows d
d t

H (x(t))=0  .  (**) 

 For a dynamical function F=F (x (t) ,t)  we define the average 
⟨F ⟩t=∫ρ(x( t), t)F( x(t) , t)d2 s x(t)=∫ρ( x ,0)F (x(t) , t)d2 s x       and so  
 differentiating with respect to t  we obtain 
d ⟨F ⟩t

d t
=⟨∂ F

∂ t ⟩
t

+⟨[F , H ]⟩t             (5) . 

 

The thermodynamical parameters are described as average values of some dynamical 
functions of the statistical ensemble.
If all systems of the statistical ensemble are prepared in the same equilibrium state
(U , S, X) , then the virtual statistical ensemble is stationary, that is we have for the 
probability density a dependence in the form:
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ρ( x(t) ,t )=ρ(x( t))  and according to (3) ρ=ρ(x (t))  is a not dependent on time   
integral of the system (*) . Therefore the probabibility density depends only of 2s 
independent integrals of the system (*). However, we suppose that the microstates 
probabilities , at equilibrium are well determined by the macroscopic state and 
backwards, the macroscopic state is well determined by the microstates probabilities.
According to (**) , the Hamiltonian is also an integral not dependent on time of the 
system (*) and is in a well determination relation with the macrostate equilibrium 
state. Hence we will assume that for equilibrium states, the probability density 
dependends on the microstate x (t) only through H(x(t)) having ρ = f (H).
Measuring a macroscopic thermodynamical variable at equilibrium involves the 
determination of the temporal averaged value of a dynamical function F = F (x (t)) ,

   namely the value F0(x)= lim
τ→∞

1
τ∫

0

τ

F( x(t))d t= lim
τ→∞

1
τ∫

0

τ

F (~H (t) x)d t  .  

In determination of the macroscopic state, the insolvable problem (due to the large 
number of equations) for solutions of the Hamilton-Jacobi system is replaced to the 
problem of determination for probability densities by assuming the ergodic 
statement : 
 for any x  we have the measurable time average F0(x)  equal to the domain  

 averaged F  namely ⟨F ⟩t=∫ρ(x)F(~H (t) x)d2 s x  at equilibrium. 
 

For systems which exchange particles with the environment we can consider a 
statistical ensemble with variable particles number of systems described by phase 
 spaces (ΓN )N  ( ΓN⊆ℝ2 s  , s=3 N  ) , x(N )∈ΓN  , Hamiltonians HN=H N(x(N ),V )  , 
 for each possible particles number N  with V  volume as an extensive parameter 
 of the system and we will have partial probability densities ρN=ρN (x(N ) ,t)  with 

∫
ΓN

ρN (x(N ) ,0)d2 s x(N )= pN   - the probability that a system of the statistical ensemble 

 has N  particles.  

 

All systems of the statistical ensemble are considered to be prepared in the same 
macrostate having volume V.
In the same way as above we will define 
 for Dt

(N )⊂ΓN    : PN (Dt
(N ) ,t)  the probability that a microstate x(N )∈ΓN  of the 

 system of the ensemble when it has N  particles belongs to Dt
(N)⊂ΓN  at time t  , 

Ω(D t
(N ))=∫

Dt
(N)

d2 s x(N )   ,  ρN (x(N ) ,t)= pN lim
Ω(D t

(N ))→0, x(N)∈Dt
(N)

PN (Dt
(N) , t)

Ω(Dt
(N ))

 . 

PN (Dt
(N ) ,t)= lim

M →∞

M̄ N(D t
(N ))

M
 

M̄ N (Dt
(N ))=card {a∈{1 , ... , M }|(qi

a , pi
a)i∈Dt

(N )}   

 with (qi
a , pi

a)i=x a(N )-microstates of the partial statistical ensemble ((qi
a , pi

a)i)a=1, M  
 corresponding to N  particles systems of the total ensemble. 
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Consider now a system S1 with N1 particles , volume V1 and Hamiltonian
H1=H N 1(x1 ,V 1)  , x1=x1

(N 1)  phase space coordinates for S1  . We assume that S1  
 is in contact with a reservoir S2  with N2  particles, volume V 2  and Hamiltonian 

H2=H N 2(x2 ,V 2)   ,  x 2=x2
(N 2)  phase space coordinates for S2.

 

 The total system S=S1∪S2  has N=N 1+N2  particles, volume V =V 1+V 2  , 
x=(x1 , x 2)  phase space coordinates and a Hamiltonian 
H tot=H tot (x ,V )=H1(x1 ,V 1)+H2(x 2,V 2)+H12(x1, x2 ,V 1, V 2)   , where  
H12=H1 2(x1 , x2,V 1 ,V 2)  is the interaction Hamiltonian between S1 and S2  particles.

 

H1 , H2 are proportional sized to particle numbers from S1 respective S2  and H12 is 
proportional sized to the particle number from the surface surrounding the volume V1 

domain of S1 and so H12 can be neglected in relation to H1 + H2 and so we can 
 consider H tot (x ,V )≈H1(x1 ,V 1)+H 2(x2 ,V 2) .
According to above considerations we suppose that the systems S1 and S2 are 
prepared in macrostates with partial probability densities 
ρN 1=ρ1(H 1(x1,V 1) , N1)  and respective ρN 2=ρ(H2(x2 ,V 2) , N2)  and the total 
 system is in thermodynamical equilibrium and also N1≪N2  . 

 

Since S1 , S2  form together a system S which is in thermodynamical equilibrium, they 
must be statistical independent systems, the microstates of S1 belong to a phase 
space domain D1 independently of how microstates of S2  belong to a phase space 
domain D2 .  
 Therefore if ρ=ρN (H tot( x ,V ) ,N )  is the partial probability density which   
determines the macrostate of the combined system S, as formed from S1  and S2 we 
 will have ρ(H tot(x ,V ) , N )=ρ1(H 1( x1 , V 1) , N1)ρ2(H2(x2 ,V 2), N2)        (6) 

ρ(H1+H 2 , N1+N2)=ρ1(H 1 , N1)ρ2(H2 , N 2)           (6')  
 

Because the total system S is in thermodynamical equilibrium we have that
Htot  and N are constant and so if S1 and S2 change energy and particles by 
infinitesimal amounts respective d H1  ,  d H2  ,  d N1  ,  d N2   we must have
d H 1+d H2=0            (7) 
d N 1+d N 2=0            (8) 
H1+H2  and N 1+N2  are constant and so from (6) follows : 
d logρ1(H1 ,N 1)+d logρ2(H2 ,N 2)=0         (9) and with (7) and (8) we obtain : 

(∂ logρ1

∂ H1

(H1 , N1)−
∂ logρ2

∂ H2

(H 2 ,N2))d H1+

+(∂ logρ1

∂ N1

(H1 , N1)−
∂ logρ2

∂ N2

(H 2 , N2))d N1=0             (10) . 

 

Since d H1 and d N1 are arbitrary infinitesimal values we derive now:
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∂ logρ1

∂ H 1

(H 1(x 1,V 1) , N1)=
∂ logρ2

∂ H 2

(H 2( x2,V 2) , N2)             (11) 

∂ logρ1

∂ N 1

(H1(x1 ,V 1), N1)=
∂ logρ2

∂ N 2

(H2(x2 ,V 2) ,N2)             (12) 

 

The right members of (11) and (12) depend on x2 , N2 , V2   and we can consider since 
N1≪N2   and the reservoir volume is considered much larger than the S1  system 
 volume, that V 2≈V   ,  N 2≈N  . 

The left members of (11) and (12) depend on x1 , N1 , V1 which are independent of
x2 , N , V reservoir variables.

 Therefore 
∂ logρ1

∂ H 1

=α     ,    
∂ logρ1

∂ N1

=β    with α ,β  constants depending only on   

the macrostate of the reservoir .

 We take α=− 1
Θ   ,  β= μ

Θ    and we must have ρ1=exp(Ω−H 1+μ N
Θ )   where Ω  

 not depends on x1 , N1  . 

 

Hence a system in equilibrium with a reservoir will have partial probability densities

ρN=ρN(x(N ),Θ ,μ ,V )=exp (Ω−H N (x(N ) ,V )+μ N
Θ )  with x(N )∈ΓN  phase space  

 variables for a system of the statistical ensemble with N  particles , Hamiltonian 
H N=HN (x(N ),V )  and V  macroscopic volume of the system such that 

∫
ΓN

ρN d2 s x(N )=pN  -probability that the system in the ensemble has N  particles . 

 

 We must have ∑
N

pN=1  and so Ω=−Θ log Z        with 

Z=∑
N

∫
ΓN

exp(−H N (x(N ) ,V )+μ N
Θ )d2 s x(N )                      

μ ,Θ  are constants depending only on the reservoir macrostate thermodynamic 

 

parameters.
 Let ⟨ H ⟩=∑

N
∫
ΓN

H N ρN d2 s x(N )=U  -the internal energy parameter, 

⟨ ∂ H
∂V ⟩=∑

N
∫
ΓN

∂ HN

∂V
ρN d2 s x(N)=−P  -the pressure parameter, 

⟨N ⟩=∑
N
∫
ΓN

N ρN d2 s x(N )=N t   -the particles number thermodynamic parameter. 

 

Considering the above definitions, we will have :
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0= ∂
∂V

∑
N

∫
ΓN

ρN d2 s x(N)=∑
N

1
Θ

∂Ω
∂V

∫
ΓN

ρN d2 s x(N)−∑
N

1
Θ∫

ΓN

∂ H N

∂V
ρN d2 s x(N)=

= 1
Θ

∂Ω
∂V

+ P
Θ    and so   ∂Ω

∂V
=−P               (13) 

  

0= ∂
∂Θ∑

N
∫
ΓN

ρN d2 s x(N )=∑
N

1
Θ

∂Ω
∂Θ∫

ΓN

ρN d2 s x(N )−∑
N

1
Θ2 ∫

ΓN

(Ω−H N +μ N )ρN d2 s x(N )=

= 1
Θ

∂Ω
∂Θ− 1

Θ2 (Ω−U +μ N t)  and so U=Ω−Θ ∂Ω
∂Θ+μ N t                  (14) 

 

0= ∂
∂μ∑

N
∫
ΓN

ρN d2 s x(N )= 1
Θ∑

N

∂Ω
∂μ ∫

ΓN

ρN d2 s x(N )+ 1
Θ∑

N
∫
ΓN

NρN d2 s x(N )=

= 1
Θ

∂Ω
∂μ + 1

Θ N t   and so  ∂Ω
∂μ =−N t                (15) 

 

From (14) we obtain :
∂Ω
∂Θ=∑

N
∫
ΓN

ρN logρN d2 s x(N )           (16)  

From (14) and (13) we obtain after differentiating (14) that:

d U=−Θd ∂Ω
∂Θ−P d V +μd N t             (17)  

Consider now two systems S1 and S2 which do not exchange particles and evolve with 
constant particles numbers reaching an each to other equilibrium state in the 
combined system S=S1∪S2  . Since the particles numbers of the systems do not   
change , we can consider that μ1 = μ2 = 0 and the system will have probability 
densities at equilibrium given respective as:

ρi=exp (F i−H i(xi ,V i)
Θi )  with Fi=−Θi log∫ exp(−

H i(x i , V i)
Θi

)d2 si x i     for  i=1 ,2  , 

 with Θ1 ,Θ2  equilibrium parameters and V 1,V 2  respective volumes at equilibrium. 

 

Because as noticed before the interaction energy H12 between system is small 
compared to H1 , H2  at equilibrium we suppose that, allowing an infinitesimal energy 
exchange between systems we have that 
d H1+d H2=0            (18) , near to the equilibrium state.  
At equilibrium the two systems are statistical independent and so the probability 
density of the combined system S will be at equilibrium :

ρ=ρ1(x1)ρ2(x 2)=exp ( F1

Θ1
+

F2

Θ2
−

H 1( x1,V 1)
Θ1

−
H2(x2 ,V 2)

Θ2 )  .  

The combined system is also in equilibrium and so we will have an equilibrium 

parameter Θ  such that ρ=exp ( F
Θ− H

Θ )  with F=−Θ log∫ exp(− H
Θ )d2 s1 x1 d2 s2 x2  , 

H=H1(x1 ,V 1)+H 2( x2,V 2) .
 

Therefore , considering the (x1 , x2) dependence , we must have at equilibrium
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H1( 1
Θ− 1

Θ1)=C−H2( 1
Θ− 1

Θ2)  with C  not depending on x1 , x2  .  

The left member of the above relation depends only on x1 , while the right member 
depends only on x2 . Since x1 and x2 are independent variables it follows 
C=0   ,  Θ=Θ1=Θ2  .  
Hence systems which are each to other in a thermodynamic equilibrium relation have 
the same Θ parameter.
Considering (17) which gives Θ-1 as an integration factor for the heat exchange 
 differential form δQ=d U +P d V−μ d N  and relations (13), (14) , (15) we can 
 therefore interpretate Θ   as an absolute equilibrium temperature and we can take 
Θ=kB T  with T  -thermodynamical absolute temperature at equilibrium , 
kB  -the Boltzmann constant, 
Ω   -the macrocanonical thermodynamical potential, 
μ   -the chemical potential parameter. 

  

Thus the partial probability densities of a system in equilibrium will be

ρN=exp(Ω−H N (x(N ) ,V )+μ N

kB T )   with  Ω=−kB T log Z   ,  

Z=∑
N

∫
ΓN

exp(−H N (x(N ) ,V )+μ N

kB T )d2 s x(N )  . 

 

According to (16) , the entropy of the system is 

S=− ∂Ω
∂T

=−kB
∂Ω
∂Θ=−kB∑

N
∫
ΓN

ρN logρN d2 s x(N ). 

If the system not exchanges particles with the environmental reservoir then we have 
no dependence on particles number and the probability density becomes

ρ=exp( F−H (x ,V )
kB T )  with F=−kB T log Z   ,  Z=∫ exp(− H (x ,V )

kB T )d2 s x  , 

F=U−T S  is the free energy potential and the entropy is S=−kB∫ρ logρ d2 s x  . 

 

(Notice that in all relations log is the natural logarithm.) 
For a discrete probability density of W microstates with pi the probability for the 

realisation of state i , i = 1,2,…,W we have S=−kB ⟨ logρ⟩=−kB∑
i=1

W

pi log pi  .  

We recognize the Shannon entropy of the system.

 If pi=
1
W

 for i=1 ,W  we obtain S=−kB∑
i=1

W 1
W

log ( 1
W

)=kB logW  , 

S=kB logW     with  W   -the number of microstates corresponding to the same 

 

macrostate.
As we know, the Shannon entropy is maximal for an uniform probability distribution.
An ensemble of a system with N particles which can have states 1,2,…,s such that 
kj particles can have state j for j = 1,2,…,s in the same macrostate with

Page 7 of 10 159 of total 515  Gh.V.B. Introd. to...QFT 



 

∑
j=1

s

k j=N  has a number of W= N!
k 1! ...k s!

 microstates.  

The fact that for the N particles system the entropy must be a maximum at 
thermodynamical equilibrium (see Chap. Thermodynamics) can be derived as

N!
k1!... k s!

≤N!  the entropy kB logW  being maximal at k 1=k 2=...=k s=1  , s=N  .  

Hence a system who is interacting only with itself tends to evolve to 
thermodynamical equilibrium to a state of the highest probability among all possible
N! states, according to:

1
k1!... k s!

=
W (k1 , k2 , ... , k s)

N!
≤

W (1 ,1 ,... ,1)
N!

  for  k j∈{1 ,2 ,... , N } , j=1 , s   ,  

s∈{1 ,... , N }   ,   ∑
j=1

s

k j=N   . 

 

Consider now a system (for example a gas of molecular particles) with the 
Hamiltonian having the form

H (q , p)=H kin(p)+H pot(q)  , 
 where H kin  -kinetic energy and H pot  -potential energy are quadratic forms of 

p=(pi)i=1,h  and respective q=(qi)i=1 ,h   ,  H kin=∑
i=1

h pi
2

2m
 with 

m  -the mass of a molecular particle (if for a degree of freedom i  the pi  is an 
 angular momentum of rotation around onre of three molecular axes then m  in the 
pi

2

2m
 term will be replaced by the corresponding moment of inertia of the molecule). 

 

For a gas system with N particles we have h = s N where 
s = 3 degrees of freedom for each particle if we have a monoatomic gas,
s = 5 degrees of freedom for each particle if we have a biatomic gas (two additional 
degrees of freedom corresponding to rotations around two transversal to the 
molecule, orthogonal axes of rotation, the angular momentum of rotation around the 
axis along the molecule being neglected ),
s = 6 degrees of freedom for each particle for more complicated molecules.
We assume that in the expression of Hpot (q) each particle is involved with with f 
degrees of freedom and therefore Hpot (q) involves f N degrees of freedom. 

 We have 2 H kin=∑
i=1

s N

pi
∂ H
∂ pi

      (19)

2 H pot=∑
j=1

f N

qi( j)
∂ H
∂ qi( j)

     (20) 

 where (i( j)) j=1 , f N  are the degrees of freedom involved in H pot  which is a  

 

quadratic form if we consider elastic molecular interactions; for cristals formed by 
particles with 3 degrees of freedom we take f = 3 and for biatomic gases we consider 
only vibrations of atoms in the direction of molecular axis and so f = 1 .
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Obviously, as quadratic forms, Hkin and Hpot  must be considered positive strict definite 
in (pi)i=1 , s N   respective  (qi( j))j=1 , f N  .  
For the system prepared in a thermodynamical equilibrium macrostate with a 
thermostat at temperature T , without exchanging particles with the thermostat we 
will have a probability density given by 

ρ=ρ(q , p)= 1
Z

exp(− H (q , p)
kB T )   with  Z=∫exp (− H (q , p)

kB T )dh q dh p  .  

 Since H kin  is a strict positive definite quadratic form we have for i=1 , s N :

pi exp(− H
kB T )|pi=−∞

pi=∞

=0    , 

∂
∂ pi (pi exp (− H

kB T ))=exp (− H
kB T )− 1

kB T
pi

∂ H
∂ pi

exp(− H
kB T )

 and so with (19) we derive ⟨H kin⟩=∫ H kin ρdhq d h p=1
2

s N kB T  . 

 

 Since H pot  is strict positive definite we have for i∈{i( j)|j=1 , f N } : 

qi exp(− H
kB T )|qi=−∞

qi=∞

=0     , 

∂
∂ qi (qi exp (− H

kB T ))=exp(− H
kB T )− 1

kB T
qi

∂ H
∂ qi

exp(− H
kB T )   

 and so with (20) we derive ⟨H pot⟩=∫H potρ dh q dh p=1
2

f N kB T  . 

  

 Therefore we obtain U= s+ f
2

kB N T  and we have an amount of 1
2

kB T  energy 

for each degree of freedom in H kin  and for each degree of freedom involved in H pot .

 

For example if we neglect the interactions within the molecules we will have 

H kin=H (p)  , H pot=0  and U=3
2

N kB T  for monoatomic gases, 

U=5
2

N kB T  for biatomic gases, U=3 N kB T  for more general molecular gases. 
 

A classical system can be also considered as a thermodynamical system of N 
subsystems which are independent and are in states s∈S  , the state s  having an  
energy εs with a gs degeneracy (there are gs possibilities for a subsystem to be in state 
s with energy εs). 
Let Ns the number of subsystems in state s . Then the virtual statistical ensemble will 

 have W = N!
∏

s
N s!

∏
s

gs
N s  microstates which correspond to   the same macrostate 
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 having particle number N=∑
s

N s  and energy U=∑
s

εs N s  .  

The entropy for this state is therefore 
S=kB logW  and at thermodynamical equilibrium we must have 
S=max{S((N s)s)|∑

s
εs N s=U  , ∑

s
N s=N } . 

 

 Taking α ,β  additional variables as Lagrange coefficients we must have: 
d (log (N!)−∑

s
(log (N s!)−g s N s))+β((∑

s
N s)−N )+α((∑

s
εs N s)−U )    and so 

log ((N s−1)!)−log(N s!)+ log gs+β+αεs=0  

N s=g sexp (β+αεs)=
gs exp(αεs)

∑
s′

gs′ exp(β+αεs′)
N  

β=log N−log (∑
s

gs exp(αεs))  . 

 

At equilibrium we will have also
d S=kB∑

s

(−log N s+ log gs)d N s=−kB∑
s

(β+αεs)d N s=−kBβd N−kBαd U  .  

 Considering the relation d S= 1
T

d U−μ
T

d N    (see Chap. Thermodynamics) 

 we must take α=− 1
kB T

  ,  β= μ
kB T

   with T  -equilibrium temperature,

μ  -chemical potential and at equilibrium we have the energy levels occupation  

 numbers N s=gs exp(μ−εs

kB T )=gs

exp(− εs

kB T )
Z

N      with Z=∑
s

gs exp(− εs

kB T )  . 
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18. Dirac spinors. Quantization of a Dirac field
      Quantum electrodynamics. Fadeev-Popov method
      Fermi weak theory 
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                         Dirac spinors, Quantization of a Dirac field,
                                Quantum electrodynamics

As before we consider, by suitable choosing of length, time, electric charge units that
ℏ=1  (reduced Planck constant) , c=1  (speed of light in vacuum constant) , 

ε=1  (electrical permittivity of vacuum constant), μ=1  (magnetic permeability of 
  

vacuum constant) and the Minkowski space-time with metric signature(+, - , - , -)the 
 metric coefficients (ηαβ)α ,β=0 ,3=diag(1 ,−1 ,−1 ,−1)  , space-time coordinates 
 denoted usual by x=(xα)α=0,3=(t , x⃗)   . 

  

 The relativistic relation E2= p⃗2+m2        (1) which holds for a free particle with 
rest mass m  , momentum p⃗  and energy E  leads for the energy and momentum  

 operators i ∂
∂ t

 respective (−i ∂
∂ x j )

j=1 ,3

 to the Klein-Gordon equation 

(∂α∂
α+m2)ψ=0     (2) with ψ=ψ(t , x⃗)  .

 

In order to obtain a linear equation for some possible wave function from (2) we take 

the Ĥ=±√ ^⃗p2+m2  expression equivalent to (2) as Ĥ=α j p̂ j+α
0 m  where (αμ)μ=0 ,3

 is a set of coefficients satisfying αμαλ+αλαμ=2δμλ  for μ ,λ=0 ,3     (3).
 

The (3) relations are satisfied if we take
α0=γ0  , α j=γ0γ j  where γμ  , μ=0 ,3  are the  4×4  gamma matrices:  

γ0=(I 0
0 −I )   ,  γ j=( 0 σ j

−σ j 0 )  with σ j  , j=1,3  the Pauli matrices  

σ1=(0 1
1 0)   ,  σ2=(0 −i

i 0 )   ,  σ3=(1 0
0 −1)   . 

 

Therefore we can consider for the relativistic mass m particle the following Dirac 
equation in place of a Schroedinger equation :
(iγμ∂μ−m)ψ=0  ,since we have Ĥ=i∂0  , p̂ j=−i∂ j  , j=1,3   where ψ=ψ(t , x⃗) 
as we noticed in Chap. Representations of the rotation group and of the restricted 
Lorentz group and Chap. On the rotations group and the restricted Lorentz group, 
 must be a Dirac spinor field ψ=(ψα)α=0 ,3  describing a spin 1/2 , mass m particle, 
 so that if Λ=exp (ωαβ Jαβ)  with ωαβ=−ωβα∈ℝ  and Jαβ=−Jβα  the SO + (3 ,1)
generators , is a restricted Lorentz transformation of coordinates 

xα→x′α=Λαβ xβ  then the Dirac spinor ψ  transforms as ψ′=S (Λ)ψ  with 

 

S(Λ)=exp ((i /2)ωαβσ
αβ)   , σαβ= i

2
[ γα , γβ]  ,  Jγδ

αβ=−1
2
ϵαβεφϵεφδρη

γδ

J i j=−ϵi jk J k  , J 0 i=−J i 0=−K i  . 

ϵαβγδ  the signature of the permutation (α β γ δ
0 1 2 3)
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Hence we can have a mass m fermion moving in a central forces potential V = V (r) ,
r=‖⃗x‖ field Hamiltonian Ĥ=α0 m+α j p̂ j+V (r)           (4).    
As we know from Chap. Quantum statistical ensemble , for an observable that not 

depends explicitely on time, Â  , we have  
d ⟨ Â⟩t

d t
=−i⟨[ Â , Ĥ ]⟩t  and so the  

 measurements of  Â  are conserved in time if and only if Â  commutes with Ĥ
 considering Ĥ  given by (4) and taking the orbital angular momentum operator 
^⃗Ll=^⃗x×^⃗p  , with x⃗=(x , y , z)  considering [ p̂ j , x̂

k]=−i δ j k   , we will have:

[Ĥ , L̂l z ]=−i(α1 p̂ y−α2 p̂ x)=−1
2
[Ĥ ,i γ1γ2]  , 

[ Ĥ , L̂l y ]=−i(α3 p̂ x−α1 p̂z)=−1
2
[Ĥ ,i γ3γ1]  , 

[ Ĥ , L̂l x]=−i(α2 p̂ z−α3 p̂ y )=−1
2
[Ĥ ,i γ2γ3]

  

and taking ŝk=
1
4
ϵl jk σ

l j=1
2 (σk 0

0 σ k
)  we can consider a spin angular momentum 

operator ^⃗Ls=ℏ S⃗  (we restored the Planck constant by dimensional analysis), where

S⃗=1
2
(σ23 ,σ31 ,σ 12)  is the spin operator, such that the total angular momentum 

L⃗ j= L⃗l+ L⃗s  is a conserved in time quantity: [ ^⃗L j , Ĥ ]=0

 

The spin angular momentum L̂s z  has eigenvalues ±1
2
ℏ  . 

Under a z -axis rotation Λ=exp (iθJ 1 2)  a S z  eigenfunction ψ  with 1
2
σ1 2 ψ=1

2
ψ   

transforms like ψ→ψ′=S (Λ)ψ=exp (i θ
2
σ1 2)ψ=exp (i θ

2
)ψ  , so that a full 2π

 

rotation flips the sign of the spin eigenfunction.
 Given a versor n⃗  the spin along n⃗  is S⃗⋅⃗n    .
Further we have :
^⃗Ls

2=L̂s x
2 + L̂s y

2 + L̂s z
2 =3

4
ℏ2 I=s(s+1)ℏ2 I   , s=1

2
 is the spin quantum number. 

Taking spherical coordinates (x , y , z)=(r cos(θ), r sin (θ)cos(φ) , r sin(θ)sin(φ))
with θ∈(0 ,π)  , φ∈(0 ,2π)  we have 
1
ℏ2

^⃗Ll
2=− 1

sin2(θ)
∂2

∂φ2−
1

sin (θ)
∂
∂θ (sin (θ) ∂

∂θ )  the spherical functions operator 

 having eigenvalues l(l+1)  , l∈ℕ

  

 and 1
ℏ L̂l z=−i ∂

∂φ  having eigenvalues m=0 ,±1 , ... ,±l  for eigenfunctions  

the spherical functions
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Y l
m(θ ,φ)=Pl

|m|(cos (θ))exp (imφ)  where Pl
|m|  are the associated Legendre 

polynomials Pl
m (x)=(−1)m (1−x2)m/2 dm

d xm Pl
0(x)  , Pl

0  the Legendre polynomial 

 of degree l : Pl
0(x)= 1

2l l!
dl

d xl (x
2−1)l= 1

2l ∑
k=0

⌊ l
2 ⌋
(−1)k ( l

k)(2 l−2 k
l ) xl−2k   .

 

l is the orbital quantum number and m is the magnetic quantum number.
(Obviously we will not confuse the magnetic quantum number m which is an integer 
with the mass m of the particle which is a real positive number. )

For the free particle of mass m we have therefore the Dirac equation satisfied by the 
Dirac spinor field ψ=ψ(t , x⃗)  which describes the particle system: 
(i γμ∂μ−m)ψ=0    , ψ=(ψα)α=0 ,3  as a column vector            (5) 

 

Taking the Lagrangian density
 ℒ(ψ ,∂ψ)=ψ(i∂−m)ψ    (6) where ∂=γμ∂μ    , ψ=ψ + γ0  since ψα

                                                                                                                                         
are complex functions we can vary independently ψ  and ψ  in (6) to obtain the  
Euler-Lagrange equation of motion from 

dμ( ∂ℒ
∂(dμψ))−∂ℒ

∂ψ =0        ,      ∂μ(iψγμ)+m ψ=0  which upon hermitean  

conjugation and multiplication with γ0  gives the Dirac equation (5).  

 From the other variational equation dμ( δℒ
δ(∂μ ψ))−

δℒ
δψ =0  we obtain the Dirac   

equation (5) more directly.
 Although the Lagrangian density (6) treats asymmetrically ψ  and ψ  , integrating 
 by parts the action S=∫ℒ(ψ ,∂ψ)d4 x  , having ∂μ  act on ψ  and then average the 
 two forms of the Lagrangian, we can see that S  treats ψ  and ψ  symmetrically. 

 

Obviously, the relations (3) hold even if instead of the canonical gamma matrices we 
take any set (M γμ M−1)μ=0 ,3  with M∈M 4×4 (ℂ)  ,  det M≠0  . We notice also that  

 for any versor n⃗  we have (2 S⃗⋅⃗n)2=I  and so the spin along n⃗ can have only 

eigenvalues ±1
2

  .  

Considering the Lagrangian density (6) the free particle system is described by the 
Dirac spinor field operator function ψ̂=ψ̂(t , x⃗)  and the momentum density field  

operator function conjugate to ψ̂α  is π̂α=π̂α (t , x⃗)= δ ℒ̂
δ(∂0 ψα)

(t , x⃗)=i ψ̂α
+ ( t , x⃗)   .  

The canonical commutation between generalized coordinates observables and 
generalized momentum observables, considered for the discretization of the Dirac 
spinor field at two locations x respective x’ at the same moment in time t supposes a 

                         /                            /
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exchange of locations between virtual particles located at x and x’ and so the 
canonical commutation relation which would be
[ ψ̂α (t , x⃗) , π̂β(t , x⃗′)]=iδ3( x⃗− x⃗′)δαβ  ,in consideration of spin statistics for fermions 
 which reqiures anticommutation will lead to the anticommutation relation 
{ψ̂α (t , x⃗) , ψ̂β(t , x⃗′)}=δ3( x⃗−x⃗′)δαβ               (7), where {A , B}=A B+B A  is the 

 anticommutator of operators A  and B   . 

 

Plugging in equation (5) plane wave solutions
ψ(x)=u(p , s)exp(−i p x)  and ψ( x)=v (p , s)exp(i p x)  we obtain p0=√ p⃗2+m2  and 
(p−m)u(p , s)=0   ,  (p+m)v(p , s)=0    where  p=γμ pμ

u and v are 4-component Dirac spinors.

Taking u=(u1

u2
)   ,  v=(v 1

v 2
)   with  u j  , v j  two component parts of u  respective v  

 we obtain p0 u1−(σ1 p1+σ2 p2+σ3 p3)u2=m u1

                 (σ1 p1+σ 2 p2+σ 3 p3)u1− p0 u2=m u2  and since p0
2= p⃗2+m2  , 

  

the system (p−m)u(p , s)=0     (8)  has for a given p⃗  two linear independent   
                                                                                                                                         
solutions u(p ,±1)   . In the same way we find two linear independent solutions 
v (p ,±1)  for the system (p+m)v(p , s)=0        (9)

  

                                                                                                                                         
Under a restricted Lorentz transformation Λ , we have

x′=Λ x   ,  p=ΛT p′   ,  u′(p′ , s)=S(Λ)u(p , s)
u′u′=u+ S + γ0 S u=u + exp(−(i /2)ωαβσ

+αβ)γ0exp ((i /2)ωαβσ
αβ)u=

=u + γ0 S−1γ0 γ0 Su=uu  and similar v′v′=v v   . 

  

In the rest frame p=(m ,0 ,0 ,0)   (8) and (9) having the form (γ0−I)u=0  ; 

(γ0+I) v=0  and so imposing normalization conditions u u=1  , v v=−1
 

we obtain that in the rest frame we have :

u(p ,1)=(
1
0
0
0
)  , u(p ,−1)=(

0
1
0
0
)  , v(p ,1)=(

0
0
1
0
)  , v(p ,−1)=(

0
0
0
1
)  .

Lorentz invariance and basis independence tell us that in general we must have
u(p , s)u(p , s′)=δs s′  , v(p , s) v(p , s′)=−δs s′  , 

u(p , s)v(p , s′)=v (p, s′)v(p , s)=0
      (10)

Furthermore, by Lorentz variance it follows:

∑
s

uα (p, s)uβ(p , s)=( p+m
2 m )

αβ
    

  /                             /                                    /    

                      /

                                     /    

                               /               
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∑
s

vα (p , s)vβ(p , s)=( p−m
2 m )

αβ
    

The anticommutation relations (7) allow now a quantization of the field operator as

ψ̂α (x)=∫ d3 p⃗
(2π)3 /2(Ep/m)1/2∑

s
(b(p , s)uα(p , s)exp (−i p x)+

+d + (p , s)vα(p , s)exp (i p x))           (11)  where E p=√ p⃗2+m2  , p x=pμ xμ   , 

  

{b(p , s) , b+ (p′ , s′)}=δ3( p⃗− p⃗′)δs s′   ,  {d(p , s) , d + (p′ , s′)}=δ3( p⃗− p⃗′)
{b(p , s) , b(p′ , s′)}={d(p , s), d (p′ , s′)}={b(p , s) ,d (p′ , s′)}=0

b , d  ; b + , d +  are anihilation respective creation operators and depend on ( p⃗ , s)  .
Corresponding to the (6) Lagrangian density, we have a Hamiltonian density

H=π(t , x⃗)∂0ψ(t , x⃗)−ℒ (t , x⃗)=i ψγ0∂0 ψ−ℒ   and so the Hamiltonian is 

Ĥ=∫d3 x⃗(−i ψ̂γk ∂k ψ̂+m ψ̂ ψ̂)=∫d3 x⃗ i ψ̂+ ∂0 ψ̂(t , x⃗)=

∑
s ,s′
∫i d3 x⃗∫d3 p⃗ d3 p⃗′(u( p⃗ , s) γ0

Ep
1/2 b + ( p⃗ , s)exp(i p x)+

v( p⃗ , s)γ0

E p
1 /2 d ( p⃗ , s)exp(−i p x))

m
(2π)3 (−i)(Ep′

1/2 u( p⃗′ , s′)b( p⃗′ , s′)exp(−i p′ x)−E p′
1/2 v ( p⃗′ , s′)d + ( p⃗′ , s′)exp(i p′ x))

 

We have :
(γ0 p0+γ

k pk)v ( p⃗ , s)=−m v( p⃗ , s)
u(− p⃗ , s′)(γ0 p0−γk pk )=m u(− p⃗ , s′)   and so  

−m2 u(− p⃗ , s′)γ0 v( p⃗ , s)=u(− p⃗ , s′) (γ0 p0γ
0γ0 p0−γk pk γ

0γ0 p0+γ
0 p0 γ

0 γk pk−

−γk pk γ
0 γl pl) v( p⃗ , s)=m2u(− p⃗ , s′) γ0 v( p⃗ , s)   . 

  

Hence we will obtain 
u(− p⃗ , s′) γ0 v( p⃗ , s)=0  and by complex conjugation v ( p⃗ , s) γ0 u(− p⃗ , s′)=0 
and therefore the above expression for the Hamiltonian becomes
Ĥ=∑

s , s′
∫d3 p⃗ m (u( p⃗ , s)γ0 v( p⃗ , s′)b+ ( p⃗ , s)b( p⃗ , s′)−

−v( p⃗ , s) γ0 v ( p⃗ , s′)d( p⃗ , s)d + ( p⃗ , s′))   . 
 

Since u , v are Dirac spinors, it follows that under a restricted Lorentz coordinates 
transform (u( p⃗ , s) γμ u( p⃗ , s′))μ  and (v ( p⃗ , s) γμ v( p⃗ , s′))  transform like Lorentz  
four-vectors. (see Chap. On rotations group and restricted Lorentz group).
 Because in the rest frame, p⃗=0  , for the  normalized u  and v  if s≠s′ those Lorentz 
vectors vanish, it follows in particular that
if s≠s′  then u( p⃗ , s)γ0 u( p⃗ , s′)=v( p⃗ , s) γ0 v ( p⃗ , s′)=0

and also for s = s’ ,  having Λ∈SO + (3,1)  with Λ−T (m0⃗ )=(p0

p⃗ ) 
we will have 

                               /      
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(u( p⃗ , s) γμ u( p⃗ , s))μ=Λ (10⃗)  and so u( p⃗ , s)γ0u( p⃗ , s)=
p0

m
     and in the same way 

v( p⃗ , s)γ0 v( p⃗ , s)=
p0

m
  .

  

Thus, considering also the anticommutation relations it follows:
Ĥ=∫d3 p⃗∑

s
Ep(b

+ ( p⃗ , s)b( p⃗ , s)+d + ( p⃗ , s)d( p⃗ , s))−δ3(0)∫d3 p⃗∑
s

Ep      (12) 

b + ( p⃗ , s)  creates a particle and b( p⃗ , s)  anihilates a particle with momentum p⃗
 and spin index s∈{±1}

d + ( p⃗ , s)  creates an antiparticle and d( p⃗ , s)  anihilates an antiparticle with  
 momentum p⃗  and spin index s∈{±1}   . 

 

 If |0 ⟩  is the ground state of the system, then b + ( p⃗ , s)|0 ⟩  is an Ep+H0  energy 
 eigenstate of the momentum p⃗  spin index s  particle and d + ( p⃗ , s)|0 ⟩  is an 

E p+H 0  energy eigenstate of the momentum p⃗  spin index s  particle. 

 

 Since b+ ( p⃗ , s)b( p⃗ , s)=d + ( p⃗ , s)d( p⃗ , s)=0  , due to anticommutation we can   
have at most one particle and one antiparticle with the same momentum and spin.
 Also, anihilation supposes b( p⃗ , s)|0 ⟩=0  and d( p⃗ , s)|0 ⟩=0  for any p⃗  , s   .  
The first two terms in Hamiltonian expression (12) tell us that each particle and each 
antiparticle of a given momentum p⃗  and spin index s  has exactly the same   energy

Ep and since δ3(0⃗)= 1
(2π)3∫d3 x⃗= V

(2π)3  , restoring the Planck constant by  

dimensional analysis, the last term in (12) becomes

H 0=− 1
h3∫d3 x⃗ d3 p⃗∑

s
2(1

2
Ep)  which is the vacuum energy of −1

2
Ep  in each unit 

 size phase-space cell 1

h3 d3 x⃗ d3 p⃗  for each spin and for particle and antiparticle 
 

separately, precisely the vacuum energy we calculated in Chap. Feynman amplitudes 

and lattice gauge theory, the analog of the zero point  energy 1
2
ℏω  (with a minus  

sign) of the harmonic oscillator.

Because of the anticommutation relations involving b , b+ , d , d+ we have :
{ψ̂α (x) , ψ̂β( y)}=0   ,  {ψ̂α (x), ψ̂β( y)}=0
As we proved in Chap. Fermi’s golden rule , for large values of M>0 we can consider 
that the following relation, which we will further use, holds :
sin( τM )

τ ≈πδ(τ)   for any τ∈ℝ  , δ(τ)  the Dirac distribution function.  

Taking FM( τ)=
sin (τ M )

τ2  − 
M cos(τ M )

τ =M 2 f (τ M )  , f (τ)=sin (τ)
τ2 −

cos(τ)
τ   

Page 6 of 19 169 of total 515  Gh.V.B. Introd. to...QFT 



g(τ)=∫
0

τ

f (s)d s=−
sin( τ)

τ +1      , for φ∈C0
∞(ℝ)  we have : 

(FM ,φ)=∫ f ( τ)φ(τ)d τ=M∫ f (τ)φ( τ
M

)d τ=−∫g(τ M )M φ′(τ)d τ≈(πδ′ ,φ)  

 and therefore for large M we can consider that FM( τ)=πδ′( τ)   . 

  

 Taking ξ=x−y  , Q∈SO(3)  with (Q i j ξ j)i=(‖⃗ξ‖,0 ,0)  we obtain  

({ψ̂α , ψ̂β})α ,β=
1

(2π)3∫
d3 p⃗
2 Ep

((p+m)exp(−i pξ)+(p−m)exp (i pξ))=  

= 1
(2π)3

∫d3 p⃗(γ0 cos(p0ξ
0)cos( p⃗⋅⃗ξ)+

γk pk

p0

sin(p0ξ
0)sin ( p⃗⋅⃗ξ)−

−i
m
p0

sin (p0 ξ
0)cos ( p⃗⋅⃗ξ))

     (13)

If ξ=0  we have ({ψ̂α , ψ̂β})α ,β=γ0δ3( 0⃗)  with the Dirac distribution over ξ⃗  space. 
 We assume a momentum range ‖p⃗‖=r<M  and small negligible mass m ,  m→0  . 
In that conditions we have :

({ψ̂α , ψ̂β})α ,β=
1

(2π)3
∫d3 p⃗γ0cos (‖p⃗‖ξ0)= 2

(2π)2∫
0

∞

γ0 r2 cos(r ξ0)d r=

=− 1
2π γ0 d2

dξ02 δ(ξ
0)=− 1

2π γ0δ″(ξ0)    (14) , if ξ⃗=0  and if ξ⃗≠0  after some 

calculus  we obtain:

 

({ψ̂α , ψ̂β})α ,β=
1

(2π)2∫
0

∞

∫
−r‖ξ⃗‖

r‖⃗ξ‖

( r

‖ξ⃗‖
γ0 cos(r ξ0)cos(τ)+

+γk Q1k
1

‖⃗ξ‖2
sin (r ξ0) τsin (τ))d τ d r=

= 1
(2π)2

γ0+γk Q1k

‖⃗ξ‖
FM (‖ξ⃗‖−ξ0)+ 1

(2π)2

γ0−γ k Q1k

‖ξ⃗‖
FM (‖⃗ξ‖+ξ0)+

+ 1
(2π)2

γk Q1k
1

‖ξ⃗‖2

sin ((‖ξ⃗‖−ξ0)M )
‖ξ⃗‖−ξ0 − 1

(2π)2 γ
k Q1k

1

‖⃗ξ‖2

sin((‖⃗ξ‖+ξ0)M )
‖⃗ξ‖+ξ0

({ψ̂α , ψ̂β})α ,β=
1

4 π ( γ
0+γk Q1 k

‖⃗ξ‖
δ′(‖ξ⃗‖−ξ0)+

γ0−γ k Q1 k

‖ξ⃗‖
δ′(‖⃗ξ‖+ξ0)+

+
γ k Q1 k

‖ξ⃗‖2 δ(‖⃗ξ‖−ξ0)−
γ k Q1 k

‖ξ⃗‖2 δ(‖⃗ξ‖+ξ0))
    (14’)

Considering now a discretization of the Dirac spinor field in a lattice Λ (as in Chap. 
Feynman amplitudes and lattice gauge theory), since the path integration variables

 

                                                      /                            /   
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(ψ̂α(x))x∈Λ ,α  and (ψ̂α( x))x∈Λ ,α  are sets of independent anticommuting operators , 
we can apply Grassmann variables integration and as shown in Chap. Feynman 
amplitudes and lattice gauge theory we have:

Z (η ,η)=∫D ψD ψexp(i∫(ℒ (ψ,∂ψ)+ψη+ηψ)d4 x)=
=Z (η=0)exp(−i∫η(x)S(x− y)η( y)d4 x d4 y)  where the propagator is S=S(x)  

S(x)=∫ 1
(2π)4 exp (−i p x) p+m

p2−m2+iε
d4 p=   

=−i 1
(2π)3∫

1
2 Ep

(θ( x0)(p+m)exp(−i p x)−θ(−x0)(p−m)exp(i p x))d3 p⃗    

with Ep=p0=√ p⃗2+m2   ,  Z (η=0)=C det (i∂−m)=C exp(2 tr log(∂2+m2))  

where C is a normalization constant and θ is the Heaviside function.

Following Chap. Electromagnetic four-potential . Electromagnetic tensor. Lagrangian 
of electromagnetism. Energy-momentum tensor of electromagnetic field, the photon 
particle system can be described by a four-vector  boson field (Aμ)μ=(Aμ(t , x⃗))μ    
with a Lagrangian density

ℒ(A ,∂ A)=− 1
4

Fμν Fμν+Jμ Aμ  where Fμν=∂μ Aν−∂ν Aμ  are the electromagnetic 

 tensor coefficients and (Jμ)μ  is the conserved current density of sources 
Jμ=Jμ(t , x⃗)∈ℝ  , ∂μ Jμ=0  , Aμ=Aμ( t , x⃗)∈ℝ  , μ=0,3

 

We will give now to the photon a hypothetical small mass M so that the Lagrangian 
density becomes that of a massive vector meson :

ℒ=− 1
4

Fμ ν Fμν+ 1
2

M2 Aμ Aμ+Jμ Aμ

and further for the photon, in physical calculations, we will calculate the outcomes 
setting where it is possible M→0   .

 

Integrating by parts , considering that the field becomes small when space-time 
coordinates go toward infinity we obtain an action

S(A)=∫d4 x ℒ=∫d4 x (12 Aμ((∂
2+M 2)ημ ν−∂μ∂ν) Aν+Jμ Aμ)   .

The massive boson propagator (Dμν
bos(x))μ ,ν  satisfies 

((∂2+M 2)ημ ν−∂μ∂ν)Dνλ
bos=δμλ δ

4(x)          and so we find 

Dν λ
bos(x)=∫ 1

(2π)4 Dνλ
bos(k)exp(i k x)d4 k     where 

Dνλ
bos(k)=(−ην λ+

kνkλ

M 2 ) 1

k2−M2+i ε
  with ε>0   ,  ε→0

 

                                           /                

                                     
                                    /                                       /             
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As in Chap. Quantum field theory. Path integral formalism… and Feynman 
amplitudes and lattice gauge theory we obtain 
Z(J )=∫D A exp (i S(A))=C exp(i W (J))   where C=Z (J=0)  and 

W (J )=− 1
2
∫ Jμ(x)Dμ ν

bos(x− y)J ν( y)d4 x d4 y=

=− 1
2
∫ 1

(2π)4 Jμ∗ (k)Dμν
bos(k )Jν(k)d4 k    with 

  

J (k)=∫ J (x)exp(−i k x)d4 x     , J ( x)=∫ 1
(2π)4 J (k)exp(i k x)d4 k   .  

Since current conservation ∂μ Jμ(x)=0  gets translated into momentum space as 
kμ Jμ(k)=0, we can throw away the kμ kν  term from the photon propagator and so

 

W (J)=1
2
∫ d4 k

(2π)4 Jμ∗ (k) 1

k 2−M2+iε
Jμ(k)   . 

Considering two lumps of charges q1 respective q2 located at x⃗1  respective x⃗2    we 

must have J=q1(δ
3( x⃗−x⃗1) ,0 ,0 ,0)+q2(δ

3( x⃗−x⃗2) ,0 ,0 ,0)=J 1+J 2   and if we  
identify E as the potential energy of the two static sources q1 , q2 system, we have
Z(J )=⟨0|exp(−i Ĥ T )|0⟩=exp (−i E T )=Z (J=0)exp (iW (J))   

W (J )=1
2
∫∫d x0 d y0∫

d k 0

2π
exp(i k 0(x

0− y0))(∫ d3 k⃗
(2π)3 (q1

2+q2
2)(1− k 0

2

M2 )  

1

k 2−M 2+iε
+∫ d3 k⃗

(2π)3 2 q1q2(1− k 0
2

M2 ) 1

k2−M2+i ε
exp (i k⃗ ( x⃗1−x⃗2)))=

=−E0(q1 ,q2)T+q1 q2∫d x0∫ d3 k⃗

(2π)3
exp (i k⃗ r⃗)

−k⃗ 2−M2+iε
  with r⃗= x⃗1−x⃗2  , ∫d x0=T  . 

  

Therefore, to addition with a constant not depending on sources locations the 
potential energy between the two static sources is 

E=q1 q2∫
d3 k⃗
(2π)3

exp (i k⃗ r⃗ )
k⃗ 2+M2 =q1 q2∫

0

∞ 1
(2π)2 dρ∫

0

π
ρ2 sin(θ) exp(iρr cos(θ))

ρ2+M2 dθ=  

= 1

4π2 q1 q2∫
0

∞

dρ ρ2

ρ2+M 2∫
−1

1

exp (iρr t)d t=− 1

4 π2

q1 q2

r
∫
−∞

∞ ρ
ρ2+M2 exp (iρr)dρ

  

Since r=‖⃗r‖ is positive, we can close the contour in the upper half plane and  

pick up the pole at i M  obtaining E=
q1 q2

4 πr
exp (−M r)   . The force is −∇ r⃗ E

 

and we can see that if q1 q2 > 0 , the force is repelling. 

For M = 0 we recover as expected the Coulomb potential V (r)=−
q1q2

4π r
 of  the 

electrostatic field.
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To study the spin degrees of freedom of the massive vector meson we should 
evidently sit in the rest frame of the particle and study how its states respond to 
rotation.
In the rest frame we have a reference momentum q = M (1, 0, 0, 0) and the Lorentz 
transformations that leave q invariant form obciously the SO(3) rotations group.
(Aμ)μ transforming as a vector, we have a spin j=1 irreducible SO(3) representation 
with 2j+1=3 degrees of freedom (considering gauge invariance, we take ∂μ Aμ=0). 
In the rest frame the three polarization vectors are εμ

a=(0 ,(δk a)k=1 ,3)  , a=1,3  . 
 Boosting and rotating those vectors from q  four-momentum to the k=(kμ)μ=0 ,3   

four-momentum, we obtain the polarization vectors (εμ
a (k ,a))μ  , a=1 ,3  and the  

corresponding expressions for the Âμ(t , x⃗)  field operator functions as in  Chap. 
Feynman amplitudes and lattice gauge theory.
But if the particle is massless (M = 0) , the best we can do is to transform the 
particle’s four-momentum to the reference momentum (qμ)μ = ω(1, 0, 0, 1) . The 
Lorentz transformations that leave q invariant are obviously rotations around the third 
axis.
Let ψ a momentum eigenstate of the particle in the reference frame with z-axis in the 
direction of motion and R=R(φ , ez)  , e z=(0,0 ,1)  the φ  angle rotation around the  
third axis (notation as in Chap. Representations of the rotation group and of the 
restricted Lorentz group) and U = U ( R ) the spin 1 representation of SO(3) acting on 
the ψ space V. We have  obviously U (R)−1=U (R)+   . The (R(φ ,e z))φ∈ℝ  form the  

SO(2) group and since ^⃗p  must commute with U (R)  it follows  
p̂3 U (R)|ψ ⟩=ωU (R)|ψ ⟩  , p̂2 U (R)|ψ ⟩= p̂1U (R)|ψ ⟩=0   . 

 Therefore U (R)(V )=V  and spin 1 representations for a mass zero particle must 
 

leave V invariant and are representations of SO(2).
The only representations of SO(2) that are not spin 0 representations and are 
irreducible spin 1 representations are equivalent to 
U ± (R(φ , e z))=exp(±iφ)  with V =ℂ  , dimℝ V=2  or 

U ± (R(φ , ez))=exp(φ( 0 ±1
∓1 0 ))    , V =ℝ2

  

( Indeed , if −i J=lim
φ→0

∂U (R)
∂φ (φ , e z)  it follows U (R)=exp(−iφ J )  , J=J +  .

 If J  has eigenvalue λ  for eigenvector u  , we have that 
U (R)({μu|μ∈ℂ})⊆{μ u|μ∈ℂ} (see Chap. ... Spin representations) . 

  

Thus J must have one single eigenvector and λ = +/- 1 for U to be irreducible spin 1 
representation. Moreover , U is equivalent with a real space representation with 
dimension 2.
Hence the photon has as expected (see Chap. Quantization of an electromagnetic 
field) two degrees of freedom, the polarization directions which by fixing the gauge 
can be taken, for a four momentum (ω, 0, 0, k) , |k| = ω , normal to propagation 
direction as 
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(εμ
1)μ=(0 ,1 , 0 ,0)   ,  (εμ

2 )μ=(0 ,0 ,1 ,0)  and we have the expressions for the Âμ(t , x⃗) 
field operator functions for massless gauge bosons as in Chap. Feynman amplitudes 
and lattice gauge theory.

The fermion field interacting with an electromagnetic field theory (Q.E.D. , Quantum 
electrodynamics) involves  Dirac spinor fields ψ=ψ(t , x⃗)   gauged with a photon 
field  having a hypothetical mass M→0  , (Aμ)μ=(Aμ(t , x⃗))μ , replacing in the Dirac 
Lagrangian density  the ∂μ  operator with ∂μ+i e Aμ(t , x⃗)  as in the Lagrangian of a  
charged particle in an electromagnetic field, where e = - |e| for the electron  is the 
particle’s electric charge.
The Q.E.D. theory Lagrangian density is 

ℒ(ψ ,∂ψ , A ,∂ A)=− 1
4

Fμν Fμ ν+ 1
2

M2 Aμ Aμ+iψγμ(∂μ+i e Aμ)ψ−m ψψ+

+ηψ+ψη−Jμ Aμ  where η=η(t , x⃗)  is a Dirac spinor field as a fermion source and 
(Jμ=Jμ(t , x⃗))μ  is a Lorentz four-vector field as a external photon field source. 

 

For this theory we can show, as we did in Chap. Feynman amplitudes and lattice 
gauge theory, that in computing the amplitudes for various processes which occur in 
the theory, the kμ kν / M2 term in the massive boson propagator disappears, so we can 
make the hypothetical mass of the photon equal to zero.
Evidently we can use the Feynman rules listed in Chap. Feynman amplitudes and 
lattice gauge theory and compute the amplitudes for processes which are possible 
according to the theory.
If we take the boson Lagrangian density for directly a mass of the boson equal to 
zero, in a discretization of the A field we have the action

S(A)=∫ℒ d4 x=∫d4 x(12 Aμ(η
μ ν∂2−∂μ∂ν) Aν−Jμ Aμ)=− 1

2
AT K A+A⋅J  with 

A=(Aμ(x))x∈Λ  , μ=0 ,3  , J=(Jμ(x))x∈Λ  , μ=0 ,3  ; Λ  the space-time discretization grid. 

 

The formal matrix K is proportional to the discretization of the differential operator
(Qμν)μ ,ν=(ημ ν∂2−∂μ∂ν)μ ,ν  . For any Φ=Φ(t , x⃗)∈ℝ  , taking gμ=∂μΦ  , 

g=(gμ(x))x∈Λ ,μ=0 ,3  we have Qμ νgν=(∂λ∂
λ∂μ−∂μ∂ν∂ν)Φ=0  and so formally  

K g=0   . Thus, since we can take g≠0  it follows that K  has no inverse K−1   
 which could be taken as the boson propagator. 

 

We learned that we must impose an additional constraint on the gauge potential
(Aμ)μ , procedure known as “fixing the gauge”, to solve Maxwell’s equation
∂μ Fμν=Jν  (see Chap. Electromagnetic four-potential).  
Hence to find a propagator for the massless boson we will use the Fadeev-Popov 
method as follows.
Suppose we have to do the path integral
I=∫D A exp(i S (A))  and under the transformation A→Ag  we have S (A)=S (Ag)
 and D A=D Ag  so that the transformations g  form a group G
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 having (Ag)g′=Agg ′  for any g, g′∈G  (the G  operation in multiplicative notation) .
We would like to write the path integral I in the form
I=(∫D g )J  with J  an integral independent of g . D g is the invariant measure over 
the group of transformations G and ∫D g  is the volume of the group.  

( for example if G  is the plane rotations group and S(x , y)=S(√x2+ y2)=S(r)  

 we have I=∫d x d y exp(i S(x , y))=(∫
0

2π

dθ) J  with J=∫d r exp(i S (r))   )
 

 First we write 1=Δ(A)∫D gδ( f (Ag))   .  Here f is some function of our choice and 
Δ (A) , known as the Fadeev-Popov determinant depends on f.
 Notice that (Δ (Ag′))

−1=∫D gδ( f (Ag′g))=∫D g″δ( f (Ag″))=(Δ (A))−1  
 where g″=g′ g  and we used D g″=D g   . 
In other words we showed that Δ(A)=Δ(Ag)  .

 

Therefore we have the (15) relation :
I=∫D A exp(i S (A))=∫D A exp(i S(A))Δ (A)∫D gδ(f (Ag))=

=∫D g∫D A exp (i S(A))Δ (A)δ( f (Ag))=∫D g∫D A exp(i S (A))Δ(A)δ( f (A))
 

where in the last identity we changed A  to Ag−1  and used the invariance of  

D A  , S(A)  and Δ(A)  under A→Ag−1   .   

We apply the Fadeev-Popov method to electromagnetism. The transformation leaving 
the action invariant is Aμ→Aμ−∂μΦ  so g  is denoted   in the present context by Φ.
 We choose f (A)=∂ A−σ  where σ=σ(x)  . We calculate 
(Δ (A))−1=∫D gδ(f (Ag))=∫DΦδ(∂ A−∂2Φ−σ)           (16)

 

Next we notice that in (15) Δ(A) appears multiplied with δ (f(A)) and so in (16) we 
can set  effectively f (A)=∂ A−σ  equal to zero. Thus we have  

I=(∫DΦδ(∂2Φ))−1 (∫DΦ )∫D A exp(i S(A))δ(∂ A−σ)=
=C∫D A exp (i S(A))δ(∂ A−σ)   with C  a constant not depending on A  , σ   . 

 

The integral I we started with is still independent of f in spite of its appearance in 
(15), and in particular I is independent of σ and so we can integrate I with an arbitrary 

functional of σ  , in particular exp (− i
2ξ∫d4 x(σ (x))2)  obtaining an independent 

of A  constant ~C  such that 

I=~C∫Dσ exp(− i
2ξ∫d4(σ(x))2)∫D A exp (i S(A))δ(∂ A−σ)=

=~C∫D A exp (i S(A)− i
2ξ∫d4 x (∂ A)2)

 

Thus S (A) can be effectively replaced by
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Seff (A)=∫d4 x(1
2

Aμ(η
μν∂2−(1−1

ξ )∂μ∂ν)Aν−Jμ Aμ)  and Qμ ν  by 

Qeff
μν=ημν∂2−(1−1

ξ )∂μ∂ν  which does have an inverse whose Fourier transform is 

Dν λ
bos(k)=(−ηνλ+(1−ξ) kνkλ

k2 ) 1

k2  . 

 

Hence the photon propagator can be chosen to be

Dνλ
bos(x− y)=∫ d4 k

(2π)4 (−ην λ+(1−ξ) 1

k2+iε) 1

k2+iε
exp(i k (x− y)) 

and the effective photon Lagrangian density can be 

ℒ eff=− 1
4

Fμν Fμ ν− 1
2ξ

(∂μ Aμ)
2−Jμ Aμ   . 

ξ is an arbitrary gauge fixing constant. Taking ξ = 1 we obtain the propagator without 
kμ kν/k

2  term, the same as in disposing of the kμ kν/M
2  term for a hypothetical mass  

of the photon, which we can consider as mentioned above. This is the 
Feynman-’t Hooft gauge. 
 The Lorentz gauge for which ∂μ Aμ=0  is equivalent to ξ→0   .  

 For a gauged Lagrangian density ℒ((ψα ,∂ψα)α ,(Aa ,∂ Aa)a)  involving fermion 
 fields (ψ ,∂ψ)  and gauge bosons (A ,∂ A) , as in Chap. Feynman amplitudes and 
 lattice gauge theory, the passing from a exponential expansion term factor 
ψ(x1) γ

μ Aμ(x 1)ψ(x1)ψ(x2) γ
ν Aν( x2)ψ(x2)...γ

λ Aλ(x r)ψ(xr)   (17) corresponding 

  

in the path integral during the calculation of a process amplitude , to the respective 
closed fermion lines cycle of the Feynman diagram amplitude factor 
 tr (S(xr−x1) γ

μ S(x1−x2)γ
ν ...S (xr−1−x r) γ

λ)  (where S  is the fermion propagator) 
supposes commuting (17) to ψ(xr)ψ(x1) γ

μ Aμ(x1)...γ
λ Aλ( xr)  (we have suppressed 

 

the fermion and boson type indices and Dirac spinor indices).
To consider a proper cycle, the x1 , x2 ,…, xr must have distinct values of 
x1

0 , x2
0 ,…, xr  (integration over (x j) j=1 , r  variables by excluding (x j

0≈xk
0  , j≠k)  )  . 

Having the relations (14) and (14’) when we neglect the fermion masses, since we 
can always choose a discretization lattice Λ with time spacing over spatial spacing 
lattice  constants not a square root of a rational number so that on the lattice we have
 ‖ξ⃗‖≠±ξ0  for any x , y∈Λ  , ξ=x− y  , it follows that we can consider that 
ψ̂α(xr)  anticommutes with any of the ψβ(x j)  , ψ̂δ(x j)  , j=1 , r−1  , α ,β ,δ=0,3  . 

  

  When we try to anticommute  ψ̂α(x r)  with ψ̂β(xr)  we remain with a factor 

ψ(x1) γ
μ Aμ(x1) ...ψ(xr−1)δ

3(0⃗) γαβ
λ Aλ(xr)γβα

0   . 
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 The factor γαβ
λ Aλ(xr)γβα

0  is multiplied with the coupling boson field Aμ( y) γμ   
and the path integration formula through differentiation over source field (Wick 
contraction process) leads to a term with a factor 

γμ∫ γαβ
λ γβα

0 Dλμ
bos(xr−y)d4 xr=4∫ γμ D0μ

bos(xr− y)d4 xr=

=− 4
(2π)4∫∫(η0μ−

p0 pμ

M2 )γμ exp(i p( xr− y))
p2−M2+iε

d4 xr d 4 p=4∫ γ0

M2 d4 p  
 

which is infinite. We choose to ignore the infinite term as a fermion vacuum 
contribution (the fermion and antifermion fields fluctuating indefinitely with any 
momentum from the lose boson at xr) and anticommute ψ̂(xr)  with ψ̂(x r)  thus  
obtaining the (-) minus sign rule for closed fermion cycles in the Feynman diagram.
(see Chap. Feynman amplitudes and lattice gauge theory)

Consider now the Fermi theory of weak interaction in a simplified form, with 
Lagrangian density
ℒ=ψ(i γμ∂μ−m)ψ+G(ψψ)2         (18) where G  is the Fermi coupling constant.   
The two fermions scattering into two fermions process at order 1 in G approximation 
corresponds to the Feynman diagram in fig.1 below 

                      p              r

                q                    h

                          fig.1

and to the Feynman amplitude
A0=(2π)4 M0δ

4(p+q−r−h)  , 

M 0=iG ∑
s1 , s 2 , s 3 , s 4

(uβ(r , s1)uβ(p, s2)uα(h , s3)uα(q , s4)+

+uβ(r , s1)uβ(q , s2)uα(h , s3)uα(p , s4))

  

The order 2 in G approximation adds the Feynman diagrams in fig.2 (a) , fig.2 (b) 
and the Feynman amplitude
A1=(2π)4 M1δ

4(p+q−r−h)  ,  
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A1=(iG)2∫( ∑
s1 , s2 , s 3 , s 4 (u(r , s1)

i(l+m)
l2−m2+iε

u(p , s2))(u(h, s3)
i(k+m)

k2−m2+iε
u(q , s4))+    

+(u(r , s1)
i(l+m)

l2−m2+iε
u(q , s2))(u(h , s3)

i(k+m)
k2−m2+iε

u(p , s4)))δ4(p+q−l−k)    

δ4(r+h−l−k )d4 k d4l  .  
We notice that without a cutoff for the four-momentum space integration , 

‖k‖4<Λ  we have M 1=∞  . Integrating only on the cutoff we obtain 

A=A0+A1=(2π)4 M δ4(p+q−r−h)  with M=M0+M1∼G+G2Λ2  and the theory 
 

is therefore nonrenormalizable. When the allowed energies in the scattering process 
reach scale Λ ~ (1 / G)1/2 the second term M1 becomes prevalent and the amplitude 
can reach order unity and some new physics must take over, just because the cross 
section is going to violate the unitarity bound from basic quantum mechanics.

                                                                                       r
                      h                                                p
       p                                                                                              k
                                l

                    k                                                                           l
                                            r                                                                          h

                                q                                                                           q

                             fig.2 (a)                                                                    fig.2 (b)

Schematically, consider a theory of a vector boson of mass M coupled to a fermion 
field via a dimensionless coupling constant g :

ℒ=ψ(i γμ∂μ−m)ψ−1
4

Fμν Fμ ν+ 1
2

M2 Aμ Aμ+g Aμψγμψ             (19) 

The Feynman diagram in fig.3 generates an amplitude

−(i g)2(uγμ u) i
k 2−M 2+iε

(u γμu)  which when the momentum transfer k  is much 

 less than M  becomes i(g2/M2)(u γμ u)(u γμu)  , but this is just as if the fermions 

 

are interacting via a Fermi theory with Lagrangian density of the form
ℒ=ψ(i γμ∂μ−m)ψ+G(ψ γμψ)(ψ γμψ)    (20) with G=g2/M 2   

                /                                  /                   

                                              /                                       /
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              h                                                    r

                                              k

                    p                                            q

                                    fig.3
If we blithely calculate with the low energy effective theory (20) it cries out that it is 
going to fail , since the order G2 amplitude is divergent.
At the energy scale (1 / G)1/2 = M /g the vector boson is produced and new physics 
appears.

Considering in the (19) theory the k four-momentum propagation order 0 respective 
order 2 in g Feynman diagrams fig.4 and fig.5, for source Dirac spinor fields
η=η(t , x⃗)  , the corresponding amplitude of second order  in g  approximation for  
the propagation, in a similar way as in Chap. Quantum field theory. Path integral 
formalism, will be :

A=A0+A2  , A0=Z (η=0)(− i
(2π)4 η(k )D

fer(k )η(k))d4 k

A2=Z (η=0)(∫− g2

(2π)8
η(k )D fer(k )γμ Dfer (k+r) γλ Dfer (k)Dμλ

bos(r)η(k )d4 r)d4 k

 

 where η(k)=∫η( x)exp(i k x)d4 x  and Dfer ,Dbos  are the fermion respective the  
boson propagator.

                                                                                            r

                       k                                               k                   k+r                    k

                        fig.4                                                                 fig.5

As we know , we have

( k+m
2 m )

αβ
=uα(k)uβ(k)   ,  ( k+r+m

2m )
αβ
=uα(k+r)uβ(k+r)    /                                    /   /                            
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u(k)k=mu(k)   ,  (k+r)u(k+r)=mu(k+r)   
and so we derive
(k+m) γμ rμ(k+r+m)=0  .  

 Therefore we can dispose of the 
rμ rλ

M 2  term in the boson propagator 

Dμλ
bos(r)=(−ημλ+

rμ rλ

M 2 ) 1

r2−M2+i ε
 when we calculate A2  . 

 

Since even when integrating on a cutoff for the r four-momentum the whole 
amplitude A must be finite for a k four-momentum particle on mass shell (that is
|k 2−m2|<δ  , δ→0  ) if we set the fermion source to produce or remove virtual 
 particles  with k  four-momentum on mass shell, we must have 

 

η(k)=−(k−m)ψ(k )  where ψ(k)=∫ψ(x)exp(i k x)d4 x  , ψ  is a Dirac spinor .  
The same result can be obtained by Euler-Lagrange equations from variation upon
δ ψ  in the action S=∫(ψ(i γμ∂μ−m)ψ+ηψ+ψη)d4 x  which are  

 i γμ∂μ ψ(x)−m ψ(x)=−η(x)     , leading to (γμ kμ−m)ψ(k)=−η(k)  .  

Hence with k momentum particles on mass shell, we have:

i A0=Z (η=0) 1
(2π)4 ψ(k)(k−m)ψ(k)d4 k   

i A2=Z(η=0) 1
(2π)8 g2ψ(k)(∫d4 r γμ k+r+m

(k+r)2−m2+iε
1

r2−M 2+iε
γμ)ψ(k)d4 k   

The integral for A2 is divergent and therefore we will set for integration over r a 
cutoff Λ so that we have :

J (k ,Λ)=∫Λ k+r+m
(k+r)2−m2+i ε

1
r2−M2+iε

d4 r=  

=∫
0

1

∫Λ k+r+m

((r+α k)2−α(α−1)k 2−(1−α)M2−αm2+iε)2 d4 r d α=  

=∫
0

1

∫
B4(0 ,Λ)

α k+m

(q2−α(α−1)k 2−α M2−(1−α)m2+i ε)2 d4 q d α    

 where BΛ={(α ,r)∈(0 ,1)×ℝ4|r∈B4(αk ,Λ)} , B4(z ,Λ)={q∈ℝ4|‖q−z‖4<Λ}  
 with ‖ . ‖4  the euclidean norm of ℝ4  determines the Λ  cutoff. 

 

We proved in the Appendix to Chap.   Quantum field theory.    Path integral 
formalism …  that 

 

      /                   /   /       
 

 /               /   /    

 

             /     

 

                                     /         

                                                          /   /           

                        /   /         

                                      /   /   

                                         /               
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Q(Λ ,μ)= ∫
‖q‖4<Λ

d4 q

(q2−m2+iε)2=L+H log (
μ2−iε
Λ2 )+O(

μ2

Λ2 )  with  L, H   

 independent constants. 

 

Considering the relation that determines A0 , for the effective, renormalized by  
second order in g quantum fluctuations, mass mP  we must require, setting the fermion 
source field to produce or remove virtual particles on effective mass shell (that is 
|k 2−mP

2|<δ   ,  δ→0   ,  η(k)∝−(k−mP)ψ(k)  ) that :

 i A∝ψ(k)(k−mP)ψ(k)  so that we have a constant C  such that  
after some calculus we obtain:
C (k−mP)=k−m+A(k2 ,Λ)k−m B(k 2 ,Λ)   where 

A (k 2,Λ)=−2 i g2

(2π)4∫
0

1

α (L+H log (αM2+(1−α)m2+α(α−1)k2−iε
Λ2 ))d α    

B(k 2 ,Λ)=−4 i g2

(2π)4∫
0

1 (L+H log(αM 2+(1−α)m2+α(α−1)k2−iε
Λ2 ))dα  .   

 It follows mP=
1+B(k 2 ,Λ)
1+A (k2 ,Λ)

m   .  The mass squared correction by quantum 

fluctuations for fermions has therefore a superficial degree of divergence in Λ equal 
to zero (it is bounded in Λ), while for bosons, as explained in Chap. Quantum field 
theory… Theory renormalization, it has a superficial degree of divergence equal to 2. 
This so called Weisskopf phenomenon can be understood heuristically in terms of 
quantum statistics. The “bad” behaviour of bosons has to do with their 
gregariousness. A fermion would push away the virtual fermions fluctuating in the 
vacuum thus creating a cavity in the vacuum charge distribution surrounding it. A 
boson does the opposite.

In the Fermi weak theory with the (18) Lagrangian density, considering a Feynman 
diagram with FE external legs , FI internal lines, V interaction vertices, L loops we 
compute the amplitude by reducing it to the form
(2π)4M δ4(∑

i∈ A
k i−∑

i∈B
k i)  with (k i)i∈ A  incoming four-momenta, (ki)i∈B  outgoing  

four-momenta. 

 We have for each loop a ∫d4 k  and for each internal line a k+m

k 2−m2+iε
   bringing

the powers of momentum down by 1. Hence the superficial degree of divergence is
D=4 L−F I   . The diagram graph brings the relations :  

                                              /   
 

                /          
 

    /            /                     /         

                                                                                         /    
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L=F I−(V−1)    ,   4 V=FE+2 F I  and so  D=4−3
2

FE+2V  .  

Compared to the corresponding equations for renormalizable theories (D = 4 – BE) 
derived in Chap. Quantum field theory… Theory renormalization, D now depends 
on V. Thus if we calculate fermion-fermion scattering (FE = 4) for example, the 
divergence gets worse and worse as we go to higher and higher order in the 
perturbation series. For any FE we would obtain divergent diagrams when V gets 
sufficiently large so we would have to include an unending stream of counterterms
(ψψ)3  , (ψψ)4  , ... , each with an arbitrary coupling constant to be determined  
by an experimental measurement for an effective field theory. The theory is therefore 
severely limited in predictive power.
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                            Fermion charge and conserved current
                  CPT transformations. Slow and fast electrons
                                   Majorana neutrino. Chirality

We have the Quantum electrodynamics Lagrangian density (see Chap. Dirac spinors 
… Quantum electrodynamics) :

ℒ=− 1
4

Fμν Fμ ν+ψ(i γμ(∂μ+i e Aμ)−m)ψ   .   

The Lagrangian density is invariant under a gauge transformation

ψ(x)→exp(iΛ(x))ψ(x)   ,  Aμ(x)→Aμ(x)−
1
e
∂μΛ(x)   where  Λ  is a real function 

 of x=(t , x⃗)   . 
  

(e is the fermion charge , m is the fermion mass, e = - | e |  for the electron charge . ) 
For Λ (x) = θ = constant , this invariance leads according to Noether theorem (see 
Chap. Lagrangian field theory . Noether theorem) to a conserved curent
Jμ=ψγμψ   with  ∂μ Jμ=0   and a probability density J 0=ψ+ ψ  so that we have  

 a time independent charge Q=∫ J 0(t , x⃗)d3 x⃗   . 
 ( since we suppose the vanishing of the field ψ=ψ(t , x⃗)  at large distances, 

‖⃗x‖>R  , R→∞  we will have d Q
d t

=−∫∂k J k (t , x⃗)d3 x⃗=− ∫
∂ B (0⃗ , R)

J k nk dσ ( x⃗)=0   ) 
 

In Chap. Dirac spinors … Quantum electrodynamics we have proved

ψ̂α( x)=∫ d3 p⃗

(2π)3 /2(Ep/m)
1/2∑

s

(uα( p⃗ , s)b( p⃗ , s)exp(−i p x)+

+vα ( p⃗ , s)d + ( p⃗ , s)exp(i p x))
 with {b( p⃗ , s) , b+ ( p⃗′ , s′)}={d ( p⃗ , s) , d + ( p⃗′ , s′)}=δs s′δ

3( p⃗− p⃗′)   , 
{b( p⃗ , s) , b( p⃗′ , s′)}={d ( p⃗ , s) , d( p⃗′ , s′)}={b( p⃗ , s) , d( p⃗′ , s′)}=

={b( p⃗ , s), d + ( p⃗′ , s′)}=0  , u(− p⃗ , s) γ0 v ( p⃗ , s′)=v( p⃗ , s)γ0 u(− p⃗ , s′)=0   , 

u( p⃗ , s) γ0u( p⃗ , s′)=v ( p⃗ , s) γ0 v ( p⃗ , s′)=δs s′

p0

m
  

   

and so after some calculus we obtain a charge operator 
Q̂=∫∑

s

(b + (p , s)b(p , s)+d(p , s)d+ (p , s))d3 p⃗=

=∫∑ (b + (p , s)b(p , s)−d + (p , s)d (p , s))d3 p⃗+Q0

  

 where Q0=
1

(2π)3
∫2 d3 x⃗ d3 p⃗  is the vacuum charge which turns out to be one 

 unit of charge for each phase-space unit-cell 
d3 x⃗ d3 p⃗

h3  and each spin index. 
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 We have (Q̂−Q0)b
+ ( p, s)|0 ⟩=b+ (p , s)|0 ⟩  , b(p , s)|0 ⟩=0  

                (Q̂−Q0)d
+ (p, s)|0 ⟩=−d + (p , s)|0 ⟩   ,  d(p , s)|0 ⟩=0  , 

  

 where |0 ⟩  is the ground state of the field theory and we notice that the operator 
b+ (p , s)  creates a particle with +1  units of charge, momentum p⃗ , p0= p⃗2+m2   
 and spin index s  and the operator d + (p , s)  creates the corresponding antiparticle 
 with −1  units of charge, momentum p⃗ , p0= p⃗2+m2  and spin index s  . 

 

For the electron the units of charge are conventionally the negative elementary charge
e = - | e | .
The Euler-Lagrange equations derived from the QED Lagrangian density lead to the 
Dirac equation in presence of an electromagnetic field of potential ( Aμ )μ :

iγμ(∂μ+ie Aμ)ψ=mψ    with ψ=ψ(t , x⃗)  the Dirac spinor field.  

 Taking ψc=γ
2ψ∗     with ψ∗  the complex conjugate field to ψ   , we find out that 

 the field  ψc   satisfies the equation iγμ(∂μ−i e Aμ)ψc=mψc   . 

 

 Noticing that γ2 γμγ2=γμ∗  we have that ψc  is a Dirac spinor field which satisfies 
 the Dirac equation in presence of the electromagnetic field for the opposite charge 
−e  representing therefore the antiparticle to the Dirac spinor ψ  particle charged e .

 

 We call the ψ→ψc=γ
2ψ∗   transformation the charge conjugation transformation 

denoted  C , associating the matrix C=γ2γ0  such that ψT=Cψc  , C2= I   . 
 

 We consider also the parity transformation P which corresponds to a coordinates 
transform (xμ)μ→( x′μ)μ=(x

0 ,−x⃗)   . 
 

 With ∂′μ= ∂
∂ x′μ

 we obtain (iγμ∂′μ−m) γ0ψ=0   if ψsatisfies the Dirac equation.  

Therefore under a parity transformation, the Dirac spinor ψ transforms like
ψ(x)→ψ′(x′)=ηγ0ψ(x)  where η  is an arbitrary phase factor which we can set 1.  
 Notice that under parity transformation, ψψ  transforms like a scalar, having 
ψ(x)ψ(x)=ψ′(x′)ψ′(x′)  while taking γ5=iγ0 γ1 γ2γ3  we have that ψγ5ψ   

 transforms like a pseudo-scalar with ψ(x) γ5ψ( x)=−ψ′(x′)γ5ψ′(x′)   . 

  

The time reversal transformation we consider T , corresponds to a coordinates 
 transform (xμ)μ→(x′

μ)μ=(−x0 , x⃗)  . 
 Take the Schroedinger equation i(∂ /∂ t)ψ( t)=Ĥ ψ(t )  ( for a spinless  
 non-relativistic particle we can take Ĥ=−(1 /2m)∇ 2+V ( x⃗)  ) and suppose that 
under T, t→t′=−t  the wave function transforms as ψ(t)→ψ′(t′)=T ψ(t )  
 where T  is some operator to be determined (up to some arbitrary phase factor η  ).

 

 Since Ĥ  does not involve time in any way and we want the Schroedinger  
equation preserved under time reversal , we must have :
i(∂/∂ t′)ψ′(t′)= Ĥ ψ′(t′)   ,  T−1 Ĥ=Ĥ T−1   ,  T−1(−i)T (∂/∂ t)ψ(t)=Ĥ ψ(t )   .  
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 We are forced to conclude that T−1(−i)T=i      (1)  
In quantum physics therefore flipping time means flipping  i  as well.
 Let T=U K  where K  complex conjugates everything to its right. Then (1) holds 
if U−1 iU=i  that is if U  is just an ordinary unitary operator that does nothing to i  .

 

Acting on a spinless particle  we must have T2=U K U K=U U ∗ K 2=+1  .  
Next consider a spin ½ non-relativistic particle . Since the spin is proportional to an 
angular momentum (spin angular momentum) we expect that by time reversal the 
spin up state becomes the spin down state. Hence we need a non-trivial matrix 

U=ησ2  to flip the spin: T (10)=U (10)=iη(01)  

 Thus acting on a spin 1
2

 particle we have T 2=ησ 2 K ησ2 K=−1  

( since ηη∗=1  and σ2=−σ2
∗  ). 

  

This leads to the fact that in a system with an odd number of electrons in an electric 
field each energy level is twofold degenerate. Since the sytem is time reversal 
invariant , ψ and T ψ have the same energy. Suppose they actually represent the same 
 state. Then T ψ=exp (iα)ψ  and so T 2ψ=T exp(iα)ψ=exp(−iα)T ψ=ψ≠−ψ  . 
 So ψ  and  T ψ  must represent two distinct states. 

 

 For the Dirac spinor field system we have Ĥ=−iγ0γk ∂k+γ
0 m  (with the usual  

 convention of greek indexes for indexing from 0  to 3  and latin indexes for 
 indexing from 1  to 3  ) and we want i(∂/∂ t′)ψ′(t′)=Ĥ ψ′(t′)  .

 

Once again this happens if T=U K  and T Ĥ=Ĥ T  that is K U−1 Ĥ U K= Ĥ    
 and so we require K U−1 γ0 U K=γ0   and  K U−1(iγ0γk)U K=iγ0 γk  so we have 

 to solve for U  such that U−1 γ0 U=γ0=γ0∗   ,  U−1 γk U=−γk∗   . 
  

γ2  being the only imaginary gamma matrix, we can take U=ηγ1γ3  with η   an 
 arbitrary phase factor and the time reversal transformation is given by 

ψ(x)→ψ′(x′)=ηγ1γ3 K ψ(x)  . 
 

Thus if we change a Dirac particle to its antiparticle (C transformation) and flip 
space-time (PT transformation) we obtain 
 something like ηγ5ψ  with γ5=iγ0 γ1 γ2γ3  and η  an arbitrary phase factor, 
γ5  appearing as the CPT transformation factor for a Dirac particle. 

 

We notice that acceleration transforms odd under PT and velocity transforms even 
under PT. Considering the Lorentz force expression we obtain that electric field  and 
magnetic induction field transform odd under PT and therefore the electromagnetic 
potential transforms even under PT. Thus we can easy verify that the Dirac equation
iγμ(∂μ+i e Aμ)ψ(x)−mψ(x)=0  is invariant under CPT transformation if we take 
e′=−e  the CPT conjugated charge. 
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The general theorem states that any local Lorentz invariant field theory must be 
invariant under CPT, the combined action of charge conjugation, parity and time 
reversal.
 Consider a Lorentz boost in a fixed direction z  , B(χ , ez)  , χ∈ℝ  , e z=(0,0 ,1)  
(see Chap. Representations of the rotation group and of the restricted Lorentz group)

 

This can be interpreted as a rotation of the time axis into the z axis with an imaginary 
rotation parameter:

( if    (z′t ′)=(coshχ sinh χ
sinh χ coshχ)(zt )   then  ( z′

i t′)=(cos (iχ) −sin(iχ)
sin(iχ) cos (iχ) )( z

i t)    )  
If this parameter were real, it would be possible for a 180° rotation to reverse the 
direction of time and of z . 
Reversing the direction of one axis is a reflection of space in any number of 
dimensions. If space has three dimensions it is equivalent to reflecting all the 
coordinates, because an additional rotation of 180° in the x-y plane could be included.
This defines a CPT transformation if we adopt the Feynman-Stueckelberg 
interpretation of antiparticles as the corresponding particles travelling backwards in 
time. This requires a slight analytic continuation which is well defined under the 
following assumptions:
           1. The theory is Lorentz invariant
           2. The vacuum is Lorentz invariant
           3. The energy is bounded below
When the above hold, quantum theory can be extended to a Euclidean theory , 
defined by translating all the operators to imaginary time using the Hamiltonian
(see also Chap. Feynman diagrams and lattice gauge theory).
The commutation relations of the Hamiltonian and the Lorentz generators guarantee 
that Lorentz invariance implies rotational invariance, so that any state can be rotated 
by 180°.
The implication of CPT is that a “mirror image” of our universe, with all objects 
having their positions reflected through an arbitrary point (corresponding to position 
inversion), all momenta reversed (corresponding to a time inversion) and with all 
matter replaced by antimatter (corresponding to charge inversion) would evolve 
under exactly our physical laws.

Suppose we want to study a slowly moving electron described by the Dirac spinor 
ψ=ψ(t , x⃗)  satisfying the Dirac equation (i γμ∂μ−m)ψ=0       (2)   

For ψ(p)=∫exp (i p x)ψ(x)d4 x  we have ψ(x)= 1
(2π)4

∫exp (−i p x)ψ(p)d4 p   

 and (p−m)ψ(p)=0         (2’) 
 ( where p=γμ pμ    )   

 

         /
 

              /           
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 We write ψ=(ϕχ )   with  ϕ , χ  two component fields.   

 Since for an electron at rest, p=(m ,0 ,0 ,0)  from (2') follows χ(p)=0  we expect 
 that for a slowly moving electron χ(p)  to be much smaller than ϕ(p)   . 

  

In contrast, for a fast moving electron, the momentum p is much larger than the mass 
m  and we can approximate (2') with  pψ(p)=0             (3)
 We see that if ψ(p)  is a solution of (3) then γ5ψ(p)  is asolution of (3).  
We can form two projection operators:

PL=
1
2
(I−γ5)   ,  PR=

1
2
(I+γ5)  ( since (γ5)2=I  we have PL

2=PL ,PR
2=PR , 

PL PR=PR PL=0   ) and we define ψL=PLψ   ,  ψR=PRψ        having  ψ=ψL+ψR  , 
ψL ,ψR  being linear independent , the left handed respective right handed spinor. 

  

We notice that if instead of the standard gamma matrices we use another set of 
 gamma matrices defined by the transformation (γμ)μ→(W γμW−1)μ  where W  is 
 some 4×4  matrix with an inverse, then (2) is satisfied if we take ψ→W ψ

 

 Taking W=(I − I
I I )  we obtain γk→γ k  , γ0→(0 I

I 0)   ,  γ5→(−I 0
0 I )  , 

ψ=(ϕχ )→(ϕ−χϕ+χ )=~ψ=W ψ=(~ϕ~χ)   ,  ψL→(
~ϕ
0)=~ψL   ,  ψR→(0~χ)=~ψR

 

 If ψ  is a Dirac spinor, ~ψ   is called a Weyl spinor and the corresponding  
transformed gamma matrices define the Weyl basis of gamma matrices.
In the Weyl basis , relation (3) becomes 

p0
~χ=−pkσk

~χ  , p0
~ϕ=pkσk

~ϕ    or in terms of the spin operator   

p0
~ψR=−2 p⃗⋅⃗S~ψR   ,  p0

~ψL=2 p⃗⋅⃗S~ψL  and since W  commutes with γk  we obtain 

p0ψR=−2 p⃗⋅⃗SψR   ,  p0ψL=2 p⃗⋅⃗SψL  and so because p0=√ p⃗2+m2>0  we have 

 

that the left handed spinor spins anticlockwise around the direction of motion 
 (having positive helicity : ⟨ p⃗⋅⃗S⟩>0 )   and the right handed spinor spins clockwise 
around the direction of motion  ( having negative helicity : ⟨ p⃗⋅⃗S ⟩<0  ).   

Since ψc transforms like a spinor under a Lorentz transformation, Lorentz invariance 
 allows not only the Dirac equation i∂ψ=mψ      but also the Majorana equation,   

 i∂ψ=mψc      (4)  
Complex conjugating and multiplying with γ2 the relation (4) leads to
i∂ψc=mψ     (5) and thus −∂2ψ=i∂(i∂)ψ=im∂ψc=m2ψ   so that m is indeed the 
mass of the particle associated with ψ  satisfying (4), known as the Majorana neutrino 
with Majorana mass m .
The Majorana equation can be obtained from the following (6) Lagrangian density 
 upon varying ψ  for the corresponding stationary action.   

 

                                                      /        

 

                                                    /     

   /            

  /                                                /    /            /            

Page 5 of 6 188 of total 515  Gh.V.B. Introd. to...QFT 



ℒ=ψ i∂ψ−1
2

m(ψT C ψ+ψC ψT)              (6) 

 where CT=γ0γ2=−C  and in (6) the (ψα)α  and (ψα)α  variables has to be treated  
as anticommuting Grassmann numbers as we learned in Chap. Dirac spinors…
Since ψ  and  ψc carry opposite charge the Majorana equation, unlike the Dirac 
equation can only be applied to electrically neutral fields.
 If ψ  is left handed then ∂ψ  is right handed and ψc  is also right handed.  
Therefore the Majorana equation preserves handedness. The Majorana equation is 
taylor made for the neutrino which is considered as a left handed Majorana neutrino.

 The Dirac Lagrangian density  ℒ=ψ(i∂−m)ψ               can be written as 
ℒ=ψL i∂ψL+ψR i∂ψR−m(ψLψR+ψRψL)

 

 Under the transformations ψ→exp (iθ)ψ  which leave ℒ  invariant and generate 
 according to Noether theorem the conserved current (Jμ)μ=(ψγ

myψ)μ  the left and  
 right handed fields transform in the same way ψL→exp(iθ)ψL   ,  ψR→exp (iθ)ψR .

 

If m = 0 , the Lagrangian enjoys an additional symmetry under which 
ψ→exp(iθγ5)ψ    and in this case, Noethers theorem produces the axial current 

(J 5μ)μ=(ψγ
μ γ5ψ)μ  and the left and right handed fields transform in opposite way: 

ψL→exp(−iθ)ψL   ,  ψR→exp(iθ)ψR   . 

 

Under parity transformation, left handed spinors become right handed and right 
handed spinors become left handed,  since γ0γ5=−γ5 γ0  . 
Parity violation in weak interactions leaded to the conclusion that a weak interaction 
Lagrangian occurs only with participation of left handed fields, so in a Fermi weak 
interaction theory, the interaction terms in the Lagrangian density can only be of the 
 form Gψ1Lγ

μψ2Lψ3Lγμψ4 L  where ψ1 ,2,3 ,4  denotes four Dirac fields  and G is the 
Fermi coupling. 

 

            /                               

 

                                    /                         

                                                          /        
                                    /             /          

Page 6 of 6 189 of total 515  Gh.V.B. Introd. to...QFT 



20. Spin statistics theorem

 190 of total 515  Gh.V.B. Introd. to...QFT 



                                Spin statistics theorem

Consider two completely identical systems a and b coupled through an interaction 
energy which is symmetric in the two systems.
If we first consider the two systems together, without including the interaction 
energy, the systems will have stationary energy eigenstates n, m as eigenfunctions 

Φn
a=Φn

a(qa)  , Φm
a=Φm

b (qb)  and the total energy of the system is 

Ĥ= Ĥa⊗I+I⊗ Ĥb  with eigenstates (Φn
a⊗Φm

b )n ,m  ; 

ĤaΦn
a=H n

aΦn
a  , Ĥm

b Φm
b=Hm

b Φm
b  ; (qa)  , (qb)  spatial coordinates for a respective b

   

system. The systems being identical we will have
H nm=H n

a+H m
b=Hm

a +H n
b=H mn .

The udistorted by interaction total system is degenerated  and each eigenstate is a 
doublet (Φn

a⊗Φm
b  , Φm

a⊗Φn
b)  with the exception of that with m=n . 

In every system distorted by interaction the degeneracy is broken: it corresponds to 
secular beats in which the energy of the two particle system pulses back and forth and 
the energy of the distorted system is given in first approximation by the time average 
of the interaction energy over the undistorted motion which will contain other terms 
that correspond to the transitions in which the systems a and b exchange places.
 Since (Φn

a⊗Φm
b )n ,m  is still a basis for the distorted total system Hilbert space, the   

distorted by interaction Hamiltonian will be:
Ĥ=H1(nm,nm)|Φn

a ⟩⊗|Φm
b ⟩ ⟨Φn

a|⊗⟨Φm
b|+H1(mn,mn)|Φm

a ⟩⊗|Φn
b ⟩ ⟨Φm

a|⊗⟨Φn
b|+

H1(nm,mn)|Φn
a ⟩⊗|Φm

b ⟩ ⟨Φm
a|⊗⟨Φm

a|⊗⟨Φn
b|+H1(mn,nm)|Φm

a ⟩⊗|Φn
b ⟩ ⟨Φn

a|⊗⟨Φn
a|⊗⟨Φm

b| .
   

because the interaction energy is symmetric in the two systems, we have:
H1(nm,nm)=H1(mn,mn)   ,  H 1(nm,mn)=H1(mn,nm)       (1) 
 Considering the (1) relations, diagonalizing Ĥ  we obtain:   

Ĥ=(H1(nm,nm)+H 1(nm,mn))|Φ+mn ⟩ ⟨Φ+mn|+
+(H1(nm,nm)−H1(nm, mn))|Φ−mn ⟩ ⟨Φ−mn|     where 

|Φ+m n ⟩=
1

√2
(|Φn

a ⟩⊗|Φm
b ⟩+|Φm

a ⟩⊗|Φn
b ⟩)

|Φ−mn ⟩=
1

√2
(|Φn

a ⟩⊗|Φm
b ⟩−|Φm

a ⟩⊗|Φn
b ⟩)

  

 The eigenstates of Ĥ  are now (|Φ+mn ⟩)m,n  , (|Φ−mn ⟩)m,n  and a perturbation  

 inducing transitions between different eigenstates of Ĥ  can be written as 
Ĥ ′=F exp (−iω t)+F + exp(iω t)   where F  and its adjoint operator F +

 are in general functions of ( p̂a , q̂a , p̂b , q̂b)  which do not change under the 

  

interchange of the two systems and t is the time variable.
Then (according to Chap. Fermi’s golden rule) the transition probability rate from 
 a state |i ⟩=|Φ+mn ⟩  to a state |f ⟩=|Φ−m′n′ ⟩  is proportional to  
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|⟨ f |F|i⟩|2=|∫ 1
2
(Φm

a (qa)Φn
b(qb)+Φn

a(qa)Φm
b (qb))F (Φn′

a+ (qa)Φm′
b+ (qb)−

−Φm′
a+ (qa)Φn′

b+ (qb))d qa d qb|2
   

The expression under the integral on the right side of the above relation changes sign 
when a and b are interchanged and so the integral vanishes and we conclude that 
 transitions between |Φ+m n ⟩  states and |Φ−m′n′ ⟩  similar between  |Φ−mn ⟩  states and 
  |Φ+m′n′ ⟩  states cannot occur. 

  

Thus the level spectrum of the combined, distorted by interaction system can be 
divided into two spectra which can never combine with one other:
 the ( + ):|Φm

a ⟩⊗|Φn
b ⟩+|Φn

a ⟩⊗|Φm
b ⟩   symmetric wave functions  and 

 the ( −) :|Φm
a ⟩⊗|Φn

b ⟩−|Φn
a ⟩⊗|Φm

b ⟩  antisymmetric wave functions . 
 

The goal of the spin statistics theorem is to establish that only one of the two spectra
(+) or (-) is allowed, namely (+) if the individual systems are bosonic (integer spin 
particles) and (-) if the individual systems are fermionic (half integer spin particles) 
and so bosons will obey to the Bose-Einstein statistics and fermions will obey to the 
Fermi-Dirac statistics ( see Chap. Quantum statistical ensemble ).

Consider now a quantum field particles system described by a particle field operator 
 function Φ̂=Φ̂(x)  , x=(t , x⃗)∈ℝ4  acting on a Hilbert space of state vectors  
 containing an unique vacuum state |0 ⟩  with Φ=(Φλ)λ
Φ̂λ(x)=∑

s
∫ d3 k⃗ (uλ(k , s)b̂(k , s)exp(−i k x)+vλ(k , s)d̂ + (k , s)exp (ik x))     (2)

   

 where k=(k 0 , k⃗)  , k0=√ k⃗2+m2  and b̂ + (k , s)  , d̂ + (k , s)  / b̂(k , s)  , d̂(k , s)
 are creation/anihilation like operators acting on state vectors such that 
b̂|0 ⟩=d̂|0 ⟩=0  and b̂+ (k , s)|0 ⟩  is the spin index s  and k  - four-momentum state  
 vector for the particle and d̂ + (k , s)|0 ⟩  being the same for the antiparticle. 

  

We have an unitary representation of the inhomogeneous Lorentz group of Poincare 
transformations x→Λ x+a   with a∈ℝ4  , Λ∈SO + (3 ,1)  , restricted Lorentz  
transformation such that:

U=U (a ,Λ)  , Φ̂λ(Λ x+a)=U (a,Λ)Φ̂λ(x)U
+ (a,Λ)

U (a1,Λ1)U (a2 ,Λ2)=U (a1+Λ1 a2 ,Λ1Λ2)  , U (a , I)=exp (i p̂ a)  , U|0 ⟩=|0 ⟩  where 
p̂  is the four-momentum operator acting on state vectors 

  

 (we have indeed  Φ̂λ
+ (x+a)=∫ d3 k⃗ uλ

∗ (k , s)exp (i k a)b̂ + (k , s)exp(i k x)|0 ⟩=
=∫d3 k⃗ uλ

∗ (k , s)exp(i p̂ a) b̂+ (k , s)exp(i k x)|0 ⟩=U (a , I)Φ̂λ
+ (x)U + (a , I )|0 ⟩  ).

  

Φ  is transforming under some finite dimensional irreducible representation of the 
 restricted Lorentz group  : x→Λ x=x′  as Φ̂λ(x)→Φ̂′λ(x′)=Sλμ(Λ)Φ̂μ( x) .

  

 We also consider an invariant space of test functions, f=( fμ (x))μ  such that we   
we have the transformation
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f μ(x)→f Λ
μ (x′)=f λ(x)Sλμ(Λ

−1)  so that the test field operator defined as 

Φ̂( f )=∫d 4 x f μ( x)Φ̂μ(x)  is invariant under x→Λ x=x′ .
  

Suppose we want to interchange two space-like separated particles generated by the 
 field at the points x  , y  in space-time and test the system with test functions 
f λ(x)  and gμ( y) .  We test therefore the system at the neighbourhoods of two 

 

space-like separated points 1 and 2 generated by the field in points x respective y 
using arbitrary test functions f (x) , g (y). For interchanging the particles we must 
have a trajectory in space-time, expressing the interchanging process, from x to y. 
Since according to relativity no process from a point A to apoint B exist if B is not in 
the future light-cone of A (or A is in the past light-cone of B) we must therefore 
perform a measuring process of the vacuum at point y applying first to the vacuum 
state the corresponding test field operator and then we must find a way to conduct the 
process from y to the space-like separated x. Because x and y are space-like separated 
and we want the time to run forward when we arrive at x we must conduct the process 
from y to a point z which is in the past light-cone of y and in the past light-cone of x. 
Then we conduct the process from z to x, x being in the future light-cone of z. 
Because from y to z we move backwards  in time, for having a field effect of positive 
energy we must consider the term in exp(iky) in the field expression (2) at y and since 
b̂|0 ⟩=d̂|0 ⟩=0  we must take at y  the effect of gμ∗ ( y)Φ̂μ+ ( y)  as correspondng   
 test field operator on the vacuum state |0 ⟩   .  Φ+   is the antiparticle field, which 
according to interpretation is the particle moving backwards in time, that is the field 
creates, moving from the future proximity of y ( where the particle 2 is supposed to 
be ) a particle with positive energy. Now we can conduct further the measuring 
process by applying the field operator f λ(x)Φ̂λ(x)  on gμ∗ ( y)Φ̂μ

+ ( y)|0 ⟩  , that is the 
field anihilates moving from the past proximity of x (where the particle 1 is supposed 
to disappear ) a particle with positive energy.
The required expectation value of the measuring process is therefore
⟨0|f λ(x)Φ̂λ(x)Φ̂μ

+ ( y)gμ∗ ( y)|0⟩ . 
If we switch now particles and test first at x and then at y we move from x to a point 
z’ in the future light-cone of x and in the future light cone of  y  and from z’ , which is 
in the past light-cone of y , getting the expectation value
⟨0|gμ∗ ( y)Φ̂μ

+ ( y)Φ̂λ(x) f
λ(x)|0⟩ . 

 For ξ= y−x  we have ⟨0|Φ̂μ
+ ( y)Φ̂λ(x)|0⟩=

=⟨0|U ( y , I )Φ̂μ
+ (0)U + ( y , I)U ( y , I)Φ̂λ(x− y)U + ( y , I )|0⟩=

=⟨0|Φ̂μ
+ (0)Φ̂λ(−ξ)|0⟩=Hμλ(ξ)=⟨0|Φ̂μ

+ (0)exp (−i p̂ξ)Φ̂λ(0)|0⟩ .

  

 Let Kμλ(p)=∫d4ξexp (i pξ)⟨0|Φ̂μ+ (0)exp(−i p̂ξ)Φ̂λ(0)|0⟩ .  
We can always take a complete orthonormate system of four-momentum state vectors 
(|ψ ⟩)ψ  with p̂|ψ ⟩=pψ|ψ ⟩  , ∑

ψ
|ψ ⟩ ⟨ψ|=I  and pψ0≥0  , pψ

2≥0  for any permissible 

 state vector |ψ ⟩  and we will have: 
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Kμλ(p)=∑
ψ
∫d4ξ exp(i p ξ)⟨0|Φ̂μ+ (0)exp(−i p̂ξ)|ψ⟩⟨ψ|Φ̂λ(0)|0⟩=

=∑
ψ
(2π)4δ4(p−pψ)⟨ψ|Φ̂λ(0)|0⟩ ⟨0|Φ̂μ

+ (0)|ψ⟩
  

Hμλ(ξ)=∫ 1
(2π)4

exp (−i pξ)Kμλ(p)d
4 p=

=∑
ψ

exp(−i pψξ)⟨ψ|Φ̂λ(0)|0⟩ ⟨0|Φ̂μ
+ (0)|ψ⟩         (3) .

 

 For Φ̂λ(0)|0 ⟩=∑
ψ

cψ|ψ ⟩  , ⟨0|Φ̂μ
+ (0)=∑

ψ
dψ ⟨ψ| since (|ψ ⟩)ψ is a complete 

orthonormal system we have 
∑
ψ
|cψ||dψ|≤(⟨0|Φ̂μ+ (0)Φ̂μ(0)|0⟩⟨0|Φ̂λ

+ Φ̂λ(0)|0⟩)<∞  and so the series on the right 

side of (3) is absolute convergent and uniform absolute convergent with respect to 
z∈{ξ−iη∈ℂ4|η0≥0} ( z  on the place of ξ  variable in (3) ) .  
 Hence Hμλ(ξ)= lim

η→0  , η0≥0
Hμλ(ξ−iη)   and for α=(α0 ,α1 ,α2 ,α3)∈ℕ

4

α!=α0!α1!α2!α3!  we have if η0>0  that pψη≥0  and so: 

∑
α
∑
ψ

|(pψ)α|
α! |exp (−i pψ(ξ−iη))||ζα||⟨ψ|Φ̂λ(0)|0⟩⟨0|Φ̂μ+ (0)|ψ⟩|≤

≤exp(4 pψ0‖ζ‖)∑ψ |cψ||dψ|  for any ζ∈ℂ4 .

  

Therfore we have an analytic function on 
D={ξ−iη∈ℂ4|η0>0}∩{z∈ℂ4|z2≠0}with z=(z0 , z1, z2 , z3), z2=z0

2− z1
2−z2

2−z3
2  ,

Hμλ(z)=∑
ψ

exp(−i pψ z)cψdψ  and Hμλ(ξ)  is the boundary value of an analytic  
     

function on D.
 We have for any Λ∈SO + (3 ,1)  that Hμλ(Λ ξ)=⟨0|Φ̂μ+ (Λ 0)Φ̂λ(−Λξ)|0⟩=
=⟨0|U Φ̂μ

+ (0)U + U Φ̂λ(−ξ)U
+|0⟩=Hμλ(ξ)  where U=U (0 ,Λ) .

 

 Hence for any Λ∈SO + (3,1)  , z∈D  we have Hμλ(Λ z)=Hμλ(z)(because if 
z∈D  then Λ z∈D  . 

   

 Let (J k , K k)k=1 ,3  the generators of  SO + (3,1)  (see Chap. Representations of the  
restricted Lorentz group). It is easy to see that for any 
χ∈ℂ  , z∈D  , if Λ=exp (χ K 3)  satisfies Λ z∈D  then exists a continuous path 
γ :[0,1]→ℂ  with γ(0)=0  , γ(1)=χ  such that for Λ t=exp (γ(t)K3)  we have 
Λ t z∈D  for any t∈[0 ,1]  and therefore, by analytic continuation we obtain 

Hμλ(Λ z)=Hμλ(z)  for Λ=exp (χ K 3)  , z∈D  , Λ z∈D  . 

 

 Consider Q={exp(θ1 J 1+θ2 J 2+θ3 J 3)|θi∈ℂ  , i=1 ,3}=S .  
 Obviously Q z∈D  for any z∈D  and by analytic continuation Hμ λ(Q z)=Hμ λ( z) .    
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 Thus for given z=(z0 , z1 , z2 , z3)∈D  we find Q∈S  with Q z=z′=(z′0 , 0 ,0 , z′3)
z′2=z2  , z′∈D  and we can choose χ∈ℂ  such that for Λ=exp(χ K3)  we have 

Λ z′=(√z2 ,0 ,0 ,0)where the square root√z2 is taken with positive imaginary part.

   

 We will have Hμλ(Λ z′)=Hμλ(z′)=Hμλ(Q z)=Hμλ(z)  and so 

Hμλ(z)=Hμλ(√z2 ,0 ,0 ,0)  and since we can verify that {z2|z∈D}⊃ℂ∖ℝ +  and so  

Hμλ  can be analytically continuated on B={ζ∈ℂ4|ζ2∈ℂ∖ℝ + }.

  

 Since ⟨0|Φ̂μ
+ ( y)Φ̂λ(x)|0⟩  must be Lorentz invariant it follows that for any 

Λ∈SO + (3,1)  , U=U (0 ,Λ)  we have Hμ λ(Λ ξ)=Sμμ ′
∗ (Λ)Sλ λ′(Λ)Hμ′λ′(ξ)

 where S∗  is the complex conjugate of  S .

 (4) 

According to Chap. Representations of the restricted Lorentz group (final) we have 
that S is an irreducible (j1 , j2) representation so that

j1 , j2∈
1
2
ℕ  , Λ=exp((−i θ⃗−χ⃗)1

2
(i J⃗−K⃗ ))exp ((−iθ+χ⃗)1

2
(i J⃗+ K⃗ ))

S(Λ)=exp ((−i θ⃗−χ⃗)M⃗ + )exp((−i θ⃗+ χ⃗) M⃗ −)  , M+3=
1
2

H +  , M−3=
1
2

H−

H +  having the spectrum (−2 j1,−2 j1+2 , ... ,2 j1)  and 
H−  having the spectrum (−2 j2 ,−2 j2+2 , ... ,2 j2) .

  

Because for anyΛ=exp ((−iθ−χ)1
2
(i J 3−K3))exp((−iθ+χ)1

2
(i J 3+K3));θ ,χ∈ℂ

we have (Λ z)2=z2 ,by analytic continuation on θ ,χ  variables, we can take in (4) 
Λ=exp(−iπ(i J 3−K 3))  , S(Λ)=exp(−iπH + )  , S∗ (Λ)=exp(iπH−

∗ ) .

  

i J 3−K 3  has eigenvalues ±1  and is diagonalizable and so Λ=− I .  H +  and H −
∗

 are also diagonalizable (see Chap. Repres. of the restricted Lorentz group (final)) 
 and so exp(−iπH +)=exp(2 j1 iπ) I  , exp(iπH −

∗ )=exp(2 j2 iπ) I .

  

 Hence Hμλ(−ξ)=exp (2( j1+ j2)iπ)Hμ λ(ξ)  for any space-like ξ  because for 

ξ2<0  we have ξ∈B  . Thus for bosons j1+ j2∈ℕ  and we have Hμλ(−ξ)=Hμ λ(ξ)

 and for fermions j1+ j2∈
1
2
+ℕ  and we have Hμλ(−ξ)=−Hμλ(ξ)  . 

 

Testing the interchanging of particles in space-like separated points x , y with
f λ′(x′)→δ4(x′−x)δλ λ′  , gμ′( y′)→δ4 ( y′− y)δμμ′  with x′  , y′  variable and  →

 convergence in distributions space, since we have already proven the splitting of  
  

the level spectrum in (+) and (-) spectra with no transitions between them, we will 
have for the expectation values, considering the commuting/anticommuting for the 
individual wave functions of the respective spectra (+)/(-),  one of the relations:
⟨0|Φ̂μ

+ ( y)Φ̂λ(x)|0⟩=±⟨0|Φ̂λ(x)Φ̂μ
+ ( y)|0⟩ . 

Proving the spin statistics theorem is therefore reduced to verify that “wrong” 
commutation relations cannot take place.
 Taking Fμλ(−ξ)=⟨0|Φ̂μ(x)Φ̂λ

+ ( y)|0⟩=⟨0|Φ̂μ(0)Φ̂λ
+ (ξ)|0⟩  the 'wrong'    

commutation relation is for both bosonic and fermionic case
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Fλμ(ξ)+Hμ λ(ξ)=0  for ξ2<0       (5) 
 ( because Hμλ(−ξ)=(−1)2 ( j1+ j 2)Hμλ(ξ)  for a ( j1 , j2)  representation if ξ2<0.  
 Let for f=f (x)  , f̄=f (−x)  and we will have:  

‖Φ̂( f )|0 ⟩‖2=∫ f μ∗ ( y)⟨0|Φ̂μ
+ ( y)Φ̂λ(x)|0⟩ f

λ(x)d4 x d4 y=
=∫ f μ∗ ( y)Hμλ( y−x) f λ(x)d4 x d4 y

  

‖Φ̂+ (f̄ )|0 ⟩‖=∫ f μ(− y)⟨0|Φ̂μ( y)Φ̂λ
+ (x)|0⟩ f λ∗ (−x)d 4 x d 4 y=

=∫ f μ( y)⟨0|Φ̂μ(x)Φ̂λ
+ ( y)|0⟩ f λ∗ (x)=∫ f μ∗ ( y)Fλμ( y−x) f λ( x)d 4 x d 4 y

 

where for the last equality we have taken the complex conjugate of the integrand 
considering the fact that the left side is real , being a squared norm.
 Taking for y−x=ξ  , ξ2<0  : f λ(x′)=αλδ

4(x′−x)+βλ δ
4(x′− y)  with arbitrary 

αλ  , βλ  , from (5) follows now ‖Φ̂( f )|0 ⟩‖=‖Φ̂ + ( f̄ )|0 ⟩‖=0  and so, α ,β  being 
arbitrary we obtain Φ̂λ(x)|0 ⟩=Φ̂λ

+ (x)|0 ⟩=0  for any λ , x ,which leads, considering

  

(2) to the conclusion that Φ̂=0   and thus the 'wrong' commutation relations cannot 
take place or the field vanishes, which proves the spin statistics theorem.
 ( indeed, multiplying for example Φ̂λ

+ (x)|0 ⟩=0  with exp(−ik x)  for given k  and 

 integrating over x∈ℝ4  it follows ∑
s
δ(k0−√ k⃗2+m2)uλ

∗ (k , s) b̂+ (k , s)|0 ⟩=0   (6)
 

 so that applying to (6) b̂(k , s′)  , since b̂ ,b̂ +  are anihilation/creation like operators 
 and satisfy an commutation/anticommutation rule 
b̂(k , s) b̂+ (k′ , s′)±b̂ + (k′ , s′) b̂(k , s)=δ3( k⃗′−k⃗)δs s′

  

 we obtain uλ
∗ (k , s)=0  for any λ , k , s  with k 0=√ k⃗ 2+m2  )   
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                                       Quantum statistical ensemble

A quantum statistical ensemble describes a macrostate of a quantum system through 
thermodynamically macroscopically equivalent microstates of a quantum system 
having a Hilbert space HS of wave functions satisfying all the Schroedinger equation
i ℏ∂t ψ=Ĥ ψ   ,  ψ=ψ(t , x⃗)  , t∈ℝ  , x⃗∈ℝ3  , ψ(t)=ψ(t ,⋅)∈H S   and  Ĥ  is the    
Hamiltonian operator acting on HS .
A microstate of the statistical ensemble at time moment t can be one of orthonormal

n∈ℕ   states  (ψs(t))s=1 ,n  , ψs(t)∈HS  such that for the system prepared in the  
 macrostate, there is a probability ps≥0  for a microstate to be ψs(t)  with s=1 , n  

∑
1

n

ps=1  . Thus we define a density operator of the given macrostate by 

ρ=ρ(t)=∑
s=1

n

ps|ψs(t)⟩ ⟨ψs(t )|

 

It follows that ρ(t) is a continuous linear compact self-adjoint trace operator on HS 
having the trace equal to one. 
 ( for a trace operator A  if (|m ⟩ )m  is a complete orthonormal system then the trace 
 defined by tr A=∑

m
⟨m|A|m⟩  not depends on the chosen complete orthonormal  

 system (|m ⟩)m  and for the density operator we have 

trρ=∑
m
⟨m|ρ|m⟩=∑

s=1

n

∑
m

ps⟨m|ψs⟩⟨ψs|m⟩=∑
s

ps∑
m
⟨ψs|m⟩⟨m|ψs⟩=1   since  

⟨ψs|ψs⟩=1   and  ∑
m
|m ⟩ ⟨m|=I HS

  ) 

 

Also, considering the Schroedinger equation, we have:
∂t (|ψs(t)⟩ ⟨ψs(t)|)=|∂t ψs(t )⟩ ⟨ψs(t)|+|ψs(t) ⟩ ⟨∂t ψs(t)|=

= 1
i ℏ

( Ĥ|ψs(t)⟩ ⟨ψs( t)|−|ψs(t)⟩ ⟨ Ĥ ψs(t)|)= 1
i ℏ

[ Ĥ ,|ψs(t)⟩ ⟨ψs( t)|]  and so we derived 
 

∂tρ=
1
i ℏ

[Ĥ ,ρ]   , the von Neumann equation.    

For an observable A (as we mentioned in Chap. Quantum mechanics formalism, by 
discretization we can consider that A is a compact self-adjoint (and obviously linear 
continuous) operator on HS ) we define
σ(A)={a∈ℝ| exists v∈H S  such that A v=a v} the spectrum of A  and 

Sa={v∈H S|A v=a v} the eigenspace of eigenvalue a  for A  and we have: 
 

A= ∑
a∈σ(A )

a Pa  where Pa  is the projector of HS  on the closed subspace Sa  .  

For A  compact and self-adjoint, a≠0  we have that Sa  is finite dimensional. 
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 We have also Paψ=∑

i

|a, i ⟩ ⟨a , i|ψ⟩   where  (|a, i ⟩)i  is an orthonormal 

 complete sytem in Sa  and ⟨ψs|Pa|ψs⟩  is the transition probability from the state 

ψs  to one of the |a ,i ⟩  states. 

  

tr(ρPa)=tr (Paρ)=∑
m
⟨m|Pa∑

s=1

n

ps|ψs⟩⟨ψs|m⟩=∑
s=1

n

ps⟨ψs|Pa|ψs⟩   

tr(ρPa)  can be interpreted as the probability that a measurement of observable A ,  
performed on the system prepared in the macrostate with density operator ρ leads to 
the result a (Born rule).

tr(ρ A)=tr(Aρ)=∑
s=1

n

ps ⟨ψs|A|ψs⟩      can be interpreted as the expectation value of  

the observable A on a system prepared in the macrostate with density operator ρ (at 
time moment t ) : ⟨A ⟩t=tr(ρ(t) A (t))  .                 

The thermodynamical parameters are described as expectation values of observables 
on the system.
According to von Neumann equation, for an observable A we have:
d
d t

⟨ A⟩t=
d
d t

tr(ρ A)=tr ((∂tρ) A)+tr (ρ(∂t A))= 1
i ℏ

tr([Ĥ ,ρ] A)+⟨∂t A⟩t  

 Since any compact self-adjoint operator has a complete orthonormal system of 
eigenvectors we derive that if A  is compact self-adjoint and A B  is a trace 
 operator with A ,B  linear continuous operator on H S  then tr(A B)=tr(B A)  . 

 

Therefore tr([Ĥ ,ρ] A)=tr([A , Ĥ ]ρ)  and so we obtain:  
d
d t

⟨ A⟩t=
1
i ℏ

⟨[A , Ĥ ]⟩t+⟨∂t A ⟩t         (1)  

If f is a polynomial and A , B are compact self-adjoint linear continuous operators
with [A ,B ]=±i ℏ  then we obtain without difficulties that [A , f (B)]=±i ℏ f ′(B)
 and so for any class C1  function g : [−M , M ]→ℝ  where M=‖B‖= sup

⟨φ|φ⟩=1

⟨φ|B|φ⟩  

 we have [ A , g(B)]=±i ℏ g′(B)

 

(For example , for Ĥ= p̂2

2 m
+V (x)  we will have 

d ⟨ x̂⟩t

d t
= 1

i ℏ
⟨[ x̂ , Ĥ ]⟩t=

⟨ p̂⟩t

m
 

d ⟨v ⟩t

d t
= 1

m

d ⟨ p̂⟩t

d t
= 1

i ℏ
⟨ p̂ , Ĥ ⟩t=−⟨∂V (x)

∂ x ⟩
t
 , relation corresponding to the  

 

classical equation of motion for a mass m particle).
Since in general the Hamiltonian can be seen as a continuous differentiable function 
of position and momentum operators , having the relations
Ĥ=Ĥ (X̂ , P̂)  , [ X̂ j , P̂k ]=i δi k ℏ  and so [ X̂ j , Ĥ ]=i ℏ∂P j

Ĥ    ,   [ P̂ j , Ĥ ]=−i ℏ∂X j
Ĥ  

X̂  , P̂  not depending explicite on time ∂t X̂=0  , ∂t P̂=0  the relation (1) leads to 
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d ⟨ X̂ j⟩t

d t
=⟨∂P j

Ĥ ( X̂ , P̂)⟩t            (2) 

d ⟨P j⟩t

d t
=−⟨∂X j

Ĥ (X̂ , P̂)⟩t           (3) 

  

Relations (2) and (3) are the corresponding form for quantum systems to the 
Hamilton-Jacobi relations from classical mechanics.

Consider now a system of identical quantum particles. The Hilbert space S of wave 
functions of the system can be considered the direct sum of the Hilbert spaces of N 
factors tensorial products of the same one particle system Hilbert space V.

S= ⊕
N∈ℕ∗

(⊗
i=1

N

V )    and the Hamiltonian operator of the sytem is Ĥ= ⊕
N∈ℕ∗

Ĥ N  where 

SN=⊗
i=1

N

V   ,  Ĥ N : SN→SN  with 

Ĥ N (ψ1⊗ψ2 ...⊗ψN )=(Ĥ 1ψ1)⊗ψ2 ...⊗ψN+ψ1⊗(Ĥ1ψ2) ...⊗ψN+...

...+ψ1⊗ψ2 ...⊗(Ĥ 1ψN)
 for any ψi∈V  , i=1 , N  , N∈ℕ∗ ; Ĥ1 :V →V  the one particle system Hamiltonian. 

 

According to spin-statistics theorem, if the particles are bosons (integer spin 
particles), the energy eigenstates of the statistical ensemble we will consider to 
determine a macrostate of the multiparticle system will be symmetrical tensorial 
 products of the states (|εs ⟩)s∈ℕ

 and if the particles are fermions (half integer spin   

particles) the energy eigenstates of the statistical ensemble will be antisymmetrical 
tensorial products of the states (|εs ⟩)s∈ℕ

 , where (|εs ⟩)s∈ℕ
 is a complete orthonormal  

system of eigenstates for the one particle system Hamiltonian operator.
 We denote Ĥ1|εs ⟩=εs|εs ⟩   , εs∈ℝ  for any s∈ℕ   .   
The eigenstates are 

εn0n1 ... ns ...=
1
N!∑σ ⊗i=1

N

|εsσ i ⟩    for bosons and   εn 0n1 ... n s ...=
1
N!∑σ ε(σ)⊗

i=1

N

|εsσ i ⟩      for 

 fermions where N∈ℕ∗  , s1 , s2 , ... , sN∈ℕ  , σ  is a permutation of {1,2 , ... ,N } , 
ε(σ)  is the signature of σ      and      ns=card{i∈ℕ∗

|si=s}   for any s∈ℕ
If ∑

s
ns=N   we will have  εn0n1... ns ...∈SN   ,  Ĥ N|εn0n1 ... ns ...⟩=(∑

s
nsεs)|εn0n 1... ns ... ⟩  . 

  

 If the particles are fermions we have εn 0n 1... ns ...=0  if exists s  such that ns>1  and 
 so we take ns=0 ,1  for any s∈ℕ  for fermions (Pauli exclusion principle). 

  

The density operator will be :
ρ= ∑

n0 ,n1 ,... ,n s , ...
pn0n1 ... ns...|εn0n1 ...n s... ⟩ ⟨εn 0n1... n s ...|=⊕

N
ρN    with   ρN : SN→SN  , 

ρN= ∑
n0 , ... ,n s ...
∑

s
ns=N

pn0n 1 ...ns ...|εn0n 1... ns ... ⟩ ⟨εn 0n1 ... ns...|  ,  pn0 n1 ...ns ...∈[0 ,1]    . 
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trρ=1   leads to  ∑
n 0 ,n1 , ... n s ...

pn 0 n 1... n s ...=1   ,  ∑
N∈ℕ∗

trρN=1  .   

By analogy with the relations for classical statistical ensemble, for a quantum 
multiparticle system prepared in a macrostate at equilibrium with a reservoir having 
temperature T and chemical potential μ we must have

pn0n1... n s ...=exp(Ω−∑
s

nsεs+μN

kB T )     where  N=∑
s

ns   , 
1
Z
=exp( Ω

kB T )   ,  

Z=∑
n0
∑
n 1

...∑
n s

... exp((μ−ε0)n0

kB T )... exp ((μ−εs)ns

kB T ) ...
  

(kB is the Boltzmann constant).
If the particles are bosons we obtain the Bose-Einstein distribution with ns passing 

 all values in ℕ  : ZB E=∏
s

ZB E
(s)   ,  pn0 n1 ... ns...=

1
ZB E

∏
s

exp((μ−εs)ns

kB T )   where  

ZB E
(s) = 1

1−exp ((μ−εs)/(kB T ))
  and we must have  μ<εs  for any s   . 

   

The probability that ns particles belong to the one particle state determined by

|εs
 ⟩   is  Ps B E(ns)=

1

ZB E
(s) exp((μ−εs)ns

kB T )    and so the averaged occupation number 

of the state |εs
 ⟩  is f B E(εs)=⟨ns⟩B E=∑

ns=0

∞
ns Ps B E (ns)=

1
exp((εs−μ)/(kB T ))−1

   (4) 

  

If the particles are fermions we obtain the Fermi-Dirac distribution with ns = 0,1 :

ZF D=∏
s

ZF D
(s)   ,  pn0 n1... ns ...=

1
ZF D

∏
s

exp ((μ−εs)ns

kB T )  where 

ZF D
(s) =1+exp((μ−εs)/(kB T ))     . 

  

The probability that ns particles (  ns = 0,1 ) belong to the one particle state determined 

 by |εs
 ⟩   is  Ps F D(ns)=

1

ZF D
(s) exp((μ−εs)ns

kB T )  and the averaged occupation number 

 of the state |εs
 ⟩  is f F D(εs)=⟨ns⟩F D=

1
exp((εs−μ)/(kB T ))+1

     (5) 

  

We notice that for a specified value of εs = ε  we can have one or more indicices s 
such that εs = ε . We can have a degeneracy of the eigenvalue energy level ,
gs=card {s′∈ℕ|εs′=εs}  and so in fact  the averaged number of particles which 
belong to an energy state with energy eigenvalue ε = εs is therefore equal to 

gs

exp((εs−μ)/(kB T ))−1
 (6) for bosons and 

gs

exp ((εs−μ)/(kB T ))+1
 (7) for fermions ,

gs being the degeneracy of the energy level εs .
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Therefore at equilibrium with the macrostate at temperature T and chemical 
potential μ we will have 
ρ=⊕

N
ρN   ,  ρN=exp((Ω−Ĥ N+μN )/(kB T ))   ,  exp(Ω/(kB T ))=1 /Z

Z=∑
N

tr exp((−Ĥ N+μN )/(kB T ))
  

 The entropy is S=−kB tr(ρ logρ)=−kB∑
N

tr (ρN logρN)=

=−kB ∑
n 0 , ... ns...

pn0 ...ns ... log pn0 ...n s...=−kB∑
N

tr(ρN (Ω−Ĥ N+μN )/(kB T ))

S=− Ω
T
+ 1

T
∑

N
tr (ρN Ĥ N)−

μ
T
∑

N
tr (ρN N )

 

The thermodynamical parameters U and Nt are
U=∑

N
tr(ρN Ĥ N)   ,  N t=∑

N
tr(N ρN)   and so we have confirmed the relation for    

macroscopic thermodynamical parameters : 
U=Ω+T S+μ N t    with  Ω−macrocanonical potential , S−entropy ,

U−internal energy, N t−averaged particle number. 
 

In a similar way, for a canonical statistical ensemble of systems in a macrostate at 
eqilibrium with a reservoir at temperature T ( the system not changes particles with 
the reservoir and we have a determined particles number N ) we have a Hamiltonian
Ĥ=Ĥ N  which has a complete orthonormate system of eigenstates ((|En ,i ⟩)i=1 ,gn)n   

 in a way that we have (|En ,i ⟩)i=1 ,gn=(|εn0 ...ns ...
 ⟩) ∑

s
ns=N

∑
s

nsεs=En

 

ρ=ρN=exp( F−Ĥ
kB T )= 1

Z
exp (− Ĥ

kB T )   ,  log Z=− F
kB T

 

Z=tr exp(−Ĥ /(kB T ))=∑
n

gn exp(−En /(kB T ))

  

ρ=∑
n
∑
i=1

gn

pn i|En ,i ⟩ ⟨ En ,i|  ,  pn i=
1
Z

exp (−En/(kB T ))   ,  ∑
n
∑
i=1

gn

pn i=trρ=1

S=−kB∑
n
∑
i=1

gn

pn i log pn i=−kB tr(ρ logρ)

  

It follows 

U=∑
n
∑
i=1

gn

pn i En=tr(ρ Ĥ )

S=−kB tr (ρ(−Ĥ /(kB T )−log Z))= 1
T

U− 1
T

F  

 

 Therefore U=T S+F   and  F   is the free energy potential.     

Hence in the case of a canonical statistical ensemble at equilibrium we have:
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pn i=exp( F−En

kB T )=exp(− S
kB )exp(U−En

kB T )   .   

 Let En>E0  for n≠0  and it follows: 

U−En

kB T
=
⟨Ĥ ⟩t−E0

kB T
+

E0−En

kB T
  ,  lim

T→0
exp (E0−En

kB T )=δn0  for any n  and so 

lim
T→0

pn i=pni
(0)=C δn0  with C=lim

T→0
exp (− S

kB
)exp( ⟨Ĥ ⟩t−E0

kB T )
  

 For ρ(0)=lim
T→0

ρ   we must have  

1=trρ(0)=∑
n
∑
i=1

gn

pn i
(0)=∑

i=1

g0

C=C g0   ,  C= 1
g0

 ,  
  

ρ(0)=∑
n
∑
i=1

gn

pni
(0 )|En ,i ⟩ ⟨ En ,i|=∑

i=1

g0 1
g0
|E0 ,i ⟩ ⟨ E0 ,i|= 1

g0

PE0
 where PE0

 is the projector  

on the E0 eigenspace.
Also we derive 

lim
T→0

⟨ Ĥ ⟩t=tr (Ĥ ρ(0))=∑
n
∑
i=1

gn

En pn i
(0)=∑

n
∑
i=1

gn

En
1
g0

δn 0=E0  , 

lim
T→0

S=−kB tr(ρ(0) logρ(0))=kB log g0

  

If g0 not depends on extensive parameters , it follows that
lim
T→0

S(T ,(X j)j)=S(0)=kB log g0=const., where (X j)j  are the extensive parameters. 

The entropy at 0 absolute temperature is constant not depending on extensive 
parameters. If g0 =1 (non-degeneracy on the fundamental energy level E0) we have 
lim
T→0

S=0  (Nernst-Planck theorem) as we expected according to the third principle  

of thermodynamics.
We notice that as the absolute temperature approaches zero the system condensates in 
the fundamental states at energy level E0. The known condensate quantum systems 
(crystal lattices, quantum gases) have non-degeneracy on the fundamental energy 
level.

We can consider a system of identical quantum particles in a way that the particles 
are in states corresponding to energy levels εs , each energy level having a degeneracy 

gs   ,  s∈S   ,  S  the set of energy states indices (there are gs  posibilities for a  
 particle to be in a state of energy level εs  at index s∈S  ) . Let N s  the population  

 

number of particles which are in a state with the same energy level εs indexed at 
s∈S  . If the particles are fermions, they satisfy Pauli exclusion principle and so at  
most one particle can occupe a state and we have N s≤gs  . The number of distinct  
microscopic states for level εs generating the same macroscopic state (if we permute 
states within the same energy level indexed s , the macrostate do not changes) is the 
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combinations number of gs elements taken Ns times, which is equal to 
gs!

N s!(g s−N s)!
 and the total number of microscopic states which are compatible to 

a macroscopic state defined by the occupation numbers (N s)s  will be 

W F D=∏
s

gs!
N s!(gs−N s)!

  . 

  

If the particles are bosons, they can pile up in the same state and the number of 
distinct microstates for level εs , generating the same macrostate is the combinations 
number of gs elements taken Ns times with repetition, which is equal to

(N s+gs−1)!
(gs−1)!N s!

 and the total number of microscopic states which are 

 compatible to a macroscopic state defined by occupation numbers (N s)s  is 

W B E=∏
s

(N s+gs−1)!
(gs−1)!N s!

  . 

  

We consider that only the occupation numbers vary as the system approaches 
equilibrium .

 The entropy is therefore S=S((N s)s)=kB log W
F D
B E  and at thermodynamical 

equilibrium we have S=max {S((N s)s)|∑s
N s=N  , ∑

s
εs N s=U }   . 

  

 Taking additional to (N s)s  variables the Lagrange coefficients α ,β  we must have 
d∑

s
(log (gs!)−log (N s!)−log ((gs−N s)!)+αN s+βεs N s)=0  which leads to 

−log(N s+1)+log (gs−N s)+α+βεs=0  for any s  in the fermionic case at and 
d∑

s
(log ((N s+gs−1)!)−log ((gs−1)!)−log (N s!)+αN s+βεs N s)=0  which leads to 

log(N s+gs)−log(N s+1)+α+βε=0  for any s  in the bosonic case. 

 

 Since we consider N s≫1  we obtain N s=
gs

exp(−α−βεs)±1
 at equilibrium with 

( + )  sign for fermions and  (−)  sign for bosons .

  

 At thermodynamical equilibrium we must therefore have 
d S=kB∑

s
( log(gs±N s)−log N s)d N s=−kB∑

s
αd N s+βεs d N s  

d S=−kBαd N−kBβd U  and so we have α= μ
kB T

 , β=− 1
kB T

 since other extensive parameters as the volume are considered constant, 

 and the occupation numbers at equilibrium are N s=
gs

exp((εs−μ)/(kB T )±1)
  

  

as we expected from (6) and (7) .
We have obtained also :
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N=∑
s

gs

exp(εs−μ
kB T )±1

  ,  U=∑
s

gs εs

exp( εs−μ
kB T )±1

  .    

Page 8 of 8 206 of total 515  Gh.V.B. Introd. to...QFT 



22. Decoherence. Choi-Kraus theorem
      No-communication theorem 

 207 of total 515  Gh.V.B. Introd. to...QFT 



                          Decoherence, Choi-Kraus theorem,
                               No-communication theorem

Consider a system S and environment (bath) B which are closed and can be treated 
quantum-mechanically. Let HS and HB be the system’s and bath’s Hilbert spaces of 
state functions respectively. Then the combined system and bath system has the 
Hilbert space of states  the tensor product space H SB=H S⊗HB  and we consider  
that states of the combined system have an unitary evolution in time , which 
(according to Chap. Quantum mechanics formalism) is of the form
ψ(t)=Û (t)ψ(0)  where t  is the time variable and Û=exp(−i Ĥ t /ℏ)  , Ĥ  is the 

 Hamiltonian operator of the combined S B  system. Ĥ  can be considered a  
 self-adjoint compact operator on H S B  ( Û  is therefore an unitary operator on HS B ).

 

Thus the density operator ρSB  =  ρSB (t) of the combined system has a time evolution 
 given by ρS B(t)=Û (t)ρS B(0)Û

+ (t)             (1) .  (see Chap. Quantum statistical 
ensemble)
To give a description of the system S alone, we perform a partial trace over the bath 
and ρSB  obtaining the system reduced density matrix ρS = trB ρSB 

 ( if (|m ⟩)m  is an orthonormal complete system of H B  there is an obvious isometric 
 isomorphism ⊕

m
(H S⊗ℂm)→HS⊗H B  (with ⊕  direct sum of Hilbert spaces) 

 and so any continuous linear operator T∈L(HS⊗H B)  can be written as 

  

T=∑
k . l

T (kl)⊗(|k ⟩ ⟨ l|)  with (|k ⟩)k=(|l ⟩)l=(|m ⟩)m  , T (k l)∈L(H S)  , 

T (|h ⟩⊗|k ⟩)=∑
l

T (l k)(|h ⟩)⊗|l ⟩   . 
  

 If T  is a non-negative operator and the series ∑
j

T ( j j)  converges in the strong 

operator topology of L(H S)  then it is independent of the chosen basis of HB  and 

 we take trB T=∑
j

T ( j j)∈L(H S)   ) 

 

Thus the transition probability of the system S  into a state |φ ⟩=|φ(t)⟩  is at time t   
 given by ⟨φ(t)|ρS( t)|φ(t)⟩  .  
If the states of the system S cannot be described independently of the environment B 
states, the system and bath are entangled and a pure state of the combined SB system
|ψ ⟩∈H S B  cannot be written as a product |ψ ⟩=|ψS ⟩⊗|ψB ⟩  .  
However we assume that initially system and bath are not entangled and so we can 
 write ρS B (0)=ρS(0)⊗ρB(0)      (2) .  
Decoherence can be viewed as the loss of information from a system into the 
environment, since every system is loosely coupled with the energetic state of its 
surroundings. Viewed in isolation, the system’s dynamics are non-unitary (although 
the combined system plus environment evolves in an unitary fashion) and so the loss 
of information occurs  .
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 ( in the entropy formula S(ρ)=−tr(ρ logρ)  if ρ  evolves unitary, 
ρ(t)=U (t)ρ(0)U + (t)  with U U +=I  we have S(ρ(t))=S (ρ(0))  and so no loss  

 

of information)
The original system’s wave function can be expanded as a sum of elements in a 
quantum superposition, corresponding to a projection of the wave vector onto a basis. 
We will choose an expansion where the resulting basis elements interact with the 
environment in an element specific way. Such elements will – with overwhelming 
probability – be rapidly separated from each other by their natural unitary time 
evolution along their own independent paths. After a very short interaction there is 
almost no chance of any further interference. The process is effectively irreversible. 
The different elements become “lost” from each other in the expanded phase space 
created by coupling with the environment. The original elements are said to have 
decohered. The environment has effectively selected out those expansions or 
decompositions of the original state vector that decohere with each other. This is 
called “environmentally induced superselection” or einselection.
Let the system S  be initially in state |ψ ⟩=∑

i

|i ⟩ ⟨ i|ψ⟩  where (|i ⟩)i  is an orthonormal 

einselected basis of HS .
Thus before any interaction between the two subsystems, the joint state can be 
 written as |bf ⟩=∑

i
|i ⟩|ϵ ⟩ ⟨i|ψ⟩  if we let  |ϵ ⟩  be the environment's initially state and 

 we use the notation |i ⟩|ϵ ⟩=|i ⟩⊗|ϵ ⟩∈H SB  . 
  

If the environment absorbs the system, each element of the system’s basis interacts 
with the environment such that |i ⟩|ϵ ⟩  evolves into |ϵi

 ⟩∈H S B  and so |bf ⟩  evolves  

 into |af ⟩=∑
i
|ϵi

 ⟩ ⟨i|ψ⟩  .  The unitarity of time evolution of the combined system 

demands that the total state basis remains orthonormal and so we have δi j=⟨ϵi|ϵ j⟩ .
This orthonormality of the environment states is the defining characteristic required 
for einselection.
In an idealized measurement, the system disturbs the environment, but is itself 
undisturbed by the environment. In this case, each element of the basis interacts with 
the environment  such that |i ⟩|ϵ ⟩  evolves into |i ,ϵi ⟩=|i ⟩|ϵi

 ⟩  and so |bf ⟩  evolves  

 into |af ⟩=∑
i
|i ,ϵi ⟩ ⟨i|ψ⟩   . In this case unitarity demands 

δi j=⟨ϵ|⟨i| j⟩|ϵ⟩=⟨i ,ϵi| j ,ϵ j ⟩=⟨i| j⟩⟨ϵi|ϵ j ⟩   ,  ⟨ϵi|ϵi ⟩=1
 

Additionally, for decoherence to become einselection by virtue of the large number of 
hidden degrees of freedom, it requires the einselection condition 
⟨ϵi|ϵ j⟩≈δi j  .                

Initially the density matrix of the combined system is
ρ(0)=|bf ⟩ ⟨bf|=|ψ ⟩ ⟨ψ  |⊗|ϵ  ⟩ ⟨ϵ | and the reduced density matrix of the system  before 
interaction is
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ρS(0)=trB(ρ(0))=|ψ ⟩ ⟨ψ  |⟨ϵ |ϵ ⟩2=|ψ ⟩ ⟨ψ  |  .  
 Taking φ=∑

i

|i ⟩ ⟨ i|φ⟩  , ψi=⟨ i|ψ⟩  , φi=⟨ i|φ⟩   the transition probability of the  

 to the state φ  is Pψ→φ
before=⟨φ|ρS|φ⟩=|⟨φ|ψ⟩|

2=∑
i
|ψi

∗φi|
2+ ∑

i , j  , i≠ j
ψ j
∗ ψiφ jφi

∗   . 
  

As we notice , the terms that involve i≠ j  can be thought as representing   
interference between the different basis elements or quantum alternatives which is a 
purely quantum effect and represents the non-additivity of the probabilities of 
quantum alternatives.
The density matrix after the interaction is 
ρ=|af ⟩ ⟨af|=∑

i , j
ψ j
∗ ψi|i ,ϵi ⟩ ⟨ j ,ϵ j|=∑

i , j
ψiψ j

∗|i ⟩ ⟨ j|⊗|ϵi
 ⟩ ⟨ϵ j

 |   and the reduced density  

 matrix is ρS=trB (∑
i, j
ψiψ j

∗|i ⟩ ⟨ j|⊗|ϵi
 ⟩ ⟨ϵ j

 |)=∑
i
|ψi  |2|i ⟩ ⟨ i|      where we used the  

 einselection condition ⟨ϵi|ϵ j ⟩=δi j   . 
  

 The transition probability to the state φ=∑
i
φi|i ⟩       after the interaction will be 

Pψ→φ
after =⟨φ|ρS|φ⟩=∑

k , l, i
φk
∗|ψi  |

2φl ⟨k|i⟩ ⟨i|l⟩=∑
i
|ψi

∗φi|
2

 

which has no contribution of the interference terms.
The loss of interference effects corresponds to the diagonalization of the 
“environmentally traced over” density matrix, so the decoherence has irreversibly 
converted quantum behaviour ( additive probability amplitudes ) to classical 
behaviour (additive probabilities).
As a consequence, the system behaves as a classical statistical ensemble of the 
different elements rather than as a single coherent quantum superposition of them. 
From the perspective of each ensemble member’s measuring device (any measuring 
device or apparatus acts as an environment), the systems appears to have irreversibly 
collapsed onto a state with a precise value for the measured attributes, relative to that 
element. And this provided one explains how the Born rule coefficients effectively 
act as probabilities, as per the measurement postulate , constitutes a solution to the 
quantum measurement problem.

Further the Hamiltonian for the combined system can be written as
Ĥ=Ĥ S⊗ IB+IS⊗ ĤB+ Ĥ I    , where Ĥ S  , ĤB  are the system and bath Hamiltonians 

respectively, Ĥ I  is the interaction between system and bath Hamiltonian and IS , I B
 are the identity operators on the H S  , HB  Hilbert spaces. 

 

Considering (1) and (2) relations, the evolution of the combined system becomes
ρSB( t)=Û (t)(ρS(0)⊗ρB (0))Û

+ (t) . 
The interaction Hamiltonian can be written as
Ĥ I=∑

i
Ŝi⊗B̂i  where Ŝi , B̂i  are operators that act on system and bath respectively  .
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 We can take (| j ⟩) j  an orthonormal complete system in HB  such that 

ρB(0)=∑
j

a j| j ⟩ ⟨ j|   and let (|k ⟩)k=(|l ⟩ )l=(|m ⟩)m=(|n ⟩)n=(| j ⟩)j  so that we have 

Û=∑
k , l

U k l⊗|k ⟩ ⟨ l|      ,      Û +=∑
m,n

U mn+⊗|n ⟩ ⟨m|

 

Thus after some calculus we obtain
ρS( t)=trB Û (t)(ρS (0)⊗ρB(0))Û

+ (t)=
= ∑

s ,k , l,m ,n , j
U kl(t)ρS(0)U

mn+ (t)a j ⟨s|k ⟩⟨ l| j⟩ ⟨ j|n⟩⟨m|s⟩=∑
m, j

Am j( t)ρS(0) Am j
+ (t)  

 

 where Am j(t)=⟨m|Û (t)| j⟩√a j  are the so called Kraus operators acting on H S  .  
For an arbitrary ρS (0)=∑

q
pq|q ⟩ ⟨q|       with ∑

q
pq=1  , pq>0  (the general form of 

a density operator), the condition trρS(t )=1  ,taking l=m j  as the combined index
 and (|r ⟩)r  a complete orthonormal system in H S ,  leads to: 

 

1=∑
l
∑

q
∑

r
pq⟨r|Al|q⟩ ⟨q|A l

+|r ⟩=∑
l ,q

pq ⟨q|Al
+∑

r

|r ⟩ ⟨r|Al|q⟩=

=∑
q

pq ⟨q|∑
l

A l
+ A l|q⟩  and so ∑

q
pq⟨q|∑

l
(Al

+ Al−IS)|q⟩=0                  (3) 

 for arbitrary pq  , (|q ⟩)q  with ∑
q

pq=1  , pq≥0  and therefore from (3) follows 

 

∑
l

A l
+ A l=IS  the condition satisfied by the Kraus operators.  

We have the operator sum representation
ρS(t)=∑

l
A lρS (0)A l

+         (4)  with ∑
l

Al
+ Al=IS   ,  Al=A l(t)      (5)   

In particular, if there is more than one term present in the (4) sum for ρS , then the 
dynamics of the system will be non-unitary and hence decoherence will take place.
As we noticed, any measurement device acts as an environment. Measurements are 
made on observables. Repeated measurements made on a statistical ensemble of 
systems with wave functions Hilbert space H and  prepared in a macrostate with 
density matrix ρ results in a probability distribution over the eigenvalue spectrum of 
the measuring observable which is a discrete probability distribution
p(a)=tr (ρPa)   ,  a∈σ(A)={a′∈ℝ| exists u∈H  such that A u=a′u} where 

  the observable A : H→H  is a compact continuous linear self-adjoint operator 
 on H  and Pa  is the projector of H  on the eigenspace of eigenvalue a  for A  . 

  

 We have obviously A=∑
a

a Pa  and the (Pa)a  is a family of pairwise orthogonal 

 projectors, ⊕
a

Pa=IH       (6)  , Pa=Pa
+   ,  Pa

2=Pa        (7) 
 

Immediately after measurement, the statistical state is a classical distribution over the 
eigenspaces associated with the possible eigenvalues a of the observable.
After measurement the density matrix becomes
ρ→∑

a
PaρPa=ρm  and so with t  time moment immediately after measurement,  
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 taking (Pa)a=(Al(t))l  , ρ=ρS(0)  , ρm=ρS(t )  and considering (6), (7) 
we recognize (4) , (5) .

 

We conclude that if we have H a Hilbert space with quantum states density matrices
ρ∈L(H )  ( as defined density matrix, ρ  is a compact self-adjoint non-negative  

operator ⟨ x|ρ|x⟩≥0  for any x∈H  , trρ=1  ), any interaction with an environment
 

of quantum statistical ensembles represented on H defines a quantum operation Φ 
upon density matrices ρ∈L(H )   ,  Φ(ρ)=∑

l
Alρ A l

+       (8) where  

(Al)l  is a sequence of continuous linear operators Al∈L(H )  satisfying 

∑
l

A l
+ A l=IH

  

By a discretization with a bounded lattice grid of the spatial coordinates domain we 
will restrict ourselves to using finite dimensional Hilbert spaces H .
A correlated system with the H Hilbert space system defines a quantum states 
 combined Hilbert space H⊗HC  and density matrices 
~ρ=∑

k ,m
T (k m)⊗|k ⟩ ⟨m|∈L(H⊗HC)  where (|k ⟩)k=(|m ⟩)m  is an orthonormal basis of  

the (considered finite dimensional) environment Hilbert space HC  and T (k m)∈L(H )

 

 A linear map Φ : L(H )→L(H )  induces a map ~Φ : L(H⊗HC)→L(H⊗HC)
~Φ(~ρ )=∑

k ,m
Φ(T (k m))⊗|k ⟩ ⟨m|   which acts like Φ⊗id  ; ~Φ=Φ⊗id   where 

id : L(HC)→L(HC)  , id (M )=M  for any M∈L(HC)  , ~ρ=∑
k ,m

T (k m)⊗|k ⟩ ⟨m| 

 

To be a quantum operation,  a map Φ : L(H )→L(H)  should therefore satisfy  three 
properties:
1. It should be linear
2. It should be completely positive (that is for any (finite dimensional) HC if
~ρ∈L(H⊗HC)  is non-negative then ~Φ(~ρ)  is non-negative)  so that it takes quantum 
states to quantum states (even for sytems correlated with the one which the map is 
acting on) .
3.  It should satisfy Φ(A + )=Φ(A)+  and be trace preserving  (again that it takes 
quantum states to quantum states).

We will prove the following Choi-Kraus theorem:
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 A map Φ : L(H )→L(H )  with H  a finite dimensional Hilbert space is linear , 
completely positive, trace preserving and satisfies Φ(A + )=Φ(A)+  for

 any A∈L(H )  if and only if exist (V l)l=1 ,d  such that ∑
1

d

V l
+ V l=I H

 and Φ(X )=∑
1

d

V l X V l
+  for any X∈L(H)

Also it will follow d≤(dim H )2

   

Proof of Choi-Kraus theorem

 Let Φ(X )=∑
1

d

V l X V l
+  for X∈L(H )  with V l∈L(H )  , ∑

1

d

V l
+ V l=IH   .  

 We have trΦ(X )=∑
1

d

tr(V l X V l
+ )=∑

1

d

tr((∑
1

d

V l
+ V l)X)=tr X  and also 

Φ(X +)=Φ(X )+  is obvious. 

 

 For HC=ℂ
n  , ~X∈L(H⊗H C)  we have (Φ⊗idn)(

~X )=∑
1

d

(V l⊗ In)
~X (V l⊗In)

+  

 Obviously if ~X≥0(⟨ x|~X|x⟩≥0  for any x∈H⊗HC)  it follows 

(V l⊗In)
~X (V l⊗In)≥0  and so  ~Φ(~X)≥0  if ~X≥0   . 

 

Let now Φ : L(H )→L(H )  linear , trace preserving and completely positive and 
 satisfying Φ(A +)=Φ(A)+  for any A∈L(H ) .

 

 We can take an orthonormal basis (|i ⟩)i=1 ,n  of H (dim H=n)  and an orthonormal 

 basis (|i ⟩C)i=1 ,n  of HC=ℂ
n  and consider 

~Φ=∑
i , j
Φ(|i ⟩ ⟨ j|)⊗|i ⟩C C ⟨ j| ∈L(H⊗HC)

 

 Since (|i ⟩ ⟨ j|)+=|j ⟩ ⟨i|      and for A=∑
i , j

|i ⟩ ⟨ j|⊗|i ⟩C C ⟨ j|  , for  

any φ=∑
i , j
αi j|i ⟩⊗| j ⟩C  we have ⟨φ|A|φ⟩= ∑

p ,q ,r , s ,i , j
α pq
∗ αr sδ p iδq iδ j rδ j s=|∑i α ii|2≥0 , 

 

it follows from the assumptions we made on Φ that the above defined operator
~Φ  is self-adjoint and positive semi-definite. Therefore we can diagonalize ~Φ  as 

~Φ=∑
1

d

|φl ⟩ ⟨φl| with d≤n2    , φl=∑
i , j
αi j

l |i ⟩⊗| j ⟩C    , αi j
l ∈ℂ   . 

 

Let V l=∑
i , j
αi j

l |i ⟩ ⟨ j| and we will have :

Φ(|m ⟩ ⟨q|)=(I H⊗C ⟨m|)~Φ(I H⊗|q ⟩C)=∑
l , i , k
αi m

l αk q
l∗|i ⟩ ⟨k|      (9)  

∑
l

V l|m ⟩ ⟨q|V l
+= ∑

l , i . j , k , r
αi j

l |i ⟩ ⟨ j|m⟩ ⟨q|αk r
l∗|r⟩ ⟨k|=∑

l , i k
αim

l αk q
l∗|i ⟩ ⟨k|     (10)  

 Since (|m ⟩ ⟨q|)m ,q  is a basis in L(H )  from (9) and (10) follows   
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Φ(X )=∑
1

d

V l X V l
+    for any X∈L(H ) .

 Because Φ  is trace preserving we have for any |q ⟩∈H  that 
1=tr(Φ(|q ⟩ ⟨q|))=∑

l ,m
⟨m|V l|q⟩⟨q|V l

+|m⟩=∑
l
⟨q|V l

+ (∑
m
|m ⟩ ⟨m|)V l|q⟩=

=⟨q|∑
l

V l
+ V l|q⟩  and so ∑

l
V l
+ V l= IH  closing the proof of Choi-Kraus theorem. 

  

The no-communication theorem states that, within the context of quantum mechanics, 
it is not possible to transmit bits of information by means of carefully prepared mixed 
or pure states.
Suppose Alice and Bob perform measurements on system S whose underlying Hilbert 
space is H=H A⊗H B  . Alice performs a local measurement on her part of the 
 system (the Hilbert space H A  ). If the density operator of the system is σ  , Alice's 

 

measurement effect is described by a quantum operation on the system state, which 
according to Choi-Kraus theorem, on the whole system density operator acts like 
P(σ)=∑

l
(V l⊗IHB

)σ (V l⊗IHB
)+      (11)  where V l∈L(H A)  are the Kraus matrices 

 satisfying ∑
l

V l
+ V l=IHA

  . 
 

The factor I H B
 from the (11) expression means that Alice's measurement apparatus  

not interract with Bob’s subsytem.
The relative state of Bob’s system is given by the partial trace of the overall state with 
respect to Alice's system , trHA

(P(σ))   .  
We have σ  =∑

i
T i⊗Si    with T i∈L(H A)   ,  Si∈L(H B)   , 

trHA
(P(σ))=trH A

(∑
l
∑

i
V l T i V l

+⊗Si)=∑
i
∑

l
( tr(V l T i V l

+ ))Si=∑
i
(tr T i)Si=trHA

(σ)

 and so  trHA
(P(σ))=trH A

(σ)   . 

 

Therefore statistically, assuming that all measurable properties of Bob’s system can 
be calculated from its reduced density matrix, which is true given the Born rule for 
calculating the probability of making various measurements, Bob cannot tell the 
difference between what alice did and a random measurement (or whether she did 
anything at all) and that is clearly the statement of the no-communication theorem.
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                                   Entanglement . Bell inequalities.
                      Tsirelson bound . Applications of entanglement

Quantum entanglement occurs when a group of particles are generated , interact or 
share spatial proximity in a way such that the quantum state of each particle of the 
group cannot be described independently of the state of the others, including when 
the particles are separated by a large distance. Measurements of physical properties 
such as position, momentum, spin and polarization performed on entangled particles 
can in some cases be found to be perfectly correlated. Any measurement of a 
particle’s properties results in an apparent and irresversible wave function collapse of 
that particle and changes the original quantum state. With entangled particles, such 
measurement affects the entangled system as a whole.
Consider two arbitrary quantum sytems A and B with the respective Hilbert spaces of 
states HA and HB . The Hilbert space for the composite sytem is the tensor product

H A⊗H B  . Let (|i ⟩A)i  an orthonormal complete sytem for H A  and (| j ⟩B)j  an 
 orthonormal complete system for HB  . The most general state in H A⊗HB  is 

  

|ψ ⟩A B=∑
i , j

ci j|i ⟩A⊗| j ⟩B  . This state is called separable if there exist (ci
A)i  , (c j

B)j  such 

 that ci j=ci
A c j

B  yielding |ψ ⟩A=∑
i

ci
A|i ⟩A  , |ψ ⟩B=∑

j
c j

B|j ⟩B  , |ψ ⟩A B=|ψ ⟩A⊗|ψ ⟩B   . 
 

A state |ψ ⟩A B  that is not separable(i.e.it cannot be represented as|ψ ⟩A B=|ψ ⟩A⊗|ψ ⟩B ) 
will be called an entangled state.
For example, given two basis vectors (|0 ⟩A ,|1 ⟩A)  of H A  and two basis vectors  
(|0 ⟩B ,|1 ⟩B)  of H B  ( |0 ⟩A, B ,|1 ⟩A ,B  can be the polarization or spin eigenstates of  
photons or respective electrons forming a possible entangled pair of photons 
respective electrons in a AB composite system ) the following state is an entangled 

 state: 1
√2
(|0 ⟩A⊗|1 ⟩B−|1 ⟩A⊗|0 ⟩B)  .   

Now suppose Alice is an observer for sytem A and Bob is an observer for sytem B.
If in the entangled state given above Alice makes a measurement in the 
(|0 ⟩ ,|1⟩)  eigenbasis of A ,  there are two possible outcomes, occuring with equal  
probability:
1. Alice measures 0  and the system collapses to |0 ⟩A⊗|1 ⟩B  . 
2. Alice measures 1  and the system collapses to |1 ⟩A⊗|0 ⟩B  . 

  

Then any subsequent measurement performed by Bob in the same basis will always 
return 1 if the former occurs and will always return 0 with certainity if the latter 
occurs. This remains true even if the systems A and B are spatially separated and thus 
the system B has been altered by the Alice performing a local measurement on 
system A .
 If Bob's measurement is in another basis (|x(θ)⟩B ,|y (θ)⟩B)  , we say another linear  
polarization in the x y plane along any axis, we will have :
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|1 ⟩B=⟨1|x(θ)⟩B|x(θ)⟩B+⟨1|y(θ)⟩|y(θ)⟩B
|0 ⟩B=⟨0|x(θ)⟩B|x(θ) ⟩B+⟨0|y(θ)⟩B|y (θ)⟩B  

 

|x(θ)⟩=(cosθ
sin θ)   ,  |y (θ)⟩=(−sin θ

cosθ )   ,  |0 ⟩=(10)   ,  |1⟩=(01)   
|0 ⟩=cosθ|x(θ)⟩−sin θ|y (θ)⟩   ,  |1⟩=sinθ|x (θ)⟩+cosθ|y(θ)⟩    
 and therefore the outcome will be |x (θ)⟩B  with probability sin2θ  and |y(θ)⟩B  

 with probability cos2θ  in the former case and |x(θ)⟩B  with probability cos2θ   

 and |y (θ)⟩B  with probability sin2θ  in the latter case. 

  

Hence the quantum mechanical result by Heisenberg’s uncertainity principle that 
polarization states cannot be simultaneously determined with certainity for two 
different polarization axes can be confirmed. The same result will be valid, by similar 
reasons, for spin states measured along different axes (the spin states are eigenstates 
n⃗⋅⃗σ  with n⃗  versor of the direction along the spin is measured, σ⃗=(σ1 ,σ2 ,σ3)  , 

σ 1=(0 1
1 0)   ,  σ2=(0 −i

i 0 )   ,  σ3=(1 0
0 −1)  the Pauli matrices). 

   

Thus the EPR (Einstein-Podolski-Rosen) paradox (Bohm’s variant) regarding the 
non-violation of Heisenberg’s principle in quantum mechanics is resolved.
(the paradox arises in the way that since Alice measures her particle’s polarization in 
the (0,1) basis, Bob would automatically know his particle’s polarization in the (0,1) 
basis, because of the entanglement and could also measure the polarization of his 
particle in a different basis thus knowing the polarizations in the two different bases 
simultaneously with certainity. In fact, Alice’s measurement action affects the whole 
combined system of entangled particles altering Bob’s result.) 

For a quantum ensemble we have the system described by a density operator
ρ=∑

i
pi|ψi ⟩ ⟨ψi|  ,  pi∈[0 ,1]   ,  ∑

i
pi=1  (see Chap. Quantum statistical ensemble)  

A bipartite composite system has density matrices, representing states of a quantum 
ensemble, having the general form
ρ=∑

i
pi(∑

j
ci j
∗ (|αi j ⟩ A

⊗|βi j ⟩B))(∑
k

cik A ⟨αi k|⊗ B ⟨βik|)   with  pi∈[0 ,1]   ,  ∑
i

pi=1  , 

∑
j
|c j|

2=1   ,  ci j
∗  the complex conjugate of ci j

  

 A mixed state ρ  (a trace class and positive semi-definite operator on) H A⊗HB

 is valled separable if it can be written as ρ=∑
i

wiρi
A⊗ρi

B   with  ρi
A  , ρi

B  density 

 operators on H A  rspective H B  . 

  

 By writing the density matrices ρi
A ,ρi

B  as sums of pure ensembles, 

(  of the form ρ=|ψ ⟩ ⟨ψ|)  we may assume without loss of generality that ρi
A ,ρi

B  are 
 

themselves pure ensembles.
A mixed state which is not separble is called an entangled state.
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 For a pure state |ψ ⟩  on H A⊗H B  we have  : 

ρ=|ψ ⟩ ⟨ψ|=ci j ck l
∗|i ⟩A A ⟨k|⊗|j ⟩B B ⟨ l| with ∑

i , j
|ci j|

2=1    and  

ρA=trBρ=ci s ck s
∗ |i ⟩A A ⟨k|  ,  ρB=trAρ=c s j cs l

∗| j ⟩B B ⟨ l|  where we used Einstein  
 

summation convention for the s index.
 It follows trρA=trρB   and that  ρA ,ρB  are positive semi-definite since they are 
 of the form C C +  and respective C + C  where C=(ci j)i j  and so ρA ,ρB  are the  
 partial density matrices for subsystems A  respective  B  . 

  

If ρ is a pure separable state we will have:

ρ=|ψ  ⟩ ⟨ψ |  with  |ψ ⟩=ci
A c j

B|i ⟩A⊗| j ⟩B   ,  ∑
i
|ci

A|2=∑
j
|c j

B|2=1  

ρ=ci
A ck

A∗ c j
B cl

B∗|i ⟩A A ⟨k|⊗|j ⟩B B ⟨ l|  ,  ρA=ci
A c k

A∗|i ⟩A A ⟨k|
  

We can take an unitary operator U on H A  such that U U += IHA
 , U|i ⟩A=U i j|j ⟩A  , 

U i j ci
A=δ1 j   and so U ρA U +=|1⟩A A ⟨1| and for the von Neumann entropy follows 

S (ρA)=S(U ρA U +)=−tr(ρA logρA)=0  . In the same way we obtain S(ρB)=0  .

 

The von Neumann entropy can be taken as a entanglement measure for pure bipartite 
states.
 A pure bipartite state ρ=|ψ  ⟩ ⟨ψ  | on H A⊗H B  for dim H A=dim H B=n
 will be maximal entangled if the reduced states of each subsystem, ρA  , ρB  are 

ρA=
1
n
I HA

  respective  ρB=
1
n
I HB

 (because as we know the Shannon entropy 

achieves its maximum at and only at the uniform probability distribution). 

  

 For dim H A=dim H B=2  the functions 

|φ± ⟩= 1

√2
(|0 ⟩A⊗|0 ⟩B±|1⟩A⊗|1 ⟩B)   ,  

|ψ± ⟩= 1

√2
(|0 ⟩A⊗|1 ⟩B±|1 ⟩A⊗|0 ⟩B)

  

define  four maximal entangled pure states called the Bell states and they form a 
complete  orthonormal system in H A⊗H B  . 

 For ρ  a general density matrix on H A⊗H B  we have  

ρ= ∑
i , j , k , l

pk l
i j|i ⟩A A ⟨ j|⊗|k ⟩B B ⟨l| and we define the partial transpose 

ρT B=(I⊗T )(ρ)= ∑
i , j , k , l

pl k
i j|i ⟩A A ⟨ j|⊗|k ⟩B B ⟨l|     where 

T (∑
k , l

c kl|k ⟩ ⟨l|)=∑
k , l

cl k|k ⟩ ⟨ l|  . 

   

If ρ is separable we have
ρ=∑

i
piρi

A⊗ρi
B   with  ρi

A ,ρi
B   density matrices on  H A  respective HB  , ∑

i
pi=1  , 

pi∈[0 ,1]    following   ρT B=∑
i

piρi
A⊗(ρi

B)T
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As the transposition preserves eigenvalues, the spectrum of (ρi
B)T is the same as the 

spectrum of ρi
B and in paticular (ρi

B)T must still be positive semi-definite. Thus ρT B  
must be positive semi-definite and the fact that the partial transpose ρT B is positive 
semi-definite is a necesar condition for ρ to be separable.
Therefore if the partial transpose of a density matrix has a negative eigenvalue, then 
that density matrix is an entangled state. (Peres-Horodecki or PPT positive partial 
transpose criterion)
The Peres-Horodecki criterion is a necesar and sufficient condition for entanglement 
if and only if the product space H A⊗HB  has the dimension 2×2  or 2×3   .  
The result is independent of the part that was transposed since ρT A  = (ρT B)T .

Quantum information processing is the study of information processing tasks that can 
be accomplished (only) using quantum mechanical systems. What we refer to, are 
tasks that can be possible only if the laws of quantum mechanics apply to the system 
used for processing the information or that are accomplished in a more efficient way 
if performed by a quantum system (in terms of time or material resources).
The power of quantum computation seems to come from two main ingredients: 
quantum superposition (in the form of parallelism that allows to compute all the 
possible solutions of a problem at once) and interference (that leads to algorithms that 
select a constructive interference for the correct solution, so that we obtain the right 
answer with high probability once we measure the quantum system and collapse the 
superposition state).
In the same way as classical computers are physical systems, circuits made of wires 
and gates, a quantum computer is also composed of wires and gates. The wires are 
used to carry information arround, while the gates perform operations, manipulate the 
information. Quantum gates however have the properties of being linear and 
invertible, as they represent the unitary evolution of a quantum system (a collection 
of two level sytems or qubits (of polarization or spin ½  states)).
We thus define a composite Hilbert space of dimension N = 2n , where n is the 
number of qubits, as the tensor product of the Hilbert spaces for each qubit :

H=⊗
i=1

n

H i  with H i  the Hilbert space for each qubit, having elements of the form 

α|0 ⟩+β|1 ⟩  with α ,β∈ℂ  , (|0 ⟩ ,|1 ⟩)  an orthonormal basis of H i  . A normalized qubit 

 has |α|2+|β|2=1  . The operators space is the product operators space ( also called 

 

Pauli operators space). The elements of a basis of this product operators space are 

 defined as Pl=⊗
j=1

n

Pl
( j)  where each Pl

( j)  is either a Pauli matrix {σ x ,σ y ,σz} 

 or the identity I  operator on the H j  space of the qubit j   . 
 

 We notice that Pl=Pl
+   and  tr(Pl Pl′)=N δl l′  so the basis is orthogonal but not  

normalized.
A basis for a two-qubit system is given by the four states
|0 0 ⟩=|0 ⟩A⊗|0 ⟩B  , |01 ⟩=|0 ⟩A⊗|1 ⟩  , |10 ⟩=|1 ⟩A⊗|0 ⟩B  , |11 ⟩=|1 ⟩A⊗|1 ⟩B   .
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The action of a Pauli matrix on the vectors of its own Hilbert space is as usual

 (e.g. σ x
A|0 ⟩A=|1 ⟩A   ,  σ x

A|1 ⟩A=|0 ⟩A  with |0 ⟩=(10)   ,  |1 ⟩=(01)  ).   
But operators of the A Hilbert space do not act on the vectors of the other Hilbert 
space so we make a contextual identification in  notations (e.g. σx

A⊗IB=σ x
A  ).  

There are several operators which are normally used in quantum computation and 
that describe the possible evolution of the system:
Not A=σx

A⊗IB   ,  Not B=I A⊗σ x
B  , 

 Hadamard gate H=(σ x+σ z)
1
√2

 , 

 Controlled not gate : rotate B  conditionally on the state in the space A  as 
C A NOTB=EA

+⊗I B+E A
−⊗σ x

B   where E+=|0 ⟩ ⟨0|  ,  E−=|1 ⟩ ⟨1| . 

 

At the end of a circuit, the qubits are measured. Usually it is implicit that the qubits 
 are measured in their computational basis (|0 ⟩ ,|1⟩)  . 
|0 ⟩ ,|1 ⟩  are the eigenvectors of σ z  . The eigenvectors of σ x  form an equivalent  

 basis denoted (|+   ⟩ ,|−   ⟩)  with |+  ⟩= 1

√2
(|0 ⟩+|1 ⟩)   ,  |−  ⟩= 1

√2
(|0 ⟩−|1⟩ )

 

The operator that performs the change of frame is therefore the Hadamard matrix:
 For |ψ ⟩z=a|0 ⟩+b|1 ⟩  , |ψ ⟩ x=a|+  ⟩+b|−  ⟩  we have |ψ ⟩ x=H|ψ ⟩z  .   
We can also just have general single qubit gates U that describe any general rotation 
on a single qubit.
If we combine this single qubit rotations with the C NOT gates on any pair of qubits 
we are able to build any possible algorithm (or computation) on the system. That also 
means that we are able to enforce any possible evolution of the system, by letting it 
evolve under these two types of gates.

The so called No-cloning theorem states that “It is impossible to make a perfect copy 
of an unknown, pure state by an unitary operation”. Suppose we want to copy an 
arbitrary state |ψ ⟩=a|0 ⟩+b|1 ⟩  on the blank initial state |i ⟩  .  Therefore we have an 
unitary operator U defined on the tensor product space such that for any state which 
is to copy we have U|ψ ,i ⟩=|ψ ,ψ ⟩    where we use notation |ψ ,φ ⟩=|ψ  ⟩⊗|φ  ⟩  for 
 any states |ψ  ⟩ ,|φ  ⟩  . 
If we assume to be able to copy any arbitrary state, we can assume that we can copy 
 at least another state |φ ⟩  which is not the state |ψ  ⟩  and is not orthogonal to it.   
For this second state we have also :
 U|φ ,i ⟩=|φ ,φ ⟩  , U + U=I  and so ⟨φ|ψ⟩=⟨φ , i|U + U|ψ, i⟩=⟨φ ,φ|ψ ,ψ⟩=⟨φ|ψ⟩2 . 
 This equation is satisfied only if ⟨φ  |ψ⟩=1  or ⟨φ  |ψ⟩=0  .  In the first case , the two 
states are in effect the same state (up to a normalization factor or a global phase 
which are not important). In the second case the two states are orthogonal, in 
contradiction with the hypothesis.
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A unitary operator cannot copy an arbitrary state . If we find an operator that clone 
one state, it can only copy that state and states which are orthogonal to it, but it 
cannot clone all other states. In a Hilbert space it is therefore possible to define an 
operator that clone the basis states, but not an arbitrary superposition of them. 
The No-communication theorem (see Chap. Decoherence … No-communication 
theorem) implies the No-cloning theorem. That is , cloning is a sufficient condition 
for the communication of classical information to occur. To see this, suppose that 
quantum states could be cloned. Assume parts of a maximally entangled Bell state of 
a 2-qubit system are distributed to Alice and Bob. Alice could send bits to Bob in the 
following way:
If Alice wishes to transmit “0” , she measures the spin of her electron in the z-
direction, collapsing Bob’s state to  either |z+ ⟩B  or |z− ⟩B  ( the eigenstates of σ z

B  ).  
To transmit “1” , Alice does noting to the qubit. Bob creates many copies of  his 
electron’s state and measures the spin of each copy in the z-direction. Bob will know 
that Alice has transmitted a “0” if all his measurements wil produce the same result; 
otherwise his measurements will have  outcomes |z+ ⟩B  or |z− ⟩B  with equal  
probability. This would allow Alice and Bob to communicate classical bits each other 
(possibly across space-like separations violating causality).

 We can transform the (|00 ⟩ ,|0 1⟩ ,|1 0 ⟩ ,|11⟩)  basis of the two-qubit system in the   
Bell states basis applying a Hadamard gate and a CA NOTB gate as follows :

|0 0 ⟩
H A

→
 

1

√2
(|10 ⟩+|0 0 ⟩)

CA NOTB

     →
 

|φ + ⟩   

|01 ⟩
H A

→
 

1
√2
(|11 ⟩+|0 1 ⟩)

C A NOTB

     →
 

|ψ+ ⟩   

|10 ⟩
H A

→
 

1

√2
(|0 0 ⟩−|10 ⟩)

CA NOTB

     →
 

|φ− ⟩  

|1 1⟩
H A

→
 

1

√2
(|0 1 ⟩−|1 1⟩)

C A NOTB

     →
 

|ψ− ⟩  

   

 Measuring C A NOTB  in the incoming (|0 0 ⟩ ,|0 1⟩ ,|1 0 ⟩ ,|11 ⟩)  basis is called   a Bell 
measurement.
 Notice that for a , b=0 ,1  we have C A NOTB|a b ⟩=|a a⊕b ⟩   where ⊕  means 
 addition modulo 2 . 
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                 EPR Quantum key distribution

The problem in question is that Alice needs to send a highly private message to Bob 
such that Eve is unable to gain any information when she tries to listen in. 
If Alice and Bob share a private key (a string of random bits known only to them), 
then Alice can convert her message to ASCII (a string of bits no longer than the key) 
add (modulo 2) each bit of her message to the corresponding bit of the key and send 
the result to Bob . Receiving this string, Bob adds the key to it, to extract Alice’s 
message. 
Alice and Bob need to establish therefore a shared  random key and they must ensure 
that Eve can’t know the key, and they can do that exploiting quantum information 
(and specifically entanglement).
Let’s suppose that Alice and Bob share a supply of entangled pairs prepared in the 
state |ψ− ⟩ .  For each qubit in her/his possession, Alice and Bob decide to measure 
 either σ1  or σ3 .  The decision is pseudo-random, each choice occuring with 

 

probability ½  . Then , after the measurements are performed both Alice and Bob 
publicly announce what observables they measured but do not reveal the outcomes 
they obtained. For those cases, about half in which they measured their qubits along 
different axes , their results are discarded (as Alice and Bob obtained uncorrelated 
outcomes). For those cases in which they measured along the same axis, their results, 
though random, are perfectly (anti-)correlated. Hence they established a shared 
random key.
However, Eve might have clandestinely tampered with the pairs at some time in the 
past, to find out the key. Then the pairs that Alice and Bob possess might be 
(unbeknownst to Alice and Bob)  not perfect |ψ− ⟩  but rather pairs that are  entangled 
with qubits in Eve’s possession. Eve can then wait until Alice and Bob make their 
public announcements and proceed to measure her qubits in a manner designed to 
acquire maximal information about the results that Alice and Bob obtained.
If Eve has indeed tampered with Alice’s and Bob’s pairs, then the most general 
possible state for an AB pair and a set of E qubits has the form :
|γ  ⟩A B E=|0 0 ⟩A B|e0 0 ⟩E+|0 1⟩A B|e01 ⟩E+|10 ⟩A B|e1 0 ⟩E+|11 ⟩A B|e1 1 ⟩E   .   
 The defining property of |ψ− ⟩  is that it is an eigenstate with eigenvalue −1  of 
 both σ 1

Aσ1
B  and σ3

Aσ3
B .

 

Suppose that A and B are able to verify that the pairs in their possession have this 
property. 
To satisfy σ3

Aσ3
B=−1  we must have |γ  ⟩A B E=|0 1 ⟩A B|e01 ⟩E+|1 0 ⟩A B|e10 ⟩E  

and to satisfy σ1
Aσ 1

B=−1  we must have |γ  ⟩A B E=
1

√2
(|01 ⟩A B−|1 0 ⟩A B)|e ⟩E=|ψ− ⟩|e ⟩  . 

 

We see that it is possible for the A B pairs to be eigenstates with eigenvalue -1 
 of σ1

Aσ1
B  and σ 3

Aσ3
B  only if they are completely unentangled with Eve's qubits.   

Therefore, Eve will not be able to learn anything about Alice’s and Bob’s 
measurement results by measuring her qubits. The random key is secure.
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 To verify the properties σ 1
Aσ1

B=−1=σ3
Aσ3

B  , Alice and Bob can sacrifice a portion  
of their shared key and publicly compare their measurement outcomes. They should 
find that their results are indeed perfectly correlated. If so, they will have high 
statistical confidence that Eve is unable to intercept the key. If not, they have detected 
Eve’s nefarious activity, may then discard the key and make a fresh attempt to 
establish a secure key.
Another variation of this key distribution scheme is “the time-reversed EPR” scheme. 
Here both Alice and Bob prepare one of the  four states |z+ ⟩ ,|z− ⟩ ,|x+ ⟩ ,|x− ⟩  and  
they both send their qubits to Charlie. Then Charlie performs a Bell measurement on 
the pair  projecting out one of |φ± ⟩ ,|ψ± ⟩  and he   publicly announces the result. 
Since all four of these states  are simultaneous eigenstates of σ1

Aσ1
B  and σ3

Aσ 3
B  ,  

when Alice and Bob both prepared their spins along the same axis (as they do about 
half the time), they share a single bit.
Of course, Charlie could be allied with Eve, but Alice and Bob can verify that Charlie 
has acquired no information as before, by comparing a portion of their key.
This scheme has the advantage that Charlie could operate a central switching station 
by storing qubits received from many parties, and then perform his Bell measurement 
when two of the parties request a secure communication link. A secure key can be 
established even if the quantum communication line is down temporarily, as long as 
both parties had the foresight to send their qubits to Charlie on an earlier occasion 
(when the quantum channel was open).

                         Dense coding

Alice and Bob are linked to a quantum channel and Alice wants to send messages to 
Bob. 
She might send classical bits , preparing a qubit in one of the  states |0 ⟩=|z+ ⟩  ,  
|1 ⟩=|z− ⟩ (spin states in direction z  of an electron for example),  send the qubit to 
Bob who can measure the qubit along the z direction for spin to infer the choice Alice 
made.
But we can suppose that Alice and Bob share an entangled pair of qubits in the state
|φ+ ⟩A B ,  one qubit was shipped to Alice and the other to Bob, anticipating the later  
use of entanglement. Now Alice can use the entanglement as a resource to send Bob 
two classical bits of information in the following way.
Alice can perform on her member of the entangled pair one of four possible unitary 
transformations:
1) I  (she does nothing) 
2) σ 1

3) σ2

4) σ3

 

By doing so, she transforms  |φA B
+ ⟩  to one of four mutually orthogonal states:   
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1) |φ+ ⟩A B  
2) |ψ+ ⟩A B

3) |ψ− ⟩ A B

4) |φ− ⟩ A B

  

Now she sends her qubit to Bob who receives it and then performs an orthogonal 
collective measurement on the pair that projects onto the maximally entangled basis. 
The measurement outcome unambiguosly distinguishes the four possible actions that 
Alice could have performed. Therefore the single qubit sent from Alice to Bob carried 
2 bits of classical information. Hence this procedure is called “dense coding”.
If the message is highly confidential Alice need not worry that her message might be 
intercepted and deciphered. The transmitted qubit has density matrix 

ρA=
1
2
I A  and so carries no information at all.  All the information is in the correlation 

between qubits A and B and this information is inaccessible unless the adversary is 
able to obtain both members of the entangled pair . (Of course, the adversary can jam 
the channel,  preventing the information but reaching Bob).Alice and Bob really did 
need to use the channel twice to exchange two bits of information – a qubit had to be 
transmitted for them to establish their entangled pair in the first place. But the first 
transmission could have taken place a long time ago. The point is that when an 
emergency arose and two bits had to sent immediately while only use of the channel 
was possible, Alice and Bob could exploit the pre-existing entanglement to 
communicate efficiently.

                        Quantum teleportation

The teleportation consists in Alice sending an unknown qubit |ψ  ⟩C  she has, to Bob  
that shares an entangled pair  in state |φ + ⟩A B  with Alice, using entanglement as a  
resource and transmitting information only through a classical channel.
First Alice unites the unknown qubit she wants to send to Bob,
 |ψ ⟩C=a|0 ⟩C+b|1⟩C  with her member of |φ+ ⟩A B  . On these two qubits she performs 
 a Bell measurement, projecting onto one of the four states |φ± ⟩C A ,|ψ± ⟩C A .

 

After some calculus we obtain:

|ψ ⟩C|φ+ ⟩A B=
1
2
|φ+ ⟩C A|ψ ⟩B+1

2
|ψ + ⟩C Aσ1|ψ ⟩B− i

2
|ψ− ⟩C Aσ 2|ψ  ⟩B+ 1

2
|φ− ⟩C Aσ 3|ψ ⟩B   

Alice sends then her measurement outcome (two bits of classical information) 
through the classical channel to Bob who receiving this information performs in 
dependence on it one of four operations on his qubit:
|φ+ ⟩C A→ IB
|ψ+ ⟩C A→σ1

B   

|ψ− ⟩C A→σ2
B

|φ− ⟩C A→σ3
B
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Considering the above calculus result, this action transforms his qubit into a perfect 
 copy of |ψ ⟩C :   |ψ ⟩B=a|0 ⟩B+b|1⟩B   .   

As we exposed above, performing measurements on an entangled pair of particles the 
outcomes show a correlation between the two particles and the particles must be 
considered as parts of one sytstem, even the particles are space-like separated by a 
great distance. However, according to special relativity, information cannot travel 
faster than light so we must assume that a measurement performed on one of the 
particles affects the whole system of two particles since the creation of the 
entanglement relation when the particles shared spatial proximity.

As we noticed in discussion of the EPR paradox , entanglement not violates 
Heisenberg’s uncertainity principle of quantum mechanics.
Also we will show that if the rules of quantum mechanics apply and there is no 
(faster than light) action at distance (locality assumption), then we must assume that 
the correlation between measurements on entangled particles cannot be determined 
by hidden variables (which hidden determination would be resulting from the 
incompletness of the theory) that set the evolution of the measured properties once 
for all at the beginning of entanglement relation (realism assumption). Therefore 
quantum mechanics entanglement is incompatible with local realism.

Let us suppose we are capable of making a state 

|ψ− ⟩ A B=
1
√2
(|01 ⟩AB−|10 ⟩A B)  of two identical spin 1 /2  particles with H A  Hilbert 

 space for Alice's particle, H B  Hilbert space for Bob's particle, H A⊗H B  Hilbert 
 space for the whole two-particles system, dim H A=dim HB=2

 

 Then for n⃗=(n1, n2, n3)  , n⃗2=1  the operators n⃗⋅⃗σA=n jσ j
A   ,  n⃗⋅⃗σB=n jσ j

B  
 measure the spin orientation ±1  along the n⃗  direction for Alice's respective 
 Bob's particle of the entangled system. (where σ j

A=σ j⊗ IB   ,  σ j
B=I A⊗σ j   ) 

  

We expect that if Bob or Alice measures the spin of his/her particle along a direction, 
that affects the whole system of two particles and so if Alice measures the spin of her 
particle along a direction n after Bob measured his particle’s spin along a direction m, 
the results will be correlated.
As we know from statistics, if X and Y are independent random variables, for the 
 expectation values ⟨X ⟩ , ⟨Y ⟩ , ⟨X Y ⟩  we will have ⟨X ⟩⟨Y ⟩−⟨X Y ⟩=0  .  
Therefore considering correlations between measuring B spin along m and measuring 
A spin along n we need to evaluate the expectation value
⟨(n⃗⋅⃗σ A)(m⃗⋅⃗σB)⟩=⟨ψ−|( n⃗⋅σ⃗A)(m⃗⋅σ⃗B)|ψ− ⟩  .  
 We can verify that (σ⃗A+σ⃗B)|ψ− ⟩=0  and therefore we have:  
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⟨( n⃗⋅⃗σA)(m⃗⋅σ⃗B)⟩=−⟨( n⃗⋅⃗σA)(m⃗⋅σ⃗A)⟩=−ni m j tr(σ j
A|ψ− ⟩ ⟨ψ−|σi

A)=

=−ni m j tr (trB(σ j
A|ψ−|⟨ψ−|σ i

A))=−ni m j
1
2

tr(σ j|0 ⟩A A ⟨0|σi+σ j|1 ⟩A A ⟨1|σi)=

=−n⃗⋅m⃗=−cosθ   where θ  is the angle between n  and m  directions. 

  

Consider now two directions a , a’ along Alice can measure the spin of her particle.
Consider also two directions b , b’ along Bob can measure the spin of his particle.
The locality implies that Bob measuring along b or b’ not affects the result of Alice 
measuring along a or a’ .
 Let σ a

A ,σa′
A  the possible outcomes of Alice's measurement in spin measuring 

 experiments along directions a  respective a′  and σb
B ,σb′

B  the possible outcomes 
 outcomes of Bob's measurement in spin measuring experiments along directions 
b  respective b′ .

  

σb
B ,σb′

B ,σa
A ,σ a′

A  are measured at each k -th experiment and are values of random 

 variables σb
B ,σ b′

B ,σ a
A ,σa′

A  . 
 

Realism implies that we have σbk
B ,σb′k

B ,σak
A ,σa′k

A ∈{−1,1} well defined random 
 values at each k -th experiment and so the expectation value 
⟨S ⟩=⟨σ a

Aσb
B⟩+⟨σa′

A σb ′
B ⟩+⟨σ a

Aσb ′
B ⟩−⟨σ a′

Aσ b
B⟩  according to local realism  must be 

⟨S ⟩= lim
N→∞

1
N
∑
k=1

N

Sk  where Sk=σak
A (σb k

B +σb ′k
B )−σ a′k

A (σbk
B −σb′k

B )

 

 We have that σb k
B +σb′k

B ,σb k
B −σb′k

B ∈{2 ,−2,0}  and 

σ bk
B +σ b′k

B =±2  if and only if σbk
B −σb′k

B =0   . 
 

Therefore we can derive Sk∈{±2} for any k∈ℕ∗  and so −2≤⟨S⟩≤2      (*) if local  
realism applies.
But as we proved, in assumption of quantum mechanics rules we must have
⟨S⟩=⟨( a⃗⋅σ⃗A)(b⃗⋅⃗σB)⟩+⟨(a⃗′⋅σ⃗A)( b⃗′⋅⃗σB)⟩+⟨(a⃗⋅⃗σA)( b⃗′⋅⃗σB)⟩−⟨(a⃗′⋅σ⃗A)(b⃗⋅⃗σB)⟩=
=−(a⃗⋅⃗b+ a⃗′⋅⃗b′+ a⃗⋅⃗b′−a⃗′⋅⃗b)   . 

 

 Taking a⃗=(0,0 ,1) , a⃗′=(1,0 ,0) , b⃗= 1
√2
(−1,0 ,1) , b⃗′= 1

√2
(1,0 ,1)  we obtain 

⟨S⟩=−2√2<2  which is in contradiction with (*). 
 If we take a⃗=(0 ,0 ,−1) , a⃗′=(−1,0 ,0)  and leave b⃗ , b⃗′  the same as above 
 we obtain ⟨S ⟩=2√2>2.

 

Hence local realism is violated by quantum mechanical entanglement. No hidden 
variables theory completion is possible, confirming so the non-classical interpretation 
of quantum mechanics.
We can test the violation of local realism also considering other quantitative 
properties of the correlations between measurement outcomes obtained by Bob and 
Alice that violate properly chosen Bell inequalities.
We can verify that the projection operator onto the spin up (+) / spin down (-) along 
direction n states is :
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E( n⃗ ,±)=1
2
(I±n⃗⋅⃗σ)  .   

 If n⃗⋅m⃗=cos θ  we have: 

⟨ψ−|E A( n⃗ ,−)EB (m⃗ ,− )|ψ− ⟩=⟨ψ−|EA (n⃗ , + )EB(m⃗ , + )|ψ− ⟩=1
4
(1−cosθ)  

⟨ψ−|EA ( n⃗ , + )EB (m⃗ ,−)|ψ− ⟩=⟨ψ−|EA( n⃗ ,−)EB (m⃗ , + )|ψ− ⟩=1
4
(1+cosθ)  . 

  

Thus when Alice measures spin along n and Bob measure spin along m the 

 probability that the outcomes are the same is 1
2
(1−cosθ)  and the probability  

 that the outcomes are opposite is  
1
2
(1+cosθ)   . 

  

Now sppose Alice will measure her spin along one of three axes in the x-z plane

m⃗=(0 ,0 ,1) , n⃗=(√3
2

,0 ,− 1
2
) , p⃗=(− √3

2
,0 ,− 1

2
). 

 If Bob measures along −n⃗  and sends the result to Alice,  then Alice knows what 
would have happened if she had measured along n⃗  , the results being perfectly   
correlated if we assume that Alice shares with Bob the  state |ψ− ⟩ .  Now Alice    
can go ahead  and measure along m⃗ .  The probability that the outcomes are the same 

 according to quantum mechanics is 1
2
(1+ m⃗⋅⃗n)  ( Bob measures along −n⃗  to  

 obtain Alice's result for measuring along n⃗  ) In the same way Alice and Bob can 
 work together to determine outcomes for the measurement of Alice's spin along 
 any of two of the axes m⃗, n⃗ , p⃗ .

 

Supposing that there are actually local hidden variables that provide a complete 
description of the system and the quantum correlations arise from a probability 
distribution governing the hidden variables, then we have a Bell inequality statement 
 true: P same(m ,n)+P same(n , p)+P same(p ,m)≥1  where Psame (a ,b)  denotes the 

 probability that the outcomes for directions a⃗  and b⃗  are the same. 
  

But in quantum mechanics we derive 

Psame (m ,n)+Psame (n , p)+Psame (p ,m)=1
2
(1+m⃗⋅⃗n)+ 1

2
(1+ n⃗⋅⃗p)+ 1

2
(1+ p⃗⋅m⃗)= 3

4
<1  , 

 violating the Bell inequality. 

 

Thus we have some kind of local game played by Alice and Bob:
 1. Alice and Bob share an entangled state |ψ− ⟩ .
 2. For each pair of directions (a,b)∈{(m ,n) ,(n, p) ,(p ,m)}=M  Bob measures the 

spin of his particle along −b⃗  and Alice measures the spin of her particle along a⃗  
 and they compare results. 
3. Alice and Bob win the game if they obtain the same outcome for at least one of 
 the pairs chosen in doing 2. 
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Hidden variable theory implies that Alice and Bob must win anytime but quantum 
mechanics rules allow directions m,n,p for which the winning probability is
 less than ¾ . 

For photons travelling in z-direction the linear polarization states for θ oriented frame 

|x(θ)⟩=(cosθ
sin θ)   ,  |y (θ)⟩=(−sin θ

cosθ )  and they are the eigenstates with eigenvalues 

+1  respective −1  of the operator 

τ(θ)=|x(θ)⟩ ⟨ x(θ)|−|y (θ)⟩ ⟨ y(θ)| which is similar to n⃗⋅σ⃗  for spin 
1
2

 states along 

 direction n⃗   . 

  

 Suppose Alice and Bob share a Bell state |ψ− ⟩= 1
√2
(|01 ⟩A B−|10 ⟩A B)  

  with |0 ⟩=|x(0)⟩   ,  |1 ⟩=|y(0)⟩ .
 

Obviously we have ρA=
1
2
|0 ⟩A A ⟨0|+1

2
|1 ⟩A A ⟨1|  ,  ρB=

1
2
|0 ⟩B B ⟨0|+1

2
|1⟩B B ⟨1| and so  

both of the entangled photon beams carry unpolarized light.
Alice chooses randomly j =1,2,3 a polarization filter which allows complete passing 
 of the x (θ j)  polarization direction states and deflects the y (θ j)  polarization  
 direction states of her beam part of the entangled photons system. 

 

Bob does the same with his beam part of the entangled photons system.
Measuring the intensity of the filtered beam versus the incoming beam, Alice and 
Bob can determine the W (ai , bj) probability that Alice’s photons get through the 
filter with θi orientation and not get through the filter with θj orientation (since the 
polarizations of the entangled photons are anti-correlated).
Hence according to quantum mechanics rules we have

W (ai , b j)=⟨ψ
−
|(x(θi)⊗x (θ j))⟩

2   . 
 After some calculus we obtain 

|ψ− ⟩=
1

√2
sin(θ j−θi)(|x (θi)⟩ A|x (θ j)⟩B+|y(θi)⟩A|y(θ j)⟩B)+

+ 1
√2

cos(θ j−θi)(|x(θi)⟩A|y (θ j) ⟩B−|y(θi)⟩A|x (θ j)⟩B)  and so in quantum mechanics 

W (ai , b j)=
1
2

sin2(θi−θ j)

  

 Assuming local realism, the property that a photon passes or not through the filter 
must be well established( by hidden variables as we assume) and the filterings which 
are space-like separated satisfy locality being independent each of other.
Taking with this assumptions Mj the set of Alice’s photons that pass through the  
j=1,2,3 polarization filter ,  since for any sets M1 , M2 ,M 3  we have  
(M1∖M 2)∪(M2∖M3)⊃M1∖M3  we derive that local realism provides the Bell 
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 inequality W (a1 ,b2)+W (a2 , b3)−W (a1, b3)≥0       (**)  
 Taking θ1=0   ,  θ2=θ   ,  θ3=2θ  the relation (**) is equivalent to 

1≥2cos2θ  which is violated for θ∈(0 , π
4 )  leading to the same conclusion as above,

that local realism is violated by quantum mechanics entanglement. 

 

 For a bipartite quantum system having Hilbert space H A⊗H B  with H A , H B     the 
subsystem A respective B corresponding Hilbert spaces , we can consider sets of 
measurement settings SA  , SB , sets of measurement outcomes KA , KB and 
corresponding observables in two distinct models of entanglement:
 i) Aa

x : H A→H A   ,  Bb
y : H B→H B  , (a ,b)∈SA×SB   ,  (x , y)∈K A×K B  

     tensor product model of entanglement 
      ( Aa

x , Bb
y  belong usually to the set of observables ( liniar continuous compact  

        self-adjoint operators for example ) which have spectrum x  respective y  ) 
 ii) Aa

x , Bb
y : H→H   ,  H=H A⊗H B  , (a ,b)∈SA×SB   ,  (x , y)∈K A×K B   such that 

    [Aa
x ,Bb

y]=0  for any Aa
x∈M A  , Bb

y∈M B   and any (a, b , x , y)∈SA×SB×K A×K B  
      commuting operators model of entanglement 

  

 Then entanglement in a state ψ∈H A⊗H B  can be described through correlations 

 between observables Aa
x∈M A  and oservables Bb

y∈M B  ( involving expectation 

 values ⟨ψ|Aa
x⊗Bb

y|ψ⟩  in the i) case of tensor product model and expectation  

 values ⟨ψ|Aa
x Bb

y|ψ⟩  in the ii) case of commuting operators model). 

 

 We notice that, since [ Aa
x⊗IB , I A⊗Bb

y]=0  a tensor product model is a commuting  
operators model. 
The entangled spin ½ particles system we presented above with dimHA=dimHB=2 
ψ=|ψ− ⟩ A B   outcomes  x= y={1 ,−1}  settings given by  SA={a , a′} , SB={b ,b′} 
 M A=M B=M={C∈M2×2(ℂ)|A=A +  , A2=I } with a ,a′ , b, b′  considered as   

 

labels for arbitrary settings like directions along we measure spin orientation, 
revealed the quantum nature of its correlations in the upper bounding of the Bell 
 expression ⟨S⟩=⟨ Aa Bb⟩+⟨ Aa′Bb′⟩+⟨Aa Bb′⟩−⟨ Aa′Bb⟩   .  
 As showed above, choosing the right directions a⃗ , a⃗′ , b⃗ , b⃗′  we obtain ⟨S⟩=2√2  
 while for the clasical hidden variables assumption we obtained ⟨S⟩∈[−2 ,2].

 

In the quantum case , taking 
S=Aa Bb+Aa′Bb′+Aa Bb′−Aa′Bb      (1)   , from the entanglement model 
assumptions we have Aa

2=Aa′
2 =Bb

2=Bb′
2 =I  and also after some calculus we obtain  

S2=4 I+[Aa , Aa′][Bb ,Bb′]        (2)  (Obviously in writing (1)
 we identified Aα=Aα⊗ IB  , Bβ= I A⊗Bβ  for α=a,a′  and β=b ,b′  ) 
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 We have also ‖[Aa, Aa′]‖≤2‖Aa‖‖Aa′‖≤2  , ‖[Bb ,Bb′]‖≤2  and so it follows 

⟨S⟩2≤⟨S2⟩≤8    ,   ⟨S⟩≤2√2   . 
 

Hence the upper bound  of ⟨S⟩  in the quantum case is 2√2   . In the classical  
 case we would have [ Aa , Aa′]=[Bb , Bb ′]=0  and so from (2) we obtain the 
 the upper bound for ⟨S⟩  equal to 2   . 

  

Therefore in the general entanglement model, if are given some real values 
 (μa b x y)a∈SA ,b∈SB , x∈K A , y∈KB

 , we can consider general Bell expressions  

Bt= ∑
a ,b , x, y

μabx y ⟨ψ|Aa
x⊗Bb

y|ψ⟩   in the tensor product model and 

B c= ∑
a ,b ,x , y

μab x y ⟨ψ|Aa
x Bb

y|ψ⟩   in the commuting operators model and the  

 corresponding so called Tsirelson bounds 
T t= sup

ψ∈HA⊗HB , Aa
x ,B b

y

Bt      in the tensor product model and 

T c= sup
ψ∈H A⊗HB , Aa

x , Bb
y

Bc        in the commuting operators model.

 

  

Since tensor product algebras in particular commute  we have T t≤T c   .  
In finite dimensions, commuting algebras are always isomorphic to (direct sums of) 
tensor product algebras so only for for infinite dimensions  it is possible T t≠T c  .  
Tsirelson’s problem of the question whether for all Bell expressions T t=Tc , has been 
shown to be equivalent to Conne’s embedding problem. This happens because the 
Conne’s embedding conjecture implies that it should be possible to approximate 
many infinite-dimensional matrices with finite dimensional ones and the tensor 
product model uses finite dimensional matrices, while the commuting operators 
model uses a more general object that functions like a matrix with an infinite number 
of rows and columns.
Tsirelson’s problem has been solved with a negative answer using arguments from the 
computational complexity theory for provers that share entangled particles.
When two provers that are entangled quantum computers propose solutions to the 
same problem one can verify a solution by playing a non-local game putting them 
questions related to the problem, cross-check the answers, and the provers win the 
game if their responses align most of the time to convince you that the solution is 
correct.
Researchers showed that by interogating two provers separately about their answers, 
you can quickly verify solutions to an even larger class of problems than you can 
when you only have one prover to interogate, since entanglement makes it possible 
for the provers to come up with the questions themselves (The verifier computer 
doesn’t have to compute the questions. The verifier forces the provers to compute the 
questions for them). You can verify fast a much larger class of problems than you can 
without entanglement.
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It has been proved that the class of problems that can be verified (in polynomial time) 
through interaction with entangled provers, a class called MIP* is exactly equal to the 
class of problems that are no harder than the halting problem, a class called RE.
Let hand a program to a pair of entangled provers. You ask them to tell you whether it 
halt. You’re prepared to verify their answer through a kind of non-local game: The 
provers generate questions and win based on the coordination between their answers. 
If the program does in fact halt, the provers should be able to win this game 100% of 
the time. If it doesn’t halt , the provers should only win by chance 50% of the time.
Therefore determination of the maximum-winning probability for a specific instance 
of this non-local game requires solving the halting problem, which means that 
calculating the approximate maximum-winning probability for non-local games is 
undecidable, just like the halting problem. 
An algorithm that uses the tensor product model of the entanglement establishes a 
floor, or minimum value, on the approximate maximum-winning probability for all 
non-local games. Another algorithm, which uses the commuting operators model of 
entanglement establishes a ceiling. These algorithms produce more precise answers 
the longer they run. If the answer to Tsirelson’s problem is true and the two models of 
entanglement really are equivalent, the floor and the ceiling should keep pinching 
closer together, narrowing in on a single value for the approximate maximum-
winning percentage, which makes the calculation of this number decidable.
Hence the answer to Tsirelson’s problem is negative.

The Tsirelson’s problem has been solved through this way of computational 
complexity problems by co-authors of the proofs Henry Yuen, Zhengfeng Ji, Anand 
Natarajan, Thomas Vidick and John Wright.
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               Feynman amplitudes and lattice gauge theory

 We consider, (by suitable choosing of length, time and charge units) that the reduced 
Planck constant and the speed of light in vacuum constant are equal to 1.
ℏ=1  , c=1

For a quantum field system described by field operator functions
φ̂=φ̂(t , x⃗ )       (x=(t , x⃗ )=(xα)α=0 ,3  space-time coordinates ) in the Minkowski 

space with signature ( + , - , - , - ) ,  η=(η
α β
)α ,β=0 ,3 Minkowski metric coefficients 

and a Lagrangian density
ℒ=ℒ(φ ,∂φ)  with φ=(φ i)i    the action is 

S(φ)=∫ℒ(φ ,∂φ)d4 x  and we can have S(φ)=∫(1
2
φiM i jφ j−V (φ))d 4 x

 where Mi j is a differential operator and we use Einstein summation convention.
We can make a discretization of the quantum field in the form
q(t )=(qk

(t ))k=1 ,M=(φ(t ,an1,an2 ,an3))n1 ,n2 ,n3∈ℤ

The momentum field operator function is 

π̂=
∂ ℒ̂

∂(∂0φ)
 and corresponds in discretization to the momentum coordinates 

p(t)=(π(t ,an1 ,an2 ,an3))n 1,n 2, n3∈ℤ  of a discretized phase space evolution 
(p(t) ,q(t ))  with a Hamiltonian operator given by the discretized correspondent 

of the expression
Ĥ (t)=∫( π̂ (t , x⃗)∂0 φ̂ (t , x⃗ )−ℒ (φ̂ ,∂φ̂)(t , x⃗ ))d3 x⃗ which we denote

Ĥ=Ĥ(p̂ , q̂).
As we know, (see Chap. Quantum statistical ensemble) for any observable A = A(t) 
for the expectation value ⟨A⟩t=tr (ρ A)   (ρ  the density operator ) we have an 
evolution equation
d
d t

⟨A⟩t=i ⟨[Ĥ , A]⟩t+⟨∂0A⟩t    ([Ĥ ,A]=Ĥ A−AĤ  the commutator )

Since p̂  , q̂ not depend explicitly on time we can consider evolution equations for
p̂  , q̂  observables functions A(p̂)  , A(q̂)  like 
d
d t

A(p̂)(t)=i [Ĥ ,A(p̂)](t)  ; 
d
d t

A(q̂)(t)=i [Ĥ , A(q̂)](t )

and so A(p̂)  , A(q̂)  evolve like 
A(q̂)(t )=exp( i Ĥ t )A(q̂)(0)exp(−i Ĥ t)  ; 

A(p̂)(t)=exp(i
^̂
Ht)A(p̂)(0)exp(−i Ĥ t)

 (1)

Therefore in the continuum limit of the discretization (a→0) we have an evolution 
of operators :
A(φ̂)(t)=exp(i Ĥ t)A(φ̂)(0)exp(−i Ĥ t )

Given the final and initial states φF=φF( x⃗ )  , φI=φI( x⃗ ) corresponding in the 
discretization to qF  respective qI we have the transition amplitude for the system 
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from state φI  at t=0  to state φF  at t=T  : ⟨φF
|exp (−i Ĥ t)|φI⟩=A (do not confuse

with the observable A)
|A|2 is the probability for the system to be in state φF  at time t=T  if at time 
t=0  it was measured in state φI  , since from state  φI  the system evolves 

according to Schroedinger equation like
exp(−i Ĥ t)|φI⟩

Considering a normalization of p and q states in which 
⟨q ′|q⟩=δ(q ′−q)  , ⟨q|p⟩=exp( i pq)  and 

∫|q ⟩ ⟨q|dMq=I  and ∫|p ⟩ ⟨p|
dMp
(2π)M

=I

 and taking δt=
T
N

 we have for t 1∈[ lδt ,(l+1)δ t ], if we consider that 

Ĥ=
p̂2

2m
+V (q̂)  the following relations : 

⟨qF
|exp(−i Ĥ t)A(q̂)(t 1)|q I⟩=(∏

j=1

N−1

∫dq
j )⟨qF

|exp(−i Ĥδ t)|qN−1⟩ ⟨qN−1|

exp(−Ĥδt|qN−2)⟩ ... ⟨ql+1
|exp(−i Ĥ δt )A(q̂)(0)|ql ⟩ ... ⟨q1|exp(−i Ĥδ t)|q I⟩

⟨q l+1
|exp(−i((p̂2

/2m)+V (q̂))δt )|A(q̂)(0)|ql⟩=

∫d
Mp

(2π)M
exp(−i δ t ((p2

/2m)+V (ql )))A(ql)⟨ql+1|p⟩⟨p|ql ⟩=

(−im2πδt )
M /2

A(q l)exp((i m(ql+1−ql)
2
/2δt )−i V (ql)δ t)  and so 

 

⟨qF|exp(−i Ĥ T )A(q̂)(t 1)|qI⟩=

(−im2πδ t )
MN /2

(∏
k=1

N−1

dqk)exp (i δt (∑
j=0

N

(m/2)((q j +1−q j)/δt )
2
)−V (q j ))A(ql)=

C∫Dq(t)exp( i∫
0

T

((1/2)mq̇2
−V (q))d t)A(q(t 1))=

C∫Dq(t )exp(i S(q))A(q(t1))

 (2)

 where Dq(t )  stands for integration over all paths q=q(t )  with 
q(0)=qI  , q (T )=qF

(In deriving (2) we  used the Fresnel integrals :

∫
0

∞

cos (x2
)dx=∫

0

∞

sin (x 2
)dx=1

2 √
π
2

)

Therefore in the same way, for 
Ai=Ai(φ̂)  , i=1,n  operatorial functions, we will have : 

⟨φF|exp(−i ĤT )T (A1(t1 , x⃗1)... An(tn , x⃗n))|φI⟩=

C∫Dφ exp( i S (φ))T (A1(φ(t 1 , x⃗ 1)) ...An(φ(tn , x⃗n)))
(3)

where C is a (discretization dependent) constant and Dφ  stands for integration  
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over all paths φ=φ(t )  with φ(0)=φI  and φ(T )=φF   ,  φ(t)=φ(t , .)  and if 

(qi
)i=1 ,M=(φ(an0 ,an1 ,an2,an3))n0 ,n1,n2 ,n3∈ℤ

is a discretization of the field,

we define :

∫Dφ ...=∫∏
i=1

M

dq i ...   and also:  

T (A1(φ̂ (t1 , x⃗1)) ... An(φ̂(tn , x⃗n)))=

∑
σ∈Sn

(∏
j=1

n−1

θ(tσ( j)−tσ( j+1)))A1(φ̂(tσ(1), ⃗xσ(1))) ...An(φ̂ (tσ(n) , ⃗xσ(n)))

 with θ  the Heaviside function θ(t)={1  for t>0
0  for t<0

In the formula above, we take the 0 argument value of the Heaviside function to be 1 
and divide the right side of the identity for every case of k times occurrence of the 
same value of tj by k! .

The Euler – Lagrange equations

dμ

∂ℒ

∂(∂μφ)
−
∂ℒ
∂φ

=0  and the commutation rules [ p̂k ,q̂ j ]=i δ j k

which commutation rules translated to the continuum limit become

[ π̂
k
(t , x⃗ ), φ̂ j

(t , x⃗ )]=δ
3
( x⃗ )δk j  with π̂k=

∂̂ℒ

∂(∂0φ)
 lead to:

 a) φ̂(t , x⃗ )= 1
(2π)3/2∫

1
(2ωk)

1/2 (a(k⃗ )exp(−i(ωk t−k⃗ x⃗))+

b +
(k⃗ )exp( i (ωk t−k⃗ x⃗)))d

3 k⃗

 (4a)

for a complex boson free field theory with :

ℒ(φ ,∂φ)=(∂φ
+
)(∂φ)−m2

φ
+
φ  , ωk=√k⃗2

+m2  ; a ,a+  and b ,b+

annihilation and creation operators for the particle respective the antiparticle of the 
field satisfying commutation relations :
[a(k⃗ ) ,a+

(k⃗ ′)]=[b( k⃗ ),b +
(k⃗ ′)]=δ

3
(k⃗−k⃗ ′)   ,  [a(k⃗ ) ,b( k⃗ ′)]=0

 b) Âμ(t , x⃗ )=∑
s

1

(2π)3 /2
∫

1

(2ωk )
1 /2 (εμ(k⃗ ,s)a(k⃗ ,s)exp(−i (ωk t−k⃗ x⃗))+

εμ( k⃗ ,s)a+
(k⃗ ,s)exp( i (ωk t−k⃗ x⃗ )))d

3 k⃗

 (4b)

 where (εμ(k⃗ ,s))μ  are the polarization vectors s=1, 3  for m≠0  and s=1, 2

for m = 0 . Also we have [a(k⃗ , s),a+
( k⃗ ′ ,s ′)]=δ

3
(k⃗−k⃗ ′ )δs s ′

 For m≠0  in the rest frame k=(m ,0 , 0, 0)  we have ε( 0⃗ ,s)=(0 ,(δi s)i)  
               By Lorentz invariance it follows that :
kμ

εμ=0   ,  εμ(k⃗ ,s)εμ(k⃗ ,s ′)=−δs s ′  and ∑
s
εμ(k⃗ , s)ελ (k⃗ ,s)=Kμλ  with (4)
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Kμ λ=−ημλ+(kμk λ /m
2
)  if m≠0

Ifm=0 , for Kμλ  to be well determined by k  we give to the massless bosons
 a hypothetical mass and compute with tending to 0 mass value.

The b) case is the case of  a gauge vector boson free field theory
The gauge bosons free field Lagrangian density is ( see Chap. Non-abelian gauge 
theory ) given by :

ℒ((Aμ
a ,∂Aμ

a
)a ,μ)=−

1
4
(∂μAν

a
−∂ν Aμ

a
)(∂

μ Aa ν
−∂

ν Aaμ
)−

−
1
2
g(∂μ Aν

a
−∂νAμ

a
)f abc Abμ Ac ν

−

−
1
4
g2 f abcf adeAμ

b Aν
c Adμ Aeν

+
1
2
Ma

2 Aμ
a Aaμ

Ma  are the gauge bosons masses and f abc  are the structure coefficients of 
the gauge group Lie algebra , having normalized generators

(Ta
)a  with [T b ,Tc

]=i f abcT a  , tr(T aTb
)=

1
2
δab  and Ta  hermitian traceless. 

c) For spin ½  fermions in a free field theory the Lagrangian density is the Dirac 
Lagrangian density :
ℒ(ψ,∂ψ)=ψ(i γμ

∂μ−m)ψ  with γμ  the gamma matrices,  ψ=ψ
+
γ

0

ψ=(ψα)α=0 ,3(t , x⃗ )  Dirac spinor field. 

ψ̂α(t , x⃗ )= 1

(2π)3 /2∫
1

(Ep /m)
1/2 (∑s

uα(p ,s)b(p ,s)exp(−i p x)+

vα(p ,s)d +
(p ,s)exp(i p x ))d3 p⃗

 (4c)

 where s=1, 2  and p=(pμ)μ=0 ,3=(p0 , p⃗)  , p x=pμ x
μ  , E p=p0=√ p⃗2

+m2

(i γμ
∂μ−m)ψ=0  and (p−m)u(p ,s)=0  , (p+m)v (p , s)=0 (4’)

since by Euler – Lagrange equations , the spinor field satisfies the Dirac equations
with p=γ

μ pμ

The annihilation and creation operators for particles respective antiparticles
b ,b+  respective d ,d + satisfy anti-commutation relations :
{b(p ,s) ,b+

(p ′ ,s ′)}={d (p ,s) ,d +
(p ′ ,s ′)}=δs s ′δ

3
(p⃗−p⃗ ′) (4’’)

{b(p ,s) ,d (p ′ ,s ′)}={b(p ,s) ,b (p ′ ,s ′)}={d (p ,s),d (p ′ ,s ′)}=0 (4’’)
 with {A ,B}=AB+B A  , the anti-commutator 

The normalized u and v functions are so that in the rest frame 
p=(m , 0, 0, 0) ,u(p, 1)=(1 ,0 , 0, 0) ,u (p, 2)=(0,1, 0, 0) ,v (p ,1)=(0 ,0 ,1 ,0)
v (p , 2)=(0 ,0, 0 ,1)  as column vectors and by Lorentz invariance we will have: 
u(p ,s)u(p , s ′)=δs s ′  , v (p ,s)v (p ,s ′)=−δs s ′

u (p , s)v (p , s ′ )=v (p ,s)u(p ,s ′)=0

 

                                                 /                                        / 

 

             /
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and ∑
s
uα(p ,s)uβ(p ,s)=(p+m2m )

αβ

(4’’’)

and ∑
s
vα(p ,s)vβ (p ,s)=( p−m2m )

αβ

(4’’’)

Considering  a perturbed by sources J= J(t , x⃗ )  Lagrangian density 
ℒ=ℒ(φ ,∂φ)+ Jφ   , in the discretization we may have

S(φ)=∫(1
2
φiM i jφ j+ Jiφi)d4 x=1

2
qT Aq+ JTq  with A a symmetric real non-

singular matrix.
1
2
qT Aq+ JTq=1

2
(qT

+ JT A−1
)A(q+A−1 J)−1

2
JT A−1 J      (5)  and so 

Z ( J)=∫Dφ exp(i S(φ))=C (∫d
Mqexp ((i /2)qT Aq))exp(−(i /2) JT A−1 J) .

Diagonalizing A and considering the already mentioned Fresnel integrals we obtain

∫d
Mqexp((i /2)qT Aq)=( (2π i )

M

det A )
1/2

A−1  corresponds to the propagator D=D(x−y)  which in the continuum limit 
 satisfies M i jD j k (x )=δi k δ

4
(x )    (6)

and we have Z ( J)=Z ( J=0)exp((−i /2)∫ J j (x )D j k (x−y ) Jk (y )d
4 xd4 y )

The ground state corresponds to the state with lowest energy possible , no 
perturbations in the field ( only vacuum fluctuations ) : φ≡0  and we denote it 
|0 ⟩ . Taking φF=φI=|0 ⟩  , according to (3) we will have: 

⟨0|exp(−i ĤT )T (φ(x1) ...φ(xn))|0⟩=

C∫Dφexp (i∫ℒ(φ ,∂φ)d4 x)φ(x 1)...φ(xn)=

( δ
n

δ i J(x1) ...δ i J(xn)
C∫Dφ exp(i∫ℒ(φ ,∂φ)+ Jφd 4 x))|J=0

=Z ( J=0)

( δ
n

δ i J (x1) ...δ i J(xn)
exp((−i /2)∫ Jk (x )Dk l(x−y ) Jl(y )d

4 xd4 y ))|J=0

 

 where δ
δ i J(xk)

 must be understood as a partial derivative with respect to

i J(x k)d
4 x .

  
In the case of  fermion fields Lagrangian density ℒ=ℒ(ψ ,∂ψ) , because the 
spinor fields are complex we have ψ  and ψ  as independent integration variables 
and a perturbed Lagrangian density form by spinor sources η  and η  as below: 

ℒ(ψ,∂ψ)+ψη+ηψ     and the path integral: 

                                         /

                                                /
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Z (η ,η)=∫DψDψexp(i∫(ℒ(ψ ,∂ψ)+ψη+ηψ)d4 x) (7)

We have:  ℒ(ψ,∂ψ)=ψK ψ  , K=i∂−m
ℒ(ψ,∂ψ)+ηψ+ψη=(ψ+ηK−1

)K (ψ+K−1
η)−ηK−1

η (8)
The propagator S=(i ∂−m)

−1  , S=(Sαβ(x))α ,β=0 ,3

S = D fer ,fermion propagator,
satisfies (i∂−m)S (x )=δ

4
(x )

and  we  have  therefore S(x )=∫
1

(2π)4 exp(−i p x )
p+m

p2
−m2

+i ε
d4p (8’)

 with ε>0  , ε→0 . Using residues theorem in the integration above over p0 
integration variable we obtain :

i S(x )= 1
(2π)3∫(2Ep)

−1 (θ(x0
)(p+m)exp(−i p x )−

−θ(−x 0
)(p−m)exp(i p x ))d3 p⃗ (8’’)

 where in the above expression we take E p=p0=√ p⃗2
+m2

Considering the (4’’) anti-commutation relations we can take therefore the 
(ψα (x ))α ,x  and (ψα (x ))α ,x  integration variables as two sets of independent 

Grassmann integration variables. Grassmann numbers are defined such that if
η  and ξ  belong to the same set of Grassmann numbers then ηξ=−ξη.

Therefore the most general function of a Grassmann number is
f=f (η)=a+bη  with a  , b  ordinary numbers .
 Since for η  , ξ  Grassmann variables we must have ∫dηf (η+ξ)=∫d ηf (η)
 and so ∫dηbξ=0  for any ξ  and we have ∫d η=0  for η Grassmann integration

variable.
 Since given three Grassmann variables χ ,η ,ξ  we have χ(ηξ)=(ηξ)χ we 

conclude that the product of two Grassmann numbers must be an ordinary number 
and thus the integral ∫ηd η  is an ordinary number which is taken to be equal 
to a normalization constant.

 Therefore, if η=(η1 , ... ,ηN)  and η=(η1 , ... ,ηN) are sets of independent 
Grassmann variables and s=(s1 , ...sN) ,r=(r 1 , ... , rN)  not depend on η  , η ,
A is a N x N matrix then we can derive 
∫d ηd ηexp((η+s)A(η+r ))=∫dηdηexp(ηAη)=C det A  with C a 

normalization constant.   (8’’’)
Hence, considering (8) the relation (7) becomes
Z (η ,η)=Z (η=0)exp(−i∫ηα(x )Sαβ(x−y) ηβ(y)d

4 x d4 y )

 

                                                                          /
 

                                            / 

                        /                        

                                                                                                             /

 
                                                                / 

                         /
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and we have Z (η=0)=C det (i∂−m) ,
 with γ5

=iγ0
γ

1
γ

2
γ

3  we will have also: 

det (i∂−m)=exp( tr ln(i∂−m))

tr ln( i∂−m)=tr ln(γ5
(i∂−m) γ

5
)=tr ln (−i∂−m)=(1 /2)4 tr ln(∂2

+m2
)

The factor of 4 appears because at the left member we have the trace of a 4x4 matrix.
 Recall that Z (η=0)=∫DψDψexp( i∫ℒ(ψ ,∂ψ)d 4 x)=⟨0|exp(−i Ĥ T )|0⟩ (9) 

 (  with T→∞  understood so that we integrate over all of spacetime in (9) )
 and so if E=⟨0|Ĥ|0⟩  is the energy of the vacuum we will have:
i E T=−2 tr ln(∂2

+m2
)+AV T=−2∫d4 x ⟨x|ln (∂2

+m2
)|x ⟩+AV T=

−2∫d 4 x∫
d4k

(2π)4∫
d4q

(2π)4 ⟨x|k ⟩ ⟨k|ln(∂
2
+m2

)|q⟩ ⟨q|x ⟩+AV T

 Since in the momentum space normalization ⟨k|q ⟩=(2π)4δ
4
(k−q)=V T

( V  space volume , T time interval of the considered field domain ) we obtain

i
E
V
=−2∫

d 4k

(2π)4 ln (k2
−m2

+i ε)+A ′ where A , A’ are infinite constants 

corresponding to the multiplicative factor C ( and changing the sign under the 
logarithm  )

 Let 
A ′
2
=∫

d4k
(2π)4 ln(k2

−m ′2+i ε) and we will have

E
V
=2 i∫

d3 k⃗
(2π)3

∫
dω
2π

ln(
ω

2
−ωk

2
+i ε

ω
2
−ω ′k

2
+i ε )

 We treat the (convergent) integral over ω  by integrating by parts and then by 
residues theorem, obtaining:

E
V
=−2 i∫

d3 k⃗
(2π)3

∫
dω
2π (

2ωk
2

ω
2
−ωk

2
+i ε

−
2ω ′k

2

ω
2
−ω ′k

2
+i ε )=

=∫
d3k⃗
(2π)3 (−2(ωk−ω ′k))

(  where we defined ωk=√k⃗2
+m2 ,ω ′k

2
=√k⃗ 2

+m ′2)
Restoring the Planck constant through dimensional analysis we have

E0=−∫
d ³ x⃗ d3 p⃗

h
∑
s

2(1
2
Ep)  with Ep=√ p⃗2c2

+m2c4

The infinite additive term E0 is precisely the analogue of the zero point energy of the 
quantum harmonic oscillator but for the Dirac field , as we see , comes with a 
peculiar minus sign. For each spin and for the electron and positron separately (hence
the factor of 2) we have an energy (- 1 / 2) Ep in each unit-size phase-space cell
(1 / h3) d3 x d3p  .

                                                     /

 

             /                               /
 

               /                            /                                /
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To compute a Feynman amplitude for all modulo time ordering equivalence classes 
of Feynman diagrams with

(x i
a
)i=1 , s  outgoing legs end vertices and          

(x i
b
)i=1 ,n  incoming legs end vertices and          

(x i )i=1 ,m interaction vertices,(pi )i=1 ,s outgoing momenta and

(qi)i=1 ,n incoming momenta, considering that Ĥ|0 ⟩=V0|0 ⟩
with V0 constant vacuum energy, which by measuring energy at this level can be 
considered to be equal to 0, we have to compute

∫P((x
a
) ,(x ) ,(xb

))(∏
j=1

s

exp(i p j x j
a
)d4 x j

a
)(∏
k=1

n

exp (−i qk xk
b
)d4 xk

b
)(∏

l=1

m

d4 x l)

where P((xa
),(x) ,(xb

))=⟨0|T ((∏
j=1

s

φ̂(x j
a
))(∏

l
φ̂(x l))(∏

k=1

n

φ̂ (xk
b
)))|0⟩

and “amputate” the external legs  ,(i . e. multiply with 

(∏
j=1

s

(p j
2
−m2

+iε))(∏
k=1

n

(qk
2
−m2

+ iε)) , the incoming and respective outgoing 

particles being considered on mass shell).
Notice that the interaction vertices must not be all distinct and so we will integrate 
over the set of distinct x l  , l=1,m  and ∏

l
φ̂(x l) represents the product of a 

exponential expansion coefficient and the taken interaction vertices terms from the 
expression of the interaction Lagrangian density
~
ℒ(φ ,∂φ)=ℒ(φ ,∂φ)+  interaction terms 

As we derived above , for
P ((xa

) ,(x) ,(xb
))  we have a Wick contraction computation from the expression

~
C ( δ

n+s+m

δ i J (x1
a
)...δ i J(x l )...δ i J(xn

b
)
exp ((

−i
2
)∫ J (x )D(x−y) J(y )d4 xd4 y ))|J=0

 with 
~
C=Z ( J=0)  constant . (9’) 

For a Lagrangian density of fermion fields ( quarks and leptons ) interacting with 
gauge boson fields we have :

~
ℒ((ψ

α ,∂ψα
)α ,(Aa ,∂ Aa

)a)=ψ
α
(i δαβγ

μ
∂μ−mα δαβ)ψ

β
+

+∑
g

(gψα
γ
μAμ

aT αβ
a
ψ

β
−(1 /4)(∂μAν

a
−∂ν Aμ

a
)(∂

μ Aaν
−∂

ν Aaμ
)−

−(1 /2)g(∂μ Aν
a
−∂ν Aμ

a
)f abc AbμAc ν

−

−(1/ 4)g2 f abcf adeAμ
b Aν

c Adμ Aeν
+(1 /2)Ma

2 Aμ
aAaμ )

 (10) 

In the electroweak SU(2)xU(1) or in the unified electroweak+chromodynamics
SU(3)xSU(2)xU(1) theory for any g coupling we have a corresponding set of gauge 
bosons and respective gauge group generators defined coefficients :

((Aμ
a
)μ ,(Tα β

a
)αβ)a  with μ  - Lorentz index 

α ,β  - colour, flavour , lepton sort index 
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In quantum chromodynamics SU(3) or in the grand unified SU(5) theory we have an 
unique coupling constant g with the set of gauge bosons and gauge group generators.

We have following Feynman rules to compute Feynman amplitudes of fermion and 
gauge boson (gluon) particle transition processes for a perturbation theory approach 
(which is relevant in the case of a weak couplings like in electroweak theory or 
asymptotic freedom of quantum chromodynamics):
(The considered process has q1,…,qn incoming fermions momenta, p1,…,ps outgoing 
fermions momenta and k1,…,kh outgoing bosons momenta and the Feynman diagram 
is with
x1
a ,... , x s

a  outgoing fermions legs end vertices, 

x1
b ,... , xn

b  incoming fermions legs end vertices, 
x1 , ... ,xr  fermion interaction vertices, 

y1, ... ,yk  cubic gluon interaction vertices, 

z1 ,... , zq  quartic gluon interaction vertices, 

y1
a , ... ,yh

a  outgoing boson legs end vertices, 
(x1 l , x2 l)l=1 ,m  internal lines). 

1.  For each interaction vertex write (2π)4δ
4
(∑
k∈A

k−∑
k∈B

k )

(where A is the set of incoming to the vertex  momenta and B is the set of outgoing 
from the vertex momenta)
and write the coupling: a) i g γμ  for x l  vertices; 

b)gf abc(ημ ν
(r1−r 2)

λ
+η

νλ
(r 2−r 3)

μ
+η

λμ
(r 3−r 1)

ν
)  where r1 , r2 , r3  label the 

incoming to the cubic gluon interaction vertex respective a ,b ,c  gluon momenta
(do not confuse the gluon indices a , b, c with the notations with a , b upper index for 
outgoing respective incoming legs)  for y l  vertices. 

c)−i g2 (f abcf ade(ημλ
η
νϵ
−η

μϵ
η
ν λ
)+ f adcf abe(ημλ

η
ν ϵ
−η

λ ϵ
η
μν
)+

+ f abd f ace(ηνμ
η
λ ϵ
−η

ν ϵ
η
μλ
))  for z l  vertices. 

2.  For each internal line write the propagator : 

a) 
i (p+m)

p2
−m2

+i ε
 for a mass m  fermion line labeled with p  momentum 

b)

i(−ημ ν+
kμk ν

M2 ) 1

k2
−M2

+iε
 for a mass M  boson line labeled with kmomentum.

c)For massless bosons we will consider a hypothetical tending to 0 non-vanishing 
mass in computations that are confronted with lattice method computations which 
will be further presented. In that case, the kμk ν/M

2 term in the propagator 
disappears in computations because the masses of the two fermions linked in the 
amplitude expression to the propagator of a massless boson as the  photon or the 
SU(3) bosons in SU(3)xSU(2)xU(1) theory or in quantum chromodynamics  are 

                /
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equal (flavour changing occurs only through the W bosons which are massive) and 
we can use (4’) , (8’) , (4’’’). Otherwise we can have an additional ghost action by 
Fadeev-Popov method with gauge parameter leading to a propagator
i(−ημ ν+(1−ξ)(kμk ν/k

2
))/k2  where we can take the gauge parameter ξ=1.

For example we have in an amplitude expression the factor 
iDαβ

fer
(p)γβϵ

μ iDμν
bos

(r ) iDϵδ
fer
(q)δ4

(p−q−r )  which contains 

u(p) γμu (q)(−ημν+(rμ r ν)/M
2
)δ

4
(p−q−r )=

=(−u(p) γνu(q)+((p−q)ν (m−m)u(p)u(q)/M2
))δ

4
(p−q−r )

and as we can see the term containing the hypothetical mass disappears since the 
involved fermions masses are equal.

3.  Write u(p j ,s)  for outgoing fermions, u(q j ,s)  for incoming fermions, 

write v (q j , s)  for incoming antifermions, v (p j ,s)  for outgoing antifermions, 
 write εμ(k j ,s)  for outgoing or incoming bosons. 

4. Multiply the written factors and multiply the result with a (-1) factor for each 
closed fermion cycle.

5.Momenta k associated with internal lines are to be integrated over with
d 4k
(2π)4

measure.
6. The external legs are “amputated” since according to rule 2. we write the 
propagators only for internal lines. The particles are on mass shell (i.e. we have
p j

2
−m2

=0  , q j
2
−m2

=0  , k j
2
−M2

=0 where m and M take the respective values of
the corresponding particles).

 The amplitude has the form (2π)4Mδ
4
(∑
j=1

s

p j+∑
j=1

h

k j−∑
j=1

n

q j)  with M an 

invariant Feynman amplitude.

Since the fermion field operators anti-commute, for a set (φ̂i)i=1 ,m  of operators in 
which φ̂i 1, ... , φ̂i r  with i1<i2<...<ir  anti-commute each with other and the 
remaining {1, ... ,m}∖{i1 , ... , ir}∋i , φ̂i  operators commute with any of the operators
in the set we define :

T (∏
i=1

m

φ̂i (x i ))= ∑
σ∈Sm

ε(~σ)(∏
i=1

m−1

θ(xσ(i)
0

−x σ(i+1)
0

))(∏
i=1

m

φ̂σ(i)(xσ( i)))   where

~σ=σ |
{i 1 , ..., ir }

   and ε(~σ)=sgn ∏
1≤k< l≤r

(σ( il)−σ(ik))

In the above definition for T we take θ(0)=1  and divide rhe right member by k!
for every   k  times occurence of the same value of x i

0.
Also, considering that for a fermion lines closed cycle with ( x1 , … , xr+1) , x1= xr+1 
interaction vertices , from 
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ψ(x1) γ
μAμ(x1)ψ(x1)ψ(x2) γ

ν Aν(x2)ψ(x2) ...γ
λ Aλ(x r)ψ(xr) , in order to 

obtain the proper r vertices fermion cycle factor of the amplitude,
tr (S(x r−x1)γ

μS (x1−x2) γ
ν ...S(x r−1−xr )γ

λ
) we must anti-commute to

ψl (xr)ψ(x1) γ
μ ... γλ Aλ(xr )     (for the d +  of ψ̂(xr )  meet the d  of ψ̂(x1))

( The xi variables are obviously to be integrated over in the final amplitude 
expression ). Thus we will have the extra (-) sign for each closed fermion cycle of the
Feynman diagram and on the cycle we must have an anti-fermion propagating 
backwards in time.
To compute the total amplitude for the Feynman diagrams with the given outgoing 
and incoming momenta of fermions / anti-fermions and bosons and given numbers of 
fermion interaction vertices, cubic and quartic gluon interaction vertices we have to 
deal with the expression of amplitude A as follows :

A=cf ∫
1

s!h!n! ⟨0|( ∑σ∈Ss ε(σ)∏i=1

s ~
b(pσ( i))) ∑

σ∈Sh
∏
j=1

h
~a(kσ( j))T (R((x) ,(y ) ,(z)))

( ∑
σ∈Sn

ε(σ)∏
l=1

n
~
b + (qσ( l)))|0⟩(∏i=1

r

d4 x i)(∏
i=1

k

d4 y i)(∏
i=1

q

d4 z i)

where cf is a coefficient from the exponential expansion carried by the interaction 
terms product we consider in the Feynman diagram and R((x ),(y) ,(z )) has the 
form :

(∏
l=1

r

ψ̂α (x l) i g γ
μ Âμ

a(x l)T αβ
a
ψ̂β)(∏

j=1

k

i K̂ c(y j ))(∏
j=1

q

i K̂q (z j ))  , where

K c(y j)=−(1/2)gf abd(∂μ Aν
a
−∂ν Aμ

a
)Abμ Ad ν

(y j)  and 

K q(z j)=−(1/ 4)g2 f abcf adeAμ
b Aν

c Adμ Aeν
(z j).

and for normalization we have taken :

(~a ,
~
b ,

~
d )=((2π)

3

V )
1/2

(a ,b ,d)

Suppressing the spin and polarization indices in u(p ,s) ,u(q , s)  and ε(k ,s) ,
considering summation over them, we have:

A=cf∫ ⟨0|T ((∏j=1

s

exp(i p j x j
a
)u(p j) ψ̂(x j

a
))(∏

j=1

h

exp(i k j y j
a
)(−ε

λ
(k j))

Âλ(y j
a
)))R ((x ) ,(y ) ,(z ))T (∏

j=1

n

exp (−i q j x j
b
)u(q j )ψ̂(x j

b
))|0⟩

V−(s+h+n) /2
(∏
j=1

s

(Ep j /m)
1/2
)(∏

j=1

h

(2ωkj)
1/2
)(∏

j=1

n

(Eq j /m)
1/2
)

(∏
j=1

s

d3 x⃗ j
a
)(∏

j=1

h

d3 y⃗ j
a
)(∏

j=1

n

d3 x⃗ j
b
)(∏

j=1

r

d4 x j)(∏
j=1

k

d 4 y j)(∏
j=1

q

d4 z j )

  (11) 
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 In (11) we have taken x i
a0
=y j

a0
=T ;x l

b 0
=0  and any space or time integration

is on [0,T ]  time interval and a volume V  spatial domain. 

We understand also that the incoming and outgoing fermions or bosons can have 
different boson sort or flavour indices which we have suppressed in the above 
expression.  

 The ψ̂  and Â  operator functions in (10) are the same as given in (4c) and (4b) 
because we consider in the perturbation theory approach of Feynman diagrams the 
relations of type (3) with the not gauged free theory Lagrangian density from (10) 
(having g = 0).
Considering type (3) and (9’) relations we will have  (12) :

A= ∑
diagrams

~
CSFV

−(s+h+n)/2∫ ((∏
j=1

s

(Epj /m)
1/2 exp(i p j x j

a
)u(p j) iD

fer
(x j

a
−x1 l j))

(∏
j=1

h

(2ωk j)
1 /2exp( i k j y j

a
)(−ε(k j)) iD

bos
(y j

a
−y l j ))

(∏
j=1

n

(Eq j /m)
1/2 exp(−i q j x j

b
) iDfer

(x2 l j−x j
b
)u (q j))

(∏ ( internal lines propagators and couplings )) )

(∏
j=1

r

d4 x j)(∏
j=1

k

d4 y j )(∏
j=1

q

d4 z j)(∏
j=1

s

d3 x⃗ j
a
)(∏

j=1

h

d3 y⃗ j
a
)(∏

j=1

n

d3 x⃗ j
b
)

with 
~
C=Z (η=0 ,g=0)  and SF a symmetry factor. 

As established,  we integrate over 0<x1 l j
0
<T=x j

a0 in the diagrams of the (12) sum
and considering (4’’’) and (8’’) we have:
∫(Ep j /m)

1 /2 exp(i p jx j
a
)u(p j)D

fer
(x j

a
−x1 l j)d

3 x⃗ j
a
=

=(E p j /m)
−1 /2u(p j)exp(i p j x1 l j)

 (13)

and similar :

∫(Eq j /m)
1/2 exp(−i q j x j

b
) iDfer

(x2 l j−x j
b
)u(q j)d

3 x⃗ j
b
=

=exp(−i q j x 2l j)u(q j)(Eq j)
−1 /2

 (14)

and also we will have :
∫(2ωk j )

1 /2exp (i k j y j
a
)(−ε(k j )) iD

bos
(y j

a
−y l j)d

3 y⃗ j
a
=

=(2ωk j)
−1 /2

ε(k j)exp(i k jy l j)
 (15)

To prove (15) we integrate over k0  using the residues theorem in the boson 
propagator expression 

∫exp(−i k (y j
a
−y l j))

−ημλ+(kμkλ /M
2
)

k2
−M2

+iε
d4k  and for that the integral over the 

semicircle {k 0
=Rexp (iθ)} , θ∈[−π , 0 ] must be considered. The only case in 

which the integral not vanishes for R→∞  is when λ=μ=0 and the remaining not 
vanishing term is (  with y=y j

a
−y l j) :
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lim
R→∞

∫
−π

0 exp (−i Rei θy0
+i k⃗ y⃗ )R3 cos(3θ)

R2e2 i θ
−k⃗ 2

−M2
+i ε

d θ

 Since cos (3θ)=cos(θ)(1−2 sin2
(θ))−2sin2

(θ)cos (θ) we will have the only not 
vanishing remaining term (after some calculus) :

B=∫
0

R exp(−i R √1−(x /R)2 y0
+i k⃗ y⃗−x y0

)

R2
(1−2(x /R)2

)+2 i R x √1−(x /R)2−k⃗2
−M2

+iε
R2d x+

+∫
R

0 exp(i R√1−(x /R)2 y0
+k⃗ y⃗−x y0

)

R2
(1−2(x /R)2

)−2 i R x √1−(x /R)2
−k⃗ 2

−M2
+i ε

R2d x

(16)

The integrands in (16) are dominated by the absolutely integrable function 
exp(−x y0

)  for x∈(0,∞)  and so taking a cut-off for integration over k  with 

|k0|<R  and large R  we have B=−2 i
sin(Ry0

)

y0 exp(i k⃗ y⃗ )=P (y0
)exp (i k⃗ y⃗)

which integrated over k⃗  leads to P(y0
)(2π)3δ3

( y⃗ j
a
− y⃗ l j ).

In order to have external legs for the gauge bosons , we integrate the 
y⃗ j
a  and y⃗ l j  variables on a set ‖y⃗ j

a−y⃗ l j‖≥ε  and so,after d3 y⃗ j
ad4 y l j integration, 

the non-vanishing term left by applying the residues theorem on the boson propagator
expression disappears and we can use (15) in the computation of the amplitude.
Note that for an outgoing anti-particle with momentum
p j  we must take exp (i p j x j

a
)ψ̂(x j

a
)v (p j)  instead of exp(i p j x j

a
)u(p j)ψ̂(x j

a
)

and for an incoming antiparticle with momentum
q j  we take exp(−i q j x j

b
)v (q j) ψ̂(x j

b
)  instead of exp (−i q j x j

b
)ψ̂(x j

b
)u(q j)

in the (11) expression.
The final and initial states of the considered process, which are

⟨0|
~
b (p1)...

~
b (ps)

~a(k 1)...
~a(k h)|= ⟨0|ψF  and 

~
b + (q1) ...

~
b + (qn)|0 ⟩=|ψI ⟩

have to be normalized for computing the effective process amplitude A and the 
transition probability |A|2  such that ⟨ψF|ψF⟩=⟨ψI|ψI⟩=1.   

We can prove that if [R ,~a(q)]=0  then ⟨0|R~al
(q)~al+

(q)R +|0⟩=l!⟨0|RR +
|0⟩ .

Using this , and the fact that a state of many fermions of the same sort vanishes if 
there are two fermions with the same momentum ( this is in fact the Pauli exclusion 
principle and follows from the anti-commutation relations ) it follows that we must 

 normalize with a factor of 1 /√l!  for each occurrence of l   identical bosons with 
the same momentum and the corresponding transition probability will be adjusted by 
a statistical factor (eliminating double counting of events) 

S=∏
i

1
li!

 with  l i  the number of occurrences  of a boson with the same 

momentum.
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Considering the way we calculate Feynman amplitudes (amputating external legs), 
the relations (12) , (13), (14), (15) and the symmetry factor that comes out to be the 
same from the many ways in which we can associate a Feynman diagram to an (11) 
expression we can conclude that the relation between the transition amplitude and the
total  amplitude for all Feynman diagrams of a given couplings order and given 
outgoing and incoming momenta of given respective fermions and respective bosons 
is :

A=V−(s+h+n)/2
(∏
j=1

s

(
Ep j

m )
−1/2

)(∏
j=1

n

(
Eq j

m )
−1 /2

)(∏
j=1

h

(2ωk j)
−1/2

)AF    where 

AF=(2π)
4Mδ

4
(∑

1

s

p j+∑
1

h

k i−∑
1

n

ql )  is the total Feynman amplitude. 

The u(p ,s)  , v (p , s)  , ε(p ,s)  which are needed in the amplitude computation 
are determined by theirs normalization values in the rest frame.

 For a decay process we have n=1  and since 

(δ
4
(q1−∑

1

h

k i−∑
1

s

p j ))
2
=

δ
4
(q1−∑

1

h

k i−∑
1

s

p j )V T

(2π)4  and momentum space d3 p⃗

 contains 
V

(2π)3d
3 p⃗  states, we can compute a differential decay rate 

|A|2

T
 ,

dΓ=
(2π)4m
Eq1

(∏j=1

h d3 k⃗ j

(2π)3 2ωk j
)(∏j=1

s md3 p⃗ j

(2π)3E p j
)|M|

2
δ

4
(q1−∑

1

h

k i−∑
1

s

p j)

For a two fermion scattering process we have n=2  , v⃗1  , v⃗ 2  velocities 
 of the incoming particles, n=1/V  concentration of a incoming particle, 

 we compute a differential effective cross section 
|A|2

T n|⃗v1−v⃗2|
 , dσ  =

(2π)4m1m2

|⃗v1−v⃗ 2|Eq1Eq2
(∏j=1

h d3k⃗ j

(2π)32ωk j
)(∏j=1

s md3 p⃗ j

(2π)3Ep j
)|M|

2
δ

4
(∑

1

2

ql−∑
1

h

k i−∑
1

s

p j )

(*)

Obviously we have 
((2π)4δ

4
(p−p ′))2=(2π)4δ

4
(p−p ′)∫ exp(−i(p−p ′)x)d4 x=

=(2π)4
δ

4
(p−p ′)V T   and so taking in discretization δ4

(p−p ′)=C δpp ′

 we obtain δ4
(p−p ′)=

V T
(2π)4 δpp ′

In the same way we have:

δ
3
(p⃗−p⃗ ′)=

V
(2π)3

δp⃗ p⃗ ′  and ((2π)3δ3
(p⃗−p⃗ ′))2=(2π)3

δ
3
(p⃗−p⃗ ′)V
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Also , to be able to count states, we enclose our system in a box, say a cube with 
length L on each side with L much larger than the characteristic size of our system, 
having V = L3 . With periodic boundary conditions , the allowed plane wave states

exp(i p⃗ x⃗ )  carry momentum p⃗=2π
L
(n1,n2 ,n3)  where ni∈ℤ .

The allowed values of momentum form a lattice of points with spacing
2π/L  between points. Experimentalists measure momentum with finite resolution,

small but much larger than 2π/L .  Thus an infinitesimal volume d3 p⃗ in 
momentum space contains d3 p⃗ /(2π/L)3=V d3 p⃗ /(2π)3  states. 

In some cases we can split a process in small distance effects, as scattering 
q1 ,... ,qn  incoming fermions momenta into k1 ,... ,kh  outgoing bosons 

 momenta and p1 , ... ,ps ,qn+1 ,... ,qn+r  outgoing fermions momenta, 
 with qn+1 ,... ,qn+r  internal fermion lines momenta which in the large distance 

 effects decay respective into external kh+i  boson momenta and ps+i

 fermion momenta (i=1, r )
Since the Dαβ

fer
(qn+ i)  Fourier transform of the fermion propagator can be 

 written as 
2muα (qn+i)uβ(qn+i)

qn+i
2
−m2

+i ε
 and in the amplitude computation we must

 take qn+i=k h+i+ps+i  we have the process amplitude factorization: 

AF(q ,
~
k ,~p)=AF(q ,k ,p)∏

j=1

r
2mi

(kh+ j+ps+ j)
2
−m2

+iε
M(k h+ j+ps+ j ,k h+ j ,ps+ j )

where q=(qi)i=1 ,n  , 
~
k=(k i)i=1 ,h+r  , ~p=(pi)i=1 ,s+r  and 

p=(p1 , ... ,ps ,k h+1+ps+1 ,... ,kh+r+ps+r )  and AF(a ,b ,c)  is the Feynman 
 amplitude for a  incoming fermions, b  outgoing bosons,c  outgoing
 fermions momenta and AF=(2π)

4Mδ
4
((∑ a)−(∑ b)−(∑ c))

We notice that the amplitude has a pike when the k h+ j+ps+ j=qn+ j  are on 
mass shell and so we can describe the transition probability of the process by the 
transition probability derived from the squared absolute value of the small distance 
effects  amplitude which corresponds to an (a ,b ,c)=(q ,k ,p)process. 

In the case of quantum electrodynamics U(1) or electroweak SU(2)xU(1) theory, the 
renormalized couplings g, in a range of momentum are relatively small and so the 
higher order terms in g from the expansion of 

exp(i∫
~
ℒ(ψ ,∂ψ ,A ,∂ A)d4 x )  can be neglected, allowing a perturbation theory 

approach of the q1 ,... ,qn ,k1 ,... ,kh ,p1 ,... ,ps transition process, in which we take 
in consideration only the low order Feynman diagrams for the process.
In the case of quantum chromodynamics SU(3) , or unified SU(3)xSU(2)xU(1) or 
grand unified SU(5) theories the renormalized couplings go to zero when the 
momentum range goes to infinity and so we can have a perturbation theory approach
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only for a high momentum range (asymptotic freedom). For a lower momentum 
range we must take the amplitudes defined by following relation (17):

A=V−(s+h+n) /2
∫((∏

j=1

s

(Ep j /m)
1/2 exp(i p j x j

a
))(∏

j=1

h

(2ωk j )
1 /2exp (i k j y j

a
))

(∏
j=1

n

(Eq j /m)1 /2exp (−i q j x j
b
))S ((x a

) ,(ya
),(xb

)))(∏
j=1

s

d3 x⃗a)(∏
j=1

h

d3 y⃗ a)(∏
j=1

n

d3 x⃗b)

where 

S ((xa
) ,(ya

),(xb
))=⟨0|T ((∏j=1

s

uα(p j)ψ̂α(x j
a
))(∏

j=1

h

(−ε
λ
(k j)) Âλ (y j

a
))

(∏
j=1

n

ψ̂β(x j
b
)uβ(q j)))|0⟩=(∏j=1

s

uα(p j))(∏
j=1

h

(−ε
λ
(k j)))(∏

j=1

n

uβ(q j))C∫D ADψDψ

exp(i∫ ~
ℒ(ψ ,∂ψ ,A ,∂ A)d4 x )(∏

j=1

s

ψα(x j
a
))(∏

j=1

h

Aλ(y j
a
))(∏

j=1

n

ψβ(x j
b
))

 considering ~ℒ(ψ,∂ψ, A ,∂ A)  as in (10) with all interaction terms within 
 and according to a type (3) relation C  is a discretisation dependent constant. 
 Also we take x j

a
=T ,y j

a
=T , x j

b
=0  with [0 ,T ]  the interaction process time 

interval and V , the space volume for the fields interaction process.
Notice that the ψ̂  , Â  operators are no more defined by (4c) , (4b) relations, 
because we consider all Feynman diagrams associated with the process and take 
therefore all interaction terms products, which means that we consider the type (3) 
relation with the whole gauged Lagrangian density from (10).
Since the high order Feynman diagrams count (due to strong couplings), we expect 
that the quarks participate in interactions in groups (confinement) and so we have to 
consider that hadrons (groups of quarks and antiquarks of various colour indexes 
confined by gluon fields) will be forming.
The colour charge of a quark/antiquark defined by (ψi)i=1,3 with i  colour index ,    
ψi  Dirac spinors,is defined by: 

ρ
a
=ψi

1
2
λi j
a
ψ j  and there are 8 colour charges, one for each (λi j

a
)i , j self-adjoint 

traceless 3x3 Gell-Mann matrix of the SU(3) colour gauge group generators:

λ
1
=(

0 1 0
1 0 0
0 0 0)  , λ

2
=(

0 −i 0
i 0 0
0 0 0)  , λ3

=(
1 0 0
0 −1 0
0 0 0)  , λ4

=(
0 0 1
0 0 0
1 0 0)  , 

λ
5
=(

0 0 −i
0 0 0
i 0 0 )  , λ6

=(
0 0 0
0 0 1
0 1 0)  , λ7

=(
0 0 0
0 0 −i
0 i 0 )  , λ8

=
1

√3 (
1 0 0
0 1 0
0 0 −2).
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The ρ̂a  observables with ⟨φ|ρ̂a|ψ⟩=(1 /2)λ i j
a
⟨φi|ψ j ⟩  are hermitean but not   

commute, so we choose a maximal subset of commuting colour charge operators 
which is
{(1/2)λ3 ,(1 /2)λ8} ,to define a colour charge observable: ρ̂3 e⃗3+ρ̂

8e⃗8 .

 For a=3,8  ,if ψc=γ
2
ψ

∗  with ψ∗  the complex conjugate of ψ , corresponds to 

the antiparticle to ψ  we have: ψc iλi j
a
ψc j=ψi

T
γ

2+
γ

0
λi j
a
γ

2
ψ j

∗
=−ψiλi j

a
ψ j , 

because
λ
aT
=λ

a  for a=3 ,8.
Therefore the antiquarks carry the opposite colour charges to the quarks colour 
charges.
The forming hadrons must be colour charge singlets and so they can be the tensorial 
products of wave functions as mesons ( quark- antiquark pairs ) :

ψM(t , x1 , x2)=∑
i=1

3 1

√3
ψc i(t ,x1)ψi(t , x2)  or as three quark/antiquark baryons: 

ψB(t , x1 , x2 , x3)=∑
1

√6
ϵi j kψi (t , x1)ψ j(t , x2)ψk(t , x3)

ψcB(t , x1 ,x2 , x3)=∑
1

√6
ϵi j kψc i (t , x1)ψc j(t , x2)ψck (t , x3)

In the amplitude expressions they appear as
∑ψiγ

μ
ψi=ψM

μ  vector meson, 

∑ ψiψi=ψM         scalar meson,

(∑ ϵi j kψiαψ jβψk γ)=(ψB
αβγ

)  baryon, 

(∑ ϵi j k ψiαψ jβψk γ)=(ψB
αβγ

)  antibaryon 

 The common eigenvectors (colour eigenstates) of ρ̂3  , ρ̂8  are 

ψr=(
1
0
0)⊗ψ= r⃗⊗ψ  ; ψg=(

0
1
0)⊗ψ=g⃗⊗ψ  ; ψb=(

0
0
1)⊗ψ=b⃗⊗ψ  with ψ  a Dirac 

spinor function ,having colour charges respectively 

q⃗r=
1
2
e⃗3+

1
2√3

e⃗8  ; q⃗g=−
1
2
e⃗3+

1
2√3

e⃗8  ; q⃗b=−
1
√3

e⃗8 .

 We have q⃗r+q⃗g+q⃗b=0.  The mesons and baryons have neutral colour charge. 
The mesons are integer spin particles (0 – scalar , 1 – vector ) and the baryons are 
half integer spin particles.

 For example the proton is ∑
1
√6

ϵab cu
aubdc  with a ,b ,c  colour indices 

u  up-quark, d  down-quark, where two of the quarks ua ,ub ,dc  carry opposite 
secondary spin quantum numbers (if the ua , ub , dc are spin eigenvectors). The proton 
is a spin ½  particle. The same way spin ½  combination udd gives the other nucleon, 
known as the neutron.
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For a three quark baryon for example,  with ψ̂1 , ψ̂2 , ψ̂3 respective the three quark 
operator functions, the process with p1,p2,p3  outgoing four-momenta and 
q1 ,q2 ,q3  incoming four-momenta, having pi=qi , i=1,3  on mass shell will have 

an amplitude defined by the following relation (18):

A( p⃗1 , p⃗2 , p⃗3)=∫
1
6
V−3

(∏
l=1

3

exp(i pl(x l
a
−x l

b
))ui lα l

l
(pl )u j lβ l

l
(pl )(Ep l /ml))

ϵi 1i 2 i 3ϵ j 1 j 2 j3 ⟨0|ψ̂i 1α1
1

(x1
a
)ψ̂i 2α2

2
(x 2

a
) ψ̂i 3α3

3
(x3

a
) ψ̂ j 1β 1

1
(x1

b
)ψ̂ j2β2

2
(x2

b
) ψ̂ j 3β3

3
(x3

b
)|0⟩

∏
k=1

3

d3 x⃗k
ad3 x⃗k

b

 where we use Einstein summation convention for i l , j l ,α l ,β l  indices 

 and take x l
a0
=T , x l

b0
=0  , pl

0
=Epl=√ p⃗l

2
+ml

2

il , jl  are colour indices from 1 to 3 and α l ,β l  are Dirac indices from 0 to 3 .

 Therefore, a  energy  eigenstate wave function ψ0B=ψ0B( x⃗1 , x⃗2, x⃗3) for the 
baryon can be derived, taking
ψ0B=∫(1 /(2π)

9)exp(i p⃗l x⃗ l)A(p⃗1, p⃗2, p⃗3)d
3 p⃗1d

3 p⃗2d
3 p⃗3 (19).

As we mentioned , for an antiparticle occurring instead of a particle in the 
composition of the baryon in the A(p1 ,p2 ,p3)  expression we will take 

vα(p) ψ̂α(x
a
)  instead of uα (p) ψ̂α (x

a
)  and 

vβ(p)ψ̂β(x
b
)  instead of uβ(p) ψ̂β(x

b
)

Also we have:
⟨0|ψ̂α

1
(x1

a
)ψ̂β

2
(x2

a
)ψ̂γ

3
(x3

a
) ψ̂δ

1
(x1

b
)ψ̂ε

2
(x2

b
) ψ̂φ

3
(x3

b
)|0⟩=

=C∫D ADψDψ (exp( i∫ ~
ℒ(ψ ,∂ψ, A ,∂ A)d4 x )

ψα
1
(x1

a
)ψβ

2
(x2

a
)ψγ

3
(x3

a
)ψδ

1
(x 1

b
)ψε

2
(x2

b
)ψφ

3
(x 3

b
))

(18’)

It follows that for making computed theoretical predictions and comparisons of 
different processes , we must be able to compute (by making a suitable discretization)
path integrals of the form
∫DADψDψexp ( ~ℒ (ψ,∂ψ ,A ,∂ A)d4 x)O(A ,ψ ,ψ)
 where O  is a function operator depending on the fields A ,ψ,ψ and can be for 

example :

O(A ,ψ ,ψ)=∫((∏
j=1

s

exp( i p j x j
a
))(∏

j=1

h

exp(i k j y j
a
))(∏

j=1

n

exp(−i q j x j
b
))

(∏
j=1

s

ψμ j
α j
(x j

a
))(∏

j=1

h

Aλ j
a j
(y j

a
))(∏

j=1

n

ψν j
β j (x j

b
)))(∏

j=1

s

d3 x⃗ j
a)(∏

j=1

h

d3 y⃗ j
a)(∏

j=1

n

d3 x⃗ j
b)

(18’’)

 where α j ,β j ,a j  are quark/lepton/gluon sort and colour indices  
 and μ j ,ν j  respective λ j  are Dirac and Lorentz indices. 
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Consider now a hadron with momentum k=(k0 ,k⃗ )  and the light-cone 

 coordinates x +
=(x 0

+ x⃗⋅vers k⃗ )/√2  , x −
=(x0

− x⃗⋅vers k⃗ ) /√2

x⃗ ⊥= x⃗−( x⃗⋅vers k⃗ )vers k⃗  , x⃗∥=( x⃗⋅vers k⃗ )vers k⃗  . 
The quark constituents of the hadron have momenta kj  (j = 1 , 2 for mesons and 
j = 1 , 2 , 3 for baryons) with fractions xj and relations
k j

+
=x jk

+  , ∑ x j=1  , ∑ k⃗ j⊥=0  , 2k j
+ k j

−
−k⃗ j⊥

2
=m j

2  , k⃗ j⊥⋅versk=0

x j∈[0, 1]  , k j
0
=

1

√2 (x jk
+
+
k⃗ j⊥

2
+m j

2

2x jk
+ )

k + k −
=M2  where M  is the effective mass of the hadron, 

k0
=

1

√2 (k
+
+
M2

2k + )  , k⃗ j=k⃗ j⊥+
1

√2 (x jk
+
−
k⃗ j⊥

2
+m j

2

2 x jk
+ )vers k⃗  . 

Thus we have a functional dependence k j=k j(x j ,k⃗ j⊥ , k⃗ ) (20).
 With the constituents momenta (k j )j  in the place of (p j)j  momenta in 

(18) ,(19)  like relations, we can change the variables (k j) j  to variables 

((x j) j=1 ,m−1 ,(k j⊥
1 ,k j⊥

2
)j=1 ,m−1 , k⃗ )=(~x ,

~
k ⊥ ,k⃗ )

 where k j⊥
l
=k⃗ j⊥⋅el  , el⋅ei=δi l  , ei⋅⃗k=0  ; i , l=1, 2

and m is the hadron’s number of quark constituents and so we have the hadron 
momentum space wave function and the hadron energy eigenstate wave function 
computable according to (18) , (18’) respective (19) like relations in the form
A((k j)j=1 ,m)=

~
DA(~x ,

~
k ⊥ , k⃗ )

ψ0H(( x⃗ j) j=1 ,m)=∫B(
~x ,

~
k ⊥ , k⃗ ,( x⃗ j) j=1 ,m)d

m−1~xd2m−2~k ⊥ d
3 k⃗ (21).

The distribution amplitude us defined as :

DA(~x , k⃗ )=∫
~
DA(~x ,

~
k ⊥ , k⃗ )d2m−2~k ⊥  and taking W=∫|DA (~x , k⃗ )|

2
dm−1~x

we have that 1
W

|DA (~x , k⃗ )|
2
dm−1~x describes the probability of finding the 

constituents in state of (x j) j=1 ,m  fraction values of k +  at hadron momentum k⃗ .   
 (The location variables in (21), x⃗ j  and the momentum fractions x j should 

obviously not be mixed up!)

With the relations (20), an amplitude for a process of (p1 , … , ps) outgoing fermions 
momenta, which are grouping themselves as outgoing hadrons (k1 , … , km) having 
fraction values for constituents respectively
((x i l)l=1,mi)i=1 ,m  taking ~x i=(x i l)l=1 ,mi−1  , ~x=(~x i)i=1 ,m ,

(q1 , … , qn) incoming fermions momenta, which are grouping themselves as 
incoming hadrons(k’1 , … , k’m’) having fraction values for constituents respectively
((x ′i l)l=1 ,m ′ i)  taking ~x ′i=(x ′i l)l=1 ,m ′ i−1  , ~x ′=(~x ′i)i=1 ,m ′ ,

(r1 , … , rh) outgoing bosons momenta , can be described as a function of the 
constituents fractions and normal momentum components for the hadrons , and of the
momenta of the hadrons:
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A(q , r ,p)=AH(
~x ,

~
k ⊥ ,~x ′ ,

~
k ′ ⊥ ,k⃗ , k⃗ ′ , r )  .

To compute decay rates or cross sections we need the transition probabilities |A|2.
 Integrating |AH|

2  over the ~x ,
~
k ⊥ ,~x ′  , 

~
k ′⊥  variables with the weight   

(∏i=1

m |~DAi (
~x i ,

~
k i⊥ , k⃗ i)|

2

W i
)(∏i=1

m ′ |~DA ′i(
~x ′i ,

~
k ′i⊥ ,k⃗ ′i)|

2

W ′i ) , where

W i=∫|
~DAi(

~x i ,
~
k i⊥ ,k⃗ i)|

2
dmi−1 ~x id

2mi−2~k i⊥

W ′i=∫|
~
DA ′i(

~x ′i ,
~
k ′i⊥ ,k⃗ i)|

2
dm ′ i−1~x ′id

2m ′ i−2~k ′i⊥  , 
we obtain a transition probability in terms of the momenta of the hadrons:

|
~
AH|

2
=|

~
AH|

2
(k⃗ , k⃗ ′ , r ) .

Let for i=1,m  , qi
=(q l

i
)l=1,mi  the momenta of the quarks/antiquarks which 

are constituents of the outgoing hadron with  four-momentum k i .

As we noticed we have the bijective correspondence (ql
i
)l=(ql

i
)l (
~x i ,

~
k i⊥ ,k⃗ i) .

The number of qi states (on mass shell) corresponding to a hyper-volume 
dw=dmi−1~x id

2mi−2~k i⊥d
3 k⃗ i  located at (~xi ,

~
k i⊥ , k⃗ i)  is 

dw=( V
(2π)3 )

mi

|det
D((ql

i
)l)

D(~x i ,
~
k i⊥ , k⃗ i)

|dmi−1~x id
2mi−2~k i⊥d

3 k⃗ i

and therefore the number of ki states (on mass shell) corresponding to a volume

d3 k⃗ i  located at k⃗ i  is ( V
(2π)3 )

mi
~
W i(k⃗ i)d

3k⃗ i  where 

~W i(k⃗ i)=∫|det
D((ql

i
)l)

D(~x i ,
~
k i⊥ , k⃗ i)

|dmi−1 ~xid
2mi−2~k i⊥

with integration on [0,1] for the momentum fractions variables and a certain bounded 
range of momentum for the normal momenta variables.
Thus we obtain computable differential decay rates and differential cross sections for 
a hadron decay or a two hadrons scattering to a number of outgoing hadrons 
processes:

dΓ=
|
~
AH|

2

T
∏
i=1

m

(
V

(2π)3 )
mi ~
W i(k⃗ i)d

3 k⃗ i      (22)

dσ  =
|
~
AH|

2

|v⃗1−v⃗2|
V
T
∏
i=1

m

( V
(2π)3 )

mi
~
W i(k⃗ i)d

3k⃗ i          (23)

 where |AH|
2
=|AH|

2
((k⃗ i)i=1 ,m  , k⃗ ′1)  for a hadron decay and 

|AH|
2
=|AH|

2
((k⃗ i)i=1 ,m  , k⃗ ′1 , k⃗ ′2)  for a two hadrons scattering .

Obviously , also leptons or bosons can appear as outgoing particles. We simply 
include their momenta in the outgoing momenta list and do the calculations as they 
have no constituents as well and so if such a particle is listed under index j  and so the
list of its constituents is void and mj= 0.
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k i  are the outgoing momenta, k ′i  are the incoming momenta and

v⃗1 ,v⃗2  are the velocities of the scattering hadrons V ,T  are spatial volume 
and respective time interval for the process action.
V, T are constants part of the lattice simulation we consider and the discretization and 
fermion Grassmann variables normalization constants which appear as coefficients in 
a lattice simulation computation are to be setup by measurements performed in one of
any known physical process from the computing of which we can extract the 
coefficient and it will have the same value for any other process we further consider 
for computation.

Consider  now the scattering process corresponding to the Feynman diagram in fig.1

                                           p1

                  q1                  k           p3

                             q1+q2

                q2                                        p2

                       fig.1

q1 , q2  are the incoming fermions, p1 , p2 are outgoing fermions , p3 is an outgoing 
boson four-momentum end legs lines labels and q1 + q2 labels as four-momentum an 
internal boson line, k labels as four-momentum an internal fermion line.
As we shown above we can factorize the fig.1 process through the decay of the k 
particle to p1 and p3 particles obtaining for the Feynman amplitudes the relation:

~AF=AF ((q1 ,q2) ,(p3) ,(p1,p2))=

=AF((q1,q2) ,ϕ ,(p2 ,p1+p3))
2mi

(p1+p3)
2
−m2

+i ε
M((p1+p3) ,(p3),(p1))

(24)

where ϕ  stands for an empty list of bosons four-momenta. 
In the mass centre frame of the incoming particles (which are supposed to be on mass
shell) we can consider
q⃗1=(q ,0 , 0)  , q⃗2=(−q , 0, 0)  and also q⃗i

2=qi
02  , qi

0
=q because we neglect the 

incoming fermions masses.
Momentum conservation leads to 
k=p1+p3  , ∑

i
pi

0
=2q  , ∑

i
p⃗i=q⃗1+q⃗2=0  and we take the fractions relations: 

pi
0
=x iq  , ∑

i
xi=2  and neglecting fermion and boson masses we have also  

‖p⃗i‖=x iq  since the particles are supposed to be on mass shell. 

 Let 
p⃗ i⋅p⃗ j

‖p⃗ i‖ ‖p⃗ j‖
=cos(θi j) .
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From the momentum conservation follows now
2(1−x1)=x2 x3(1−cos(θ23))

2(1−x2)=x1 x3(1−cos(θ13))

2(1−x3)=x1 x2(1−cos(θ12))

Using Feynman rules with the convention that Greek indices are Dirac spinor indices 
and Latin indices are fermion / boson designating indices , (24) becomes:

~
AF=−(2π)4 2mcg

2

4q2
(1−x2)

uα
c
(p1+p3)Tcd

a
γαβ
μ vβ

d
(p2)

1
r 2 (ημ λ

−
rμ r λ
Ma

2 )γρε
λ vρ

c ′
(q1)

uε
d ′
(q2)T c ′d ′

a uβ
c
(p1+p3) γδβ

ν uδ
e
(p1)Tec

a ′
εν
a ′
(p3)δ

4
(p1+p2+p3−q1−q2)

(25)

 where r=q1+q2 .
Considering the (4’) relations we have
vρ
c ′
(q1) γρε

λ
(q1+q2)λuε

d ′
(q2)=(−mc ′+md ′)vε

c ′
(q1)uε

d ′  and since we have taken 

mc ′≈md ′≈0  we can drop the 
rμ r λ
Ma

2  term in (25) .

 Taking 
~
AF=(2π)4 ~Mδ

4
(p1+p2+p3−q1−q2)  and considering (4) , (4’’’) 

relations, with summation over (averaged) spin polarizations, we will have 

a |~M|
2
=

g4

16q4
(1−x2)

2|Tec
a ′ Tcd

a Tc ′d ′
a |

2
4mc

2 tr(
p1+p3+mc

2mc

γ
μ p2−md

2md

γ
μ ′)

 tr (
q1−mc ′

2mc ′

γ
λ q2+md ′

2md ′

γ
λ ′) η

μλ
η
μ ′ λ ′

((q1+q2)
2)2

tr(
p1+me

2me

γ
ν p1+p3+mc

2mc

γ
ν ′)

(−η
νν ′
+
p3νp3ν ′

Ma ′
2 )            (26)

We have

 tr (
p1+me

2me

γ
ν p1+p3+mc

2mc

γ
ν ′)p3νp3ν ′=

 =uα
e
(p1)uβ

e
(p1)p3β γuγ

c
(p1+p3)uδ

c
(p1+p3)p3δα  and 

ue(p1)p3u
c
(p1+p3)=(−me+mc)u

e (p1)u
c
(p1+p3)≈0

(since we take me≈mc≈0 ) .

 Therefore we can drop the 
p3νp3ν ′

Ma ′
2  term in the (26) expression for |

~
M|

2
.

We can verify that
tr γν

γ
μ
=4ημ ν  , tr γμ

γ
ν
γ
λ
γ
σ
=4(ημ ν

η
λ σ
−η

μλ
η
νσ
+η

μσ
η
ν λ
)  and that the 

traces of a product of an odd number of gamma matrices vanish.
It follows :

                                                                  /     /              /

        /               /                                       /              /     /

        /               /    /

                            /                                     /
              /
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tr ((r 1+m1)γ

μ
(r 2+m2) γ

ν
)=4 (r1

μ r 2
ν
+r νr 2

μ
−η

μνr 1⋅r2+η
μ νm1m2)

and so for Bλ λ ′=tr (
q1−mc ′

2mc ′

γ
λ q2+md ′

2md ′

γ
λ ′)  we obtain                                            

Bλ λ ′={
η
λ λ ′(1− 2q2

mc ′md ′
) for λ ,λ ′≠0, 1

0 for {λ ,λ ′}={0 ,1}

η
λ λ ′ for λ=λ ′∈{0 ,1}

 (27)                                                 

and also, after some calculus:

tr (
p1+me

2me

γ
ν p1+p3+mc

2mc

γ
ν ′)ην ν ′

=4(1− q2

memc

(1−x2))   (28) 

In the cross section expression we have , according to a (*) relation ,we will have a 

partial factor 
mc ′md ′

q2  and since we approximate mc ′≈md ′≈0 , from the (27) 

factor, in the cross section expression we must keep only
−2ηλ λ ′q2  with λ ,λ ′=2, 3  having further: 

tr (
p1+p3+mc

2mc

γ
μ p2−md

2md

γ
μ ′)(−2ηλ λ ′

)η
μλ
η
μ ′λ ′

=

=−2− 1
mcmd

(2p21
2
+2(2−x2)x2q

2
)       (29)

Since in the cross section expression we have also a partial factor 
mdme

x1 x2q
2  and 

we approximate md≈me≈0  we must keep from the (28) factor only 

−
4
mc

(1−x 2)q
2  and from the (29) factor, only −2(p21

2
+(2−x2)x2q

2
)  . 

Thus the differential cross section is , after some calculus

dσ  =
f
q9

p21
2
+(2−x2)x2q

2

(1−x2)x1 x2 x3

d3 p⃗1d
3 p⃗2d

3 p⃗3δ
4
(q1+q2−p1−p2−p3)=

=
f
q7

x2
2 cos2

(θ2)+(2−x2)x2

(1−x2)x1 x2 x3

sin(θ1)sin(θ2)x1
2 x2

2q6d x1d x 2d θ1d θ2dφ1dφ2

δ(2q−q(x1+x2+x3))d
3 p⃗3δ

3
(q⃗1+q⃗2− p⃗1− p⃗2− p⃗3)

where f=|Tec
a ′ Tcd

a Tc ′d ′
a |

2 1
8(2π)9

g4

|v⃗ 1−v⃗2|
(in the mass centre of the incoming 

particles  frame).
 Integrating over (θi ,φi)∈(0,π)×(0 ,2π)  , i=1, 2  and p⃗3  we obtain  

 

        /               /
 

                                   /                  /

        /               /    /

       /     /              /
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dσ  =
32
3
f π2 x1 x2

2
(3−x 2)

q(1−x2)(2−x−1−x2)
δ(2q−q(x1+x 2+x3))=

=F
2x2

2
(3−x2)

x3
2
(1−cos (θ13))

d x1d x2

 where F=16
3
f T
q

π      and T  is the process time interval  .

(the Dirac distribution factor is over the 0 component of the four momentum, which 

is conjugated to time variable and we have therefore δ(q ′−q ″)=
T
2π

δq ′q ″ )

 The differential cross section has a pike at x3=0  and at cos(θ1 3)=1 .

In both cases it follows x 2=1  and (p1+p3)
2
=q2

((2−x2)
2
−x2

2
)=4q2

(1−x2)=0.
Therefore, since we neglected the fermion mass, the k = p1+p3 fermion can be 
considered on mass shell and p⃗1  , p⃗3  are collinear. 

Let us choose the x3  axis close to the direction k⃗= p⃗1+ p⃗3  and with orientation 
opposite to p⃗2  orientation, so that the light-cone frame coordinates are 

x +
=(x3

+x 0
)/√2  , x −

=(x 0
−x3

)/√2  , x⃗ ⊥=(x1 , x2 ,0)

Then k⃗ ⊥≈0⃗  , k +
=(p1

0
+p3

0
+‖p⃗2‖)/√2=((2−x2)q+x2q)/√2=√2q  .

In the scattering experiments, 2 q is very large (it is the energy at which the particles 
collide in the mass centre frame).
Since the k particle is on mass shell when the cross section reaches the piked 
significant value, we have k −

=(k⃗ ⊥
2
+mc

2
)/(2k +

) .

Therefore, since k⃗ ⊥ ,≈0⃗  , mc≈0  and k +  is very large, k−  must be very small 

and so k3
=(k +

−k −
) /√2  is also very large. 

The k particle on mass shell propagates from the q1+q2 boson decay location 
0⃗  to the location x⃗  where decays into the p1  fermion and the p3  boson and

 because k⃗ ⊥≈0⃗  we can assume x⃗ ⊥≈0⃗

 We have k⃗=
mc v⃗

√1−v⃗2
 , the propagation time is T=x0

 and Lorentz invariance leads to k x=mcT √1−v⃗ 2.  Also because v⃗ T= x⃗

and k0
=

mc

√1−v⃗2
 we obtain k0 x3

≈k3 x0  , k + x −
≈k − x + .

 Hence k x=k + x−
+k − x +

−k⃗ ⊥ x⃗ ⊥≈2k + x−
≈2k − x + .

 Because k +  is very large and k−  is very small (obviously as an absolute value) 
 it follows that x⃗≈(0 ,0 , x3

)  must be very large as an absolute value. 
The scattering cross section goes to infinity when
p0

3
≈0   ( x3=0  ) and so we can call the fig.1 diagram not infrared safe.

Since x3 is very large, the decay of the k emergent particle into a p1 fermion and a 
p3 boson occurs at a large distance from the q1,q2 fermions scattering point and
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therefore we can reduce a scattering process through factorization, as exposed, to the 
small distance effects ( in the fig.1 case the scattering to k and p2 fermions on mass 
shell ) which will be infrared safe.

Consider now a quark-antiquark meson. The constituents quark and antiquark 
constantly change colour due to strong interaction such that when a colour 
α  quark is at location r⃗ 1  an anticolour α  antiquark is at location r⃗2  with 
α∈{r,g,b}.  For the quark-gluon-antiquark interaction within the meson, the gluon 

fields change much faster than the quark and antiquark fields an so we can consider a 
potential energy of the quark-antiquark pair which is V (r⃗ )=E (r )  where 
r⃗= r⃗1− r⃗2  , r=‖⃗r‖ and E (r )  is the energy of the gluons intermediating the quark-

antiquark interaction.
During the gluon fields interaction time T, while the quark and antiquark are 
respectively  at location r⃗ 1  and r⃗ 2  we have a quark colour charge current 

J1
aμ
(t , x⃗ )=gψαTTαβ

a
ψ

β
ψ1 γ

μ
ψ1(t , x⃗ )  and an antiquark colour charge current 

J2
aμ
(t , x⃗ )=−gψαTTα β

a
ψ

β
ψ2c γ

μ
ψ2c(t , x⃗ ) , where we have a minus sign since the 

quark and antiquark carry opposite colour charges and the notations correspond to :

Ta
=

1
2
λ
a  , the ψα  is one of the three colour charge eigenvectors 

(1, 0, 0)  , (0 ,1, 0)  , (0 ,0 , 1)  and ψc=γ
2
ψ

∗  noticing that ψc γ
μ
ψc=ψγ

μ
ψ

 with ψi  a Dirac spinor. 
Considering the location of the quark and antiquark during the faster changing gluon 
fields intermediated interaction we can take
(ψ1 γ

μ
ψ1)μ=(δ

3
( x⃗−r⃗1), 0 ,0 , 0)  and (ψ2 γ

μ
ψ2)μ=(δ

3
( x⃗− r⃗2), 0 ,0 , 0)  .

Not considering the cubic and quartic gluon interactions the gluon fields Lagrangian 
density is :

ℒ((Aa ,∂ Aa
)a)=−

1
4
(∂μAν

a
−∂ν Aμ

a
)(∂

μ Aaν
−∂

ν Aaμ
)+

1
2
Ma

2 Aμ
a Aaμ

+( J1
aμ
+ J2

aμ
)Aμ

a

We have :
Z ( J)=exp(−i E (r )T )=Z ( J=0)exp (−(i /2)∫ Ja(x )Da

(x−y ) Ja(y )d4 xd4 y)

 where Dμν
a
(x−y)=∫−

1
(2π)4

exp(−i k (x−y))
k2
−Ma

2
+i ε (ημ ν

−
kμk ν

Ma
2 )d4k is the gluon 

propagator.
Excluding the vacuum energy (that is excluding Z (J = 0)) we can take

E (r )T=∫(12 ( J1
a
(x)Da

(x−y ) J1
a
(y )+ J2

a
(x)Da

(x−y ) J2
a
(y))+

+ J1
aDa

(x−y ) J2
a
(y))d4 x d4 y=∫d4k∫d x0d y0 exp(−i k0

(x0
−y 0

))

−1+k0 2
/Ma

2

k2
−Ma

2
+i ε

Sαa
g2

(2π)4 (1−exp(k⃗ r⃗ ))=T g2

(2π)3
Sαa∫(1−exp(i k⃗ r⃗ )

k⃗ 2
+Ma

2 )d3 k⃗

(30)
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 where Sαa=0  for a∉{3 ,8} , Sα3=
1
4

 , Sα8=
1

12
 for α∈{r,g} , Sb3=0  , Sb8=

1
3

and in (30) we take the summation over a index.
Taking M3=M8=0  we have: 

E (r )=E0−
g2

3(2π)3
∫

exp (i k⃗ r⃗ )

k⃗2
d3 k⃗

∫
exp(i k⃗ r⃗ )

k⃗2
d3k⃗=2π∫∫

0

π

exp(i k r cos (θ))sin (θ)dθdk=4 π∫
0

∞ sin (k r )
k r

d k

We integrate over a range of momentum k=‖k⃗‖ for which k r≪1  so that we 
have quark confinement ( the SU(3) chromodynamics coupling is strong at low 
energy ). 

 Let ‖k⃗‖<a .  Hence with ar≪1  we will have: 

E (r )=E0−
g2

3(2π)3 4π∫
0

ar
1
r τ

sin (τ)d τ≈

≈E0−
g2

6π2 r
∫
0

ar

(1−1
6
τ

2)d τ=E0−g
2 a
6π2+Br

2

 where B=
g2a3

108π2  and we take V ( r⃗ )=Br 2 the potential energy of the quark-

antiquark system.
The wave function of the meson, ψ(t , r⃗ 1 , r⃗ 2)=exp (−i Ĥ t)ψM(r⃗ 1, r⃗ 2)

 taking m  as the effective mass of the meson, satisfies the time-independent
Schroedinger equation :

EψM(r⃗ 1 , r⃗ 2)=−
1

2m
∇ r⃗1 , r⃗ 2

2
ψM(r⃗ 1 , r⃗ 2)+V ( r⃗ )ψM(r⃗ 1 , r⃗ 2)             (31)

where E  is the energy level of the meson. 

Searching for ψM(r⃗ 1 , r⃗ 2)=
1
m
x−3 /4F (x )  , G(x )=F (bx )  , x=‖r⃗ 1−r⃗ 2‖

2

 te equation (31) becomes 
d2G
d x2 (x)+(−mBb2

4
+
mbE

4 x
+

3

16 x2 )G(x )=0  (32)

 We choose b  such that mBb2
=1  and take κ  =

mbE
4

 , μ= 1
4

 and so 

 the (32) equation for G  is the Whittaker function equation 

d2G
d x2 +(− 1

4
+ κ
x
+

1 /4−μ
2

x2 )G=0          (33).

The equation (33) , with parameters
κ  , μ  has a fundamental system of solutions Mκ ,μ  , Wκ ,μ

Page 26 of 43 258 of total 515  Gh.V.B. Introd. to...QFT 



Mκ ,μ(z )=z
1
2
+μ

exp(−1
2
z )(1+∑

p=1

∞ (12+μ−κ) ...(1
2
+μ−κ+p−1)

p!(2μ+1) ...(2μ+p)
z p)

Wκ ,μ(z )=
Γ(−2μ)

Γ(
1
2
−μ−κ)

Mκ ,μ(z)+
Γ(2μ)

Γ(
1
2
+μ−κ)

Mκ,−μ(z )

For κ  =μ−
1
2
+n  , n∈ℕ∗  we have that Mκ ,μ(z )=z

1
2 exp (−

1
2
z )P(z )  where P

is a polynomial of degree n−1.

Therefore, for energy levels En  , En=(4n−1)√
B
m

 , n∈ℕ∗  the energy 

eigenstates are polynomial defined by the relations :

ψMn(r⃗ 1 , r⃗ 2)=
1
m
x−3 /4Mκn ,1/ 4(x /b)=

=
b−3/4

m
exp (−

x
2b

)(1+∑
p=1

n−1

(−1)p
(n−1)...(n−p)
p!1⋅3... (2p+1)

2p( xb )
p

)
κn=n−

1
4

 , x=‖r⃗1− r⃗2‖ , b=(mB)−1 /2

    (34)

 Since a wave function ψ0M( r⃗1 , r⃗2) is computable for the meson in a lattice 
simulation (as in (19) for the baryon example) equating this function with the (34) 
relation function we should be able to determine the constants B , b , g2a3in the range 
of momentum given by a.

Consider now a three quark baryon consisting of three quarks with masses 
m1, m2 , m3  and having different colours at a time.
As above , in this case we will have three colour charge currents

J1
aμ
(t , x⃗ )=gδr α

1
2
λαβ
a
δr βδ

3
( x⃗− r⃗1)δμ0

J2
aμ
(t , x⃗ )=gδgα

1
2
λαβ
a
δgβ δ

3
( x⃗−r⃗ 2)δμ0

J3
aμ
(t , x⃗)=gδbα

1
2
λαβ
a
δbβδ

3
( x⃗−r⃗ 3)δμ0

where r⃗1 , r⃗ 2 , r⃗ 3  are the position vectors of the three quarks during the faster
changing gluon fields intermediated interaction in which we must consider all 
possible permutation of colour index values over the 1 , 2 , 3 positions in the 
interaction time interval of length T.

 For d1=‖r⃗ 2−r⃗ 3‖ , d2=‖r⃗ 3−r⃗ 1‖ , d3=‖r⃗ 1−r⃗ 2‖ , the potential energy of the three 
quark system is V (r⃗ 1, r⃗ 2, r⃗3)=E (d1 ,d2 ,d3)  and satisfies: 
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ET=E0 ′T+∑
a
∫ ( J1

a
(x)Da

(x−y ) J2
a
(y )+ J2

a
(x )Da

(x−y ) J3
a
(y)+

+ J3
a
(x)Da

(x−y ) J1
a
(y))d4 xd 4 y

where in the sum over a we  consider an average over all permutations of the colour 
index values over the 1 , 2, 3 positions.
Following steps as in the calculation for the meson case it follows that we can take

V (r⃗ 1 , r⃗ 2 , r⃗3)=B∑
i=1

3

d i
2  with B=

g2a3

216 π2  for ad i≪1  , a  the range of momentum. 

The energy eigenstates of the baryon system satisfy the time independent 
Schroedinger equation :

E ψB( r⃗1 , r⃗2 , r⃗3)=V (r⃗1 , r⃗2 , r⃗3)ψB(r⃗ 1, r⃗ 2, r⃗ 3)+∑
i=1

3

−
1

2m i

∇ r⃗i

2
ψB(r⃗ 1, r⃗ 2, r⃗ 3)

 which for x i=d i
2  , i=1,3  , ψB(r⃗ 1 , r⃗ 2 , r⃗ 3)=ψ(x1 ,x2 , x3)  becomes: 

E ψ=(x1+x 2+x3)Bψ+∑
1
m1 (2

∂
2
ψ

∂x 2
2 x2+2

∂
2
ψ

∂x3
2 x3+3

∂ψ

∂ x2

+3
∂ψ

∂x3 )
where the sum is taken over all circular permutations of (1 , 2 , 3).

 We have solutions in the form ψ(x1 ,x 2, x3)=ψ1(x1)ψ2(x2)ψ3(x3)  , 

E=E1+E2+E3  with E iψi (x )=−
1
mi

(2ψ ″ (x )x+3ψi (x ))+Bψi(x )x

where 1
m1

=
1
m2

+
1
m3

 with circular permutations over (1, 2, 3) 

(35)

In the same way as for the meson wave function we obtain polynomial defined 
solutions

ψi n (x )=
bi
−3 /4

mi

exp(−
x

2bi

)(1+∑p=1

n−1

(−1)p
(n−1)...(n−p)
p!1⋅3...⋅(2p+1)

2p(
x
bi )

p

)
 with bi=(2miB)

−1/2  for partial energy level E i n=(4n−1)√
B

2m i

.

The corresponding energy levels areEn1n2n3=E1n 1+E2n2+E3n 3 with eigenstates

 defined by ψn1n2n3(x1 , x2 ,x 3)=ψn1(x 1)ψn2(x2)ψn3(x3)  , ni∈ℕ
∗  , i=1,3  .

So we have the (lowest level) eigenstate ψ0B and with (19) we can recover the hadron 
momentum space wave function, needed in distribution amplitude calculations, by
a Fourier transform.
As we mentioned we must be able to compute path integrals having the form
∫DADψDψexp (i∫

~
ℒ(ψ,∂ψ ,A ,∂ A)d4 x)O(ψ ,ψ)     (36)

 where O(ψ ,ψ)  can have for example the expression: 

O(ψ ,ψ)=(∏
i=1

s

ψβi
α i
(x i))(∏

j=1

n

ψδ j
γ j (x j ′))  with 

α i , γ j  colour and fermion sort indices and β i ,δ j  Dirac spinor indices. 
 Since the Lagrangian density ~ℒ  has a expression like in (10) , the path integral 
 over DψDψ  , where ψ,ψ  can be considered independent sets of Grassmann 
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variables, can be computed as a sum of Wick contraction terms, as shown for the (9’)
relation (with η ,η  variables conjugated to ψ  respective ψ  on the sides of the 
propagator, which is D (x-y) in the (9’) relation ) and so for the (36) integral not 
vanish ,we must have s = n .
To compute (36) we perform first a Wick rotation to imaginary time t→i t=tE and 
formulate the theory on a hyper-cubic lattice in 4-dimensional (Wick rotated 
Minkowski space-time (t , x⃗ )→(tE , x⃗ ) ) Euclidean space-time, Λ=

{(nμa)μ}nμ∈ℤ  , μ=0 ,3  , ψ(t , x⃗)=0  if |t|>T  or exists k∈{1 ,2 ,3} such that |xk|>L .
As the lattice spacing a goes to 0, we expect to recover 4-dimensional rotational
invariance and (by Wick rotation) Lorentz invariance.
The relativistic relation
E2

/c2
−p⃗2=m2c2   with E  energy, p⃗  momentum, m  rest mass becomes by Wick

rotation to imaginary time:
E ′2/c ′2−p⃗ ′2=m2c ′2  with c ′=−i c .

 For ℏ=1  , c=1  and E ′=i ∂
∂ i t

 , p ′k=−i
∂

∂x k  as translation generators, 

we will have −∂
2
/∂tE

2
−∂k∂k=m

2.
Therefore the corresponding Dirac equation for the Wick rotated space-time must be

(γ
0 ∂
∂tE

+ iγk
∂k−im)ψ=0 and the Euclidean Lagrangian for a free fermion 

theory is

ℒ E (ψ,∂ψ)=ψ(i γ
0 ∂
∂tE

+γk∂k+m)ψ  and so exp(i∫ℒ(ψ ,∂ψ)d4 x)  which 

occurs in the theory path integral formalism, becomes in the Wick rotated space-time
exp(i∫ℒE (ψ ,∂ψ)d i t d3 x⃗ )=exp(−SE (ψ ,ψ))  where 

SE (ψ,ψ)=∫ψ(i γ
0 ∂
∂ it

+γk∂k+m)ψd t d
3 x⃗=∫ψ(γμ∂μ+m)ψd td3 x⃗ is the 

euclidean action.
On each link, say the one going from x∈Λ  to one of its nearest neighbours 
x+a μ̂∈Λ  where μ̂=(δαμ)α=0 ,3 we associate an N by N unitary simple matrix, 

parallel transporter Uμ(x )∈SU(N)  with N  the number of colour x flavour/ 
lepton sort indices:

Uμ(x )=exp(−i ∫
x

x+aμ̂

∑
g
gAμ

bT bd xμ
)

the Tb areN×N  hermitian traceless matrices, (Aμ
b
)b  are real gauge boson fields

 which we can normalize such that tr(TcTb
)=

1
2
δcb  , trT b

=0.

 the (T b
)b  are the generators of the gauge group representation. For each g

 coupling we have a set (Aa ,T a
)a  of gauge bosons and generators .

 We have Uμ(x )=I−i∑
g

ag Aμ
b
(x)T b

+O(a2
)
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Obviously we used Einstein summation convention for the b index. 
Considering the form of the euclidean free fermion theory in a fermions interacting 
gauged theory we will take a discretized euclidean fermion action
SF(ψ ,ψ)=a4

∑
x∈Λ

ψ(x )(D+m)ψ(x )

 where ψ=(ψ
α
)α  , ψα  Dirac spinor, m=diag (mα)α  , α colour x flavour/lepton 

sort index , mα  mass of the α  fermion ,
D=γμ(∂μ−i∑

g
g Aμ

b
(x )T b

)

(where obviously we used the discretization of the ∂μ  operator )

∂μf (x)=
f (x+aμ̂)−f (x )

a
.

We have also the gluon fields discretized euclidean action SG(U) we must establish. 
Consider the square P(x), known as a plaquette, bounded b the corners
x  , x+a μ̂  , x+a μ̂+a ν̂  , x+a ν̂  with x∈Λ .

For each plaquette P(x) we consider the expression:
Pμν (x )=Uμ(x )Uν(x+aμ̂)Uμ

+
(x+a ν̂)Uν

+
(x ) .

 Since [T b ,Tc
]=i f dbcTd  , tr (TbT c

)=
1
2
δbc  , trTb

=0  we have :

tr Pμν=tr exp(−i a2∑
g

Fμν
b T b

+O(a3
))

 where Fμ ν
b
=g (∂μAν

b
−∂ν Aμ

b
)+g2f bcd Aμ

cAν
d

Under a gauge transformation ψ(x )→Ω(x )ψ(x )  , Ω(x)∈SU (N)  , 
 the Uμ  fields transform like Uμ(x )→Ω(x )Uμ(x )Ω

+
(x+a μ̂)

We take the lattice plaquette gauge invariant euclidean action
S(P )=∑

g
∑
μ ν

(1 /g2
)ℜ tr(I−Pμ ν)=(1 /4)∑

g

(a4
/g2

)ℜ tr(Fμν
b Fμ ν

b
)+O(a6

)

The lattice euclidean gluon fields discretized action will be:
SG[U]=∑

x∈Λ

(S (P)(x )+a4
∑
μ ,b
Mb

2 Aμ

b2
(x )) , where

Mb  is the mass of the b  boson and Aμ
b
(x )=(2 /(ga)) tr( i(Uμ(x )−I)T

b
) .

 Further we will take ∇μ
s
ψ(x )=

Uμ(x )ψ(x+a μ̂)−Uμ

+
(x )ψ(x−a μ̂)

2a
and under a gauge transformation ψ(x)→Ω(x )ψ(x)  it will folow 

∇μ
s
ψ(x )→Ω(x)∇μ

s
ψ(x )+O(a)  . 

We have also :

∇μ
s
ψ(x )=

Uμ(x)+Uμ
+

2
∂μψ(x )+

Uμ(x )−Uμ
+
(x)

2a
ψ(x)=

=(∂μ−i∑
g
g Aμ

b
(x)T b

)ψ(x )+O(a)

 

                                 /

 

  /
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 Taking SF [U](ψ ,ψ)=a4
∑
x∈Λ

ψ(x )(γμ∇μ
s
+m)ψ(x)  it follows that in the a→0

 continuum limit, SF [U]  is gauge invariant and equal to the lattice euclidean 
fermion action.
Therefore, the (36) path integral can be computed by Wick rotation as

∫DADψDψexp(−∫ ~
ℒ E (ψ,∂ψ, A ,∂ A)d t d3 x⃗ )O(ψ ,ψ)=

=∫D Aexp (−SG[U ])∫DψDψexp (−SF[U](ψ ,ψ))O(ψ ,ψ)
(37)

 We can write −SF [U](ψ ,ψ)=ψDW [U]ψ  where DW [U]  is a matrix acting 

on the (ψ(x ))x∈Λ  space. 
 Since ψ  , ψ  can be considered as independent sets of Grassmann variables, with 

(8) , (8’’’) relations, we have:
Z (η,η)=∫DψDψexp (−SF[U](ψ ,ψ)+ηψ+ψη)=

=C det (DW [U ])exp(−ηDW
−1
[U]η)       with C  a normalization, discretization 

dependent constant and so we can compute:

∫DψDψexp(−SF[U](ψ ,ψ))O(ψ,ψ)=

=C det (DW [U])
∂
s+n

(∏
i=1

s

∂ ηβ i
α i
(x i))(∏

j=1

n

ηδ j
γ j
(x ′ j))

exp(−ηDW
−1
[U ]η)|

 
 
η=η=0

=

=C ⟨O⟩F[U]|det(DW [U])|

 (37’)

If,as in (18'') the O(ψ ,ψ)  requires integration over ( x⃗ i)i  , ( x⃗ ′ j) j  we can 

 include that in the ⟨O⟩F[U]  factor. 
Therefore the calculation of (36), (37) integral reduces to computation of
C∫D [U ] ⟨O⟩F [U]exp(−SG[U])|det(DW [U])| where ∫D [U] ... means 

integration over the
(Aμ

b
(x ))x∈Λ ,b ,μ  variables, with C  a normalization , discretization dependent 

constant.

 For the free theory, (Uμ(x)=I)  the ∇μ
s  operator becomes ∂μ

s ,

∂μ
s f (x )=

f (x+aμ̂)−f (x−aμ̂)
2a

 and so 

−SF [U](ψ ,ψ)=−∫ψ(γμ∂μ

s
+m)ψd4 x

The Fourier transform on the momentum space of −(γμ∂μ
s
+m)ψ  is 

−( ia γμ sin(apμ)+m)ℱ ψ   and the propagator DW
−1  satisfies 
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−(γμ∂μ
s
+m)DW

−1
(x )=δ

4
(x)  and so on the momentum space we have 

ℱ DW
−1
(p)=

i a−1
γμ sin (apμ)−m

m2
+a−2

(sin2
(ap0)−∑

j

sin2
(a pμ))

The momentum space propagator has a pole at p2
=−m2  when a→0 but has more 

poles, known as doublers , when sin2
(ap0)−∑

j
sin2

(ap j)=m
2a2  .

Doublers can interact with each other via loop corrections and in computations we 
remove them by perturbing slightly the γμ∇μ

s
+m  operator, taking 

SF[U](ψ ,ψ)=−ψDW [U]ψ=a
4
∑
x∈Λ

ψ(γμ∇μ
s
+m−

a
2
∇μ

s+
∇ μ

s)ψ .

Monte-Carlo sampling method

 Let P : [0 ,L]M→ℝ +  with P  continuous and ∫P(x )d
M x=W<∞

Then we have a probability on [0,L ]M  given by 

P (A)=∫
A

P (x)
W

dM x  for any measurable set in [0,L ]M  .

For n=(ni)i∈{0, ... ,q−1}M  we denote Cn=∏
i=1

M

[niL /q ,(ni+1)L /q]

and take a sample (xk)k=1 ,S  , x k∈[0,L ]M  , S=qM+1  such that: 
card {k=1,S|xk∈Cn}=⌊SP (Cn)⌋

We consider also the measures on [0 ,L]M  defined by: 

εk (A)={1  if x k∈A
0  else 

 , μS=
1
s
∑
k=1

S

εk

Then for any Borel set A of [0 , L]M  with P (∂ A)=0  we can show that (∗):
lim
q→∞

μS (A)=P(A)  and so for any continuous F :[0 ,L]M→ℝ  we have 

∫F (x)P (x )dM x=W∫FdP(x )=lim
q→∞

W∫FdμS(x )=lim
q→∞

W
S
∑
k=1

S

F (xk)

 Now we demonstrate (∗ ):
By compactness of A=A∪∂ A  , measure definition and density of rational 
 fractions, for large enough q∈ℕ  we find (n j)j  , n j∈{0, ... ,q−1}M  , 

n j≠nl  for j≠l  such that |P(j Cn j)−P(A)|<ε  , 

|P(j
Cn j)−μS(

j
Cn j)|<

qM

S
≤

1
q

|μS (
j
Cn j )−μS (A)|<ε  with arbitrary positive ε  and the result follows. 
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In a lattice simulation we do the space-time integrations on a bounded hypercube of 
time interval length T and space volume V so that we can consider that Λ is a finite 
set of lattice points. We can use Monte-Carlo sampling method to compute the (37) 
integral.

Let M  be the dimension of the (Aμ
b
(x))x∈Λ ,b ,μ  space,

 taking A=(Aμ
b
(x ))x∈Λ ,b ,μ∈[−L /2,L /2 ]M  , 

Cn=∏
i=1

M

[ni δ−L /2,(ni+1)δ]  for n=(ni)i∈{0 ,... ,q−1}M  , δ=L /q   .

Then we take samples:
A(k )

∈[−L /2,L /2]M  , k=1,S  , S=qM+1  , Uμ
(k )
(x)=I−i∑

g
ag Aμ

(k)b
(x)T b

such that for any multi-index n we have
card {k=1,S|A(k)

∈Cn}=⌊SP(Cn)⌋  ; P  is a probability on [−L /2,L /2 ]M  space 

 defined by the density 
1
W

exp(−SG[U ])|det(DW [U])|

 with W=∫ exp(−SG[U])|det (DW [U])|d
MA

 

According to above considerations , the (37) integral can be determined as

C lim
q→∞

W
S
∑
k=1

S

⟨O⟩F [U
(k )
] .

Meson and baryon masses

A scalar meson appears as a combination ψM(x1 , x2)=ψ
a
(x1)ψ

a
(x2)  with no 

summation over the colour index a=1,3  since at a location x⃗ the quark and 
antiquark have one colour (anti-colour), taking x i=(t , x⃗ i)=(t , x⃗ )  for i=1 ,2 .
For the scalar meson we consider an equivalent scalar field of a spin 0 particle having
an effective mass m  , φ̂=φ̂(t , x⃗ )  as in (4a) and the equivalent propagator

 from (0, x⃗ )  to (t , x⃗ )  , t>0  which is −i ⟨0|φ̂(t , x⃗ )φ̂ + (0 , x⃗ )|0⟩ .(38)
Therefore , taking F̂ (t )=ψ̂M((t , x⃗ ),(t , x⃗ ))  for a given location x⃗ , the (38) 

propagator must be similar to Lorentz invariant −i ⟨0|F̂ (t) F̂ (0)|0⟩ .
After some calculus, according to above established results we derive

C (t )=∫D[U] ⟨O⟩F [U ]exp (−SG[U ])|det (DW [U ])|=K∫
exp(−√k⃗2

+m2 t)

√k⃗2
+m2

d3 k⃗

 with K  a t  , m  independent constant and 
O(ψ,ψ)=(ψ

a
(t , x⃗ )ψa

(t , x⃗ ))(ψa
(0 , x⃗ )ψa

(0 , x⃗ ))
A baryon appears as ψB(x1 ,x 2 ,x3)=(ψα

a
(x1)ψβ

b
(x2)ψγ

c
(x3))αβγ  , a≠b≠c≠a

colour indices, taking x i=(t , x⃗ i)=(t , x⃗ )  , i=1 ,3  at given location x⃗ .
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We consider for a spin ½ baryon an equivalent Dirac spinor field having an effective 
mass m  , ψ̂=ψ̂(t , x⃗ )  as in (4c) and the equivalent propagator trace from 
(0 , x⃗ )  to (t , x⃗ )   : −i ⟨0|ψ̂α(t , x⃗) ψ̂α(0 , x⃗ )|0⟩ .

Thus similar to above we derive 

C (t )=∫D[U] ⟨O⟩F [U ]exp (−SG[U ])|detDW [U]|=Km∫
exp (−√k⃗ 2

+m2t )

√k⃗ 2
+m2

d3 k⃗

 with K  a t ,m  independent constant and the Lorentz invariant 
O(ψ ,ψ)=ψα

a
(t , x⃗)ψβ

b
(t , x⃗ )ψγ

c
(t , x⃗ )ψα

a
(0, x⃗ )ψβ

b
(0 , x⃗ )ψγ

c
(0 , x⃗)

Focussing on the baryon case, integrating in spherical coordinates and then by parts 
we obtain, after a variable changing:

C (t)=
4πK m
t 2 ∫

0

∞

exp (−√k 2
+m2 t 2

)dk  and so for G(t)=t C (t )  we have 

G(t )=4πKm2P (mt)  where P(z )=
1
z
∫
0

∞

exp(−√k2
+z2

)   ,  z=mt  , 

G ′(t )=4πKm3P ′(z)  , 
G ′(t )
G(t)

=m
P ′(z )
P (z)

=−m( 1
z
+H(z ))  with 

H(z )=(∫0
∞ z exp(−√k2

+z2
)

√k 2
+z2

dk )(∫0
∞

exp(−√k2
+z2

)dk)
−1

=

=(∫0
∞ uexp(−√1+k2

/u)

√1+k2
dk )(∫0

∞

uexp (−√1+k 2
/u)dk)

−1
  with  z= 1

u

 Variable changing to s=exp(−√1+k2
/u)  leads to 

∫
0

∞

uexp(−√1+k2
/u)dk=∫

1

∞

exp(−τ/u) τ /√τ2
−1d τ  =

=∫
1

∞

u√τ2
−1exp (−τ/u)d τ  =∫

0

h

u√u2 ln2
(s)−1ds

∫
0

∞ uexp(−√1+k2
/u)

√1+k2
dk=∫

0

h u2

√u2 ln2
(s)−1

d s   where h=exp(−z ) .

Hence after some calculus we obtain:

H (z)=(∫0
1 |ln (h)|1/2

(ln2
(s)+2 ln(s) ln(h))1/2 d s)(∫0

1
(ln2

(s)+2 ln(s) ln(h))1/2

|ln(h)|1 /2
d s)

−1

.

We can verify that for s∈(0 ,1)  we have: 

|ln(h)|1/2

(ln2
(s)+2 ln(s) ln(h))1/2

<
1

√2|ln(s)|
 , 

∫
0

1
1

√|ln (s)|
d s=∫

0

∞

τ
−1/2 exp(−τ)d τ  =Γ(1 /2)  and for z>1  also 
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(ln2
(s)+2 ln(s) ln(h))1/2

|ln(h)|1 /2
<(1+√2)|ln(s)| , 

∫
0

1

|ln (s)|d s=∫
0

∞

τ exp(−τ)d τ<∞  and so by dominated convergenge for z→∞  ,

it follows that

lim
z→∞

H (z )=(∫
0

1

(2|ln(s)|)−1 /2d s)(∫
0

1

(2|ln (s)|)1/2ds)
−1

=

=
1
2 (∫0

∞

s−1 /2exp (−s)d s)(∫0
∞

s1/2 exp(−s)ds)
−1

=(1/2)Γ(1 /2)(Γ(3 /2))−1
=1   .

 Therefore lim
t→∞

−
G ′(t )
G(t)

=m  and so for large t  we can consider that 

lnC (t )−lnC (t+a)
a

=m  , ma=ln ( C (t )
C (t+a))           (39)

In the same way , the (39) relation results valid also for the meson case.
Notice that in the ψM , ψB expressions we have supressed flavour differences between 
the various ψ factors, so that we can have mesons made from an up-quark and a 
down-antiquark for example or baryons made from two up-quarks and one down-
quark like the proton for example. Also we make the location variables 
x⃗ i  equal to the same x⃗  only after computing ⟨O⟩F [U]  according to (37’)  Wick 

contraction relation, since otherwise, because we consider the quark fields variables 
as Grassmann variables in the integration, we would have a vanishing 
O(ψ ,ψ)  operator value due to appearing of squared Grassmann variables in the 
expression of O(ψ ,ψ) . The locations of the quarks / antiquarks in a many-quark  

system as a meson or a baryon can be considered to be approximatively the same 
(due to quark confinement), but however not identically the same.

Consider the SU(3) quantum chromodynamics theory with two degenerate quark 
flavours , the up-quark and the down-quark with equal masses m = mu = md . The 
boson masses are vanishing , Ma = 0.
The lattice action depends on two free parameters:
- the quark mass m;
- the value of the strong interaction coupling g (which can be absorbed into the A 
integration variable).
Then we can compute (in dependence of m) , for a lattice spacing a the masses of the 
π meson (made of an up-quark and a down-antiquark) and the proton p (made of two 
up-quarks and a down-quark): only the dimensionless quantities  amπ  and amp  can be
computed, according to (39).
From experiments we can determine the fraction (mπ/mp)exp and so we can tune the 
quark mass m such that the lattice simulation computed (mπ/mp)lat matches the 
experimental (mπ/mp)exp . Then we determine the spacing a in physical units from 
(amπ)lat and mπ

phys . 

Page 35 of 43 267 of total 515  Gh.V.B. Introd. to...QFT 



The continuum limit must be taken using the constant line of physics mπ , mp<< a-1 
while keeping (mπ/mp)lat constant.
 
With relations (39) we are able to compute effective masses of mesons , baryons and 
even atomic nuclei which are made of nucleons which are protons (two up- and one 
down- quark) and neutrons (two down- and one up- quark ) and can be considered as 
a system of many quarks hold together by the strong interaction. The most part of 
their particles masses are then given by the gluon intermediated interaction energy. 
The strong interaction, intermediated by the SU(3) gluons (in the unified 
SU(3)xSU(2)xU(1) theory) has a positive contribution to the nucleon binding energy 
in an atomic nucleus while the weak and electromagnetic interaction , intermediated 
by the SU(2)xU(1) gluons which for positive electric charged protons turns out to be 
a repelling (Coulombian) force has a negative contribution to the nucleon binding 
energy. Thus for large (heavy) atomic nuclei the negative binding energy (as an 
absolute value) can exceed the positive binding energy, because the weak and 
electromagnetic interaction becomes more significant as the dimension of the nucleus
increases. Therefore the fusion of two light nuclei to another light nucleus happens 
with energy emission and the fission of a heavy atomic nucleus happens also with an 
emission of energy. The energy gain per fission event ΔE can be computed as
ΔE = Δmc2 ,where Δm is the difference between the sum of effective masses of the 
outgoing from the fission particles (atomic nuclei and other hadrons) and the sum of 
incoming in the fission interaction particles (atomic nucleus to be fissioned and the 
fission event producing particle which can be  for example a neutron ) effective 
masses.

To allow transitions between different flavours of quarks for decays like

B +
=bu  

W +

→
 

 τ++ντ     (40)

                                                                        τ+

             b
      B+

              u                                   W+                                ντ

where the notations are:
b – for the bottom-quark , u – for the up-quark,
W+ for the combination of W1

 + i W2  first two weak SU(2) bosons,
τ+ - for the tau-antimuon ,   ντ   - for the tau-neutrino,
B+  - for the b – meson in which a bottom-antiquark and an up-quark are confined by 
the strong interaction,
we add to the SU(3)xSU(2)xU(1) theory Lagrangian density, weak interaction terms 
like
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gψbα
γ
μ( I−γ

5

2 )Wμ
+
ψ
uα  ,  with b ,u  flavours , α  colour index and 

γ
5
=i γ0

γ
1
γ

2
γ

3  or equivalently we add −i gψbα
γμ( I−γ

5

2 )Wμ
+
ψ
uα  to the 

euclidean Lagrangian density.
Obviously in the lattice simulation we have
Wμ

+
=(2 i /(ag)) tr (Uμ−I)(T

1
+ i T 2

)  where 2T 1  and 2T 2  correspond to the  
σ1  respective σ2  Pauli matrices  , from the generators of SU(2) and g is the weak 

coupling constant.
Since it is a weak coupling we can have a perturbative approach and for the decay 
transition (40) we have to compute expressions for an operator

O(ψ ,ψ ,U)=∫(ψi
τ
(x1)ψ j

ν
(x2)(−i g)ψ

bα
(x )γμ( I−γ

5

2 )Wμ
+
(x )

ψ
uα
(x )ψk

bα
(y1)ψl

uα
(y2))d

4 x
and with x s=(T , x⃗ s)  , y s=(0 , y⃗s)  , s=1, 2  we take for i , j ,k ,l=0 ,3 :

Alat
i j k l

( x⃗1 , x⃗ 2 , y⃗1 , y⃗2)=∫D [U] ⟨O ⟩F [U]exp(−SG[U])|detDW [U]|  (41)
On the other hand, in the electroweak interaction theory, inter-flavour transitions can 
be allowed by considering mixed down-type weak interaction partners (d’ , s’ , b’) to 
the (u , c , t) up-type quarks given by unitary Cabibo-Kobayashi-Maskawa matrix   

VCKM=(
Vud V us Vub

V cd V cs V cb

V td V ts V tb
)    with   (

d ′
s ′
b ′)=V CKM(

d
s
b)

|V ij|
2  is the transition probability from a flavour j  quark to a flavour i  quark 

so that the significant changed part of the electroweak Lagrangian density will be

ℒW±=g (u   c   t )γμ( I−γ
5

2 )VCKM(
d
s
b)Wμ

−
+g (d   s   b)VCKM

+
γ
μ( I−γ

5

2 )(
u
c
t )Wμ

+

(The 
I−γ

5

2
 appearing since only the left-handed fields participate in the weak 

interaction.
 An equivalent to Alat

ijkl  in the modified electroweak theory according to ℒW ± is

AW
ijkl
(x⃗ 1, x⃗2 , y⃗1 , y⃗ 2)=V ub

∗
∫ ⟨0|ψ̂i

τ
(x1) ψ̂ j

ν
(x2) ψ̂

ν
(y) γμ( I−γ

5

2 )ψ̂τ
(y)

Ŵμ
− (y)Ŵλ

+ (y ′) ψ̂bα(y ′) γλ( I−γ
5

2 ) ψ̂uα(y ′)ψ̂k
bα (y1) ψ̂l

uα(y2)|0⟩d4 yd4 y ′=
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=CV ub
∗ ∫ ((Dν

(x2−y) γ
μ
(I−γ

5
)Dτ

(y−x1)) jiDμλ
bos

(y−y ′)

(Db
(y1−y ′) γ

λ
(I−γ

5
)Du

(y ′−y 2))kl )d
4 yd4 y ′

 (42)

where C is a constant.
Corresponding to the Aijkl  we have the momentum dependent amplitude: 
B(p ,q ,s ,h)=∫ (exp(ipx2)u j

ν
(p)(E p/mν)

1/2 exp(iqx 1)v i
τ
(q)(Eq /mτ)

1 /2

exp(−isy1)vk
b (s)(Es/mb)

1/2 exp(−ihy2)ul
u
(h)(Eh/mu)

1 /2

Aijkl
( x⃗1 , x⃗2 , y⃗ 1 , y⃗2))d

3 x⃗1d
3 x⃗ 2d

3 y⃗1d
3 y⃗2

After some calculations, considering (42) and (13) , (14) type relations we can derive:

BW (p ,q ,s ,h)=CV ub
∗ (
mνmτmbmu

EpEqEsEh
)

1/2

(vb
(s) γλ

(I−γ
5
)uu

(h))

(uν
(p) γμ

(I−γ
5
)v τ

(q))(−η
μ λ
+
(p+q)λ(p+q)μ

M2 ) 1
(p+q)2−M2

where C is a constant which can depend on the interaction time interval T and the 
interaction space volume, since we consider momentum conservation and incoming 
and outgoing momenta on mass shell , having therefore

p+q=s+h  , δ4
(p+q−s−h)=

VT
(2π)4 and M is the W-boson mass.

Notice that for a given quark or lepton and given four-momentum p on mass shell,
the u(p)  , v (p)  Dirac spinors are defined by their normalization values in the 

rest frame , where p⃗=0  and  spin index variable 1 ,2 is supposed to be 
understood.
Therefore we have a constant C’ depending on V, T, g and discretization and 
normalization of Grassmann variables of the lattice simulation, such that
BW(p ,q ,s ,h)=C ′Blat(p ,q ,s ,h)  where we take p+q=s+h  and 

the four-momenta p ,q ,s ,h  are on mass shell. 
(43)

From (43) we can extract in some momentum range a value CVub
∗  where C

is a lattice simulation dependent constant and similarly CVud
∗  and CVus

∗  with 
the same constant.

 Requiring that V CKM  is an unitary matrix and so |V ub|
2
+|V ud|

2
+|V us|

2
=1  ,

 we obtain the values of V ub  , V us  , V ud  and in the same way the whole V CKM

to multiplication with global phase factors which can be absorbed into the quark field
functions.

As we know, SU(N) requires a basis of N2 – 1 hermitean traceless matrices as 
generators, and so a matrix U∈SU(N)  requires N2

−1  real parameters. Adding 
one real parameter to determine the determinant of absolute value 1, we obtain that an
unitary CKM NxN matrix requires N2 real parameters. 2 N – 1 of these parameters 
are not physically significant because one  phase factor can be  absorbed into each 
quark field (both of the mass eigenstates and the weak primed eigenstates of the N 
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down-type flavours) but the matrix is independent of a common phase. Hence the 
total number of free variables independent  of the choice of the phases of basis 
vectors is N2 - (2 N – 1) = (N – 1)2 .
Splitting suitable chosen generators of SU(N), which are complex hermitian traceless 
matrices into real and pure imaginary generators we show without difficulties that an 
unitary matrix V  can be expressed as V=exp(A+i B)  where A  is a real 
antisymmetric matrix having all diagonal elements equal to zero and B is a real 
symmetric matrix. Therefore from the (N – 1)2  free real variables which remained to 
define the CKM matrix, N (N – 1) / 2 are rotation angles (the A matrix above) which 
are the so called quark mixing angles .
The remaining (N – 1) (N – 2) /2 are imaginary phase variables  which cause CP- 
violation as we will show.
For N = 2 we have no complex phase factors an one quark mixing angle. For N = 3 
there are three mixing angles and one CP- violating complex phase. For CP- violation
to occur we must have at least three families of quarks.
To create an imbalance of matter and antimatter, for the Universe to exist, from an 
initial condition of balance, a necessary condition is the existence of CP- violation, or
equivalent, considering the CPT theorem, the existence of time reversal T- violation, 
so at least three families of quarks exist in nature.
The reason why a complex phase factor in (Vi j)i , j causes CP- violation can be seen as 
follows:
Consider any given particles (or sets of particles) a  and b  and their antiparticles
a  and b  . Now consider the processes a→b  and the corresponding antiparticle 

processes a→b  under CP transformation,denote their amplitudes M respectively
M .  Before CP- violation, these terms must be the same complex number M=M.
 Let M=|M|exp(i θ)  . If a phase factor is introduced (from the CKM matrix),
 denote it exp(iφ).
M  contains the conjugate matrix to M  , so it picks up a phase factor exp (−iφ).
Now we have :M=|M|exp( iθ)exp(iφ)  , M=|M|exp(iθ)exp (−iφ).

Physically measurable reaction rates are proportional to |M|2=|M|2 .

However, consider that are two different routes a
1
→
 
b  and a

2
→
 
b , or equivalently

two unrelated intermediate states a→1→b  and a→2→b  and we have: 
M=|M1|exp(iθ1)exp(iφ1)+|M2|exp(iθ2)exp(iφ2)

M=|M1|exp (iθ1)exp (−iφ1)+|M2|exp(iθ2)exp(−iφ2)  and so 

|M|2−|M|2=−4|M1||M2|sin(θ1−θ2)sin(φ1−φ2).
Thus we see that a complex phase factor gives rise to processes that proceed at 
different rates for particles and antiparticles and CP is violated.

There can be considered also a lepton mixing matrix or neutrino mixing matrix, 
which contains information on the mismatch of quantum states of the three flavours 
of neutrinos νe  , ντ  , νμ  in the charged current weak interaction with the lepton 
partners e , τ , μ . That matrix is an unitary matrix, called the 
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Pontecorvo-Maki-Nakagawa-Sakata matrix, PMNS.
 

       Random walk, mean free path and critical mass of a fissile material

A random walk is a random process that describes a path that consists of a succession
of random steps on some mathematical space.
A lattice random walk is a random walk on a regular lattice where at each step the 
location jumps to another site according to some probability distribution.
In a simple symmetric random walk the location can jump only to neighbouring sites 
of the lattice forming a lattice path and the probabilities of the location jumping to 
each one of its immediate neighbours are the same.
Consider a tridimensional lattice Λ={(nia)i=1 ,3|ni∈ℤ  , i=1 ,3} .
To define the random walk we consider the product probability space of succession of
steps:

S=(∏
i∈ℕ∗

{−1, 1}3  , P̂=
i∈ℕ∗

(
1

3

P))  with P({−1})=P ({1})=1
2

 and the independent 

random variables Z iα :S→{−a ,a} with Z iα ((x j
β
) j∈ℕ∗  , β=1 ,3)=x i

αa .

 We have E (Z iα)=∫Z iαd P̂=0  and we take Z⃗ i=(Z iα)α=1 ,3  , S⃗n=∑
i=1

n

Z⃗ i  .

In order for Snα  to be kαa it is necessary and sufficient that the number of +1 
steps in α  direction excceds the number of −1  steps taken in α  direction of the n 
steps defined tridimensional walk. Therefore, for the α  direction, +1  step must  

 be taken (n+kα)/2  times from a total of n  steps . The total number of n steps 
considered tridimensional walks is 23n. Therefore we can derive

P̂ ∘ S⃗n
−1
({(k 1a ,k 2a ,k3a)})=∏

α=1

3

(( n
(n+k α)/2)

1

2n)  which implies n≡kα   (mod 2)

for the probability not be equal to 0.

Using the Stirling formula : lim
n→∞

√2πn(n/e)n

n!
=1   after some calculus we obtain 

ln (( n
(n+k α)/2)

1

2n )≈
kα

2

2n
−

1
2

lnn+ ln√ 2
π     for large n.

Therefore the asymptotic probability distribution for the defined tridimensional 
random walk as the number of steps increases when the step length is constant for 
each step is a function of the radius from the origin ρ=ρ(r )  having 

P̂ ∘ S⃗n
−1
(A)≃∫

A
ρ(r )d r dΩ=∫

A
( 2
nπ )

3 /2

r 2 exp( r
2

2n )d r dΩ

dΩ  - solid angle  , ρ(r )=( 2
n π)

3 /2

r 2 exp( r
2

2n )
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Also we can compute :

E (|S2nα|)=∫|S2nα|d P̂=a∑
k=0

n

2k ( 2n
n+k )

1

22n=

=
a

22n∑
k=0

n

((n+k )( 2n
n+k )−(n−k )(

2n
n−k ))=

=
a

22n (n(2nn )+∑
k=0

2n

k (2nk )−2∑
k=0

n

k (2nk ))
We have:

k (2nk )=2n(2n−1
k−1 )

∑
k=1

n

(2n−1
k−1 )=∑

k=0

n−1

(2n−1
k )=∑

k=n

2n−1

(2n−1
k )= ∑

k=n+1

2n

(2n−1
k−1 )

and therefore we obtain

E (|S2nα|)=
a

22nn(2nn )  and using the Stirling formula it follows 

E (|S2nα|)≃
a

√2π
√2n  for large n. The net distance travelled in a lattice simple 

random walk is proportional to the square root of the number of steps.

The mean free path is the average distance over which a moving particle (such as an 
atom, molecule , photon or neutron), travels before substantially changing its 
direction or energy, typically as a result of one or more successive collisions with 
other particles.
Imagine a beam o particles being shot through a target and consider an infinitesimally
thin slab of the target. The area of the slab is L2 (L is the width and height of the slab) 
and its volume is L2 dx (dx is the thickness of the infinitesimal slab). The 
concentration of the atoms in the slab is n. The typical number of stopping atoms in 
the slab is then n L2 dx . If l is the mean free path, then the probability of stopping 
within the distance l must be equal to 1: ℘(stopping within l)=1 .
The probability that a beam particle will be stopped in the slab of thickness dx is the 
net area of the stopping atoms ( which is the scattering cross section times the number
of stopping atoms in the slab ) divided by the total area of the slab:

℘(stopping within dx )=
σnL2d x

L2 =nσdx .

Hence the mean free path is l=(nσ)−1  where σ  is the scattering cross section. 

Consider now a fissile material of atoms in which fission events are produced by an 
existent neutron population. A neutron can scatter on atoms of the material, changing 
its momentum, or produce a fission event on an atom releasing other neutrons which 
can cause further fission events, leading to a chain reaction. If the effective neutron 
multiplication factor k, the average number of neutrons released per fission event that
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go on to cause another fission event rather than being absorbed or leaving the 
material, is equal to 1 (k = 1) the mass is critical and the chain reaction is self 
sustaining.
Most interactions of neutrons with the material are scattering events, so that a given 
neutron obeys a random walk until it either escapes from the medium or causes a 
fission reaction. If k = 1 we can consider that we have the same neutron travelling a 
random walk of ns + nf steps experiencing ns scattering events and nf fission events 
and during the fission event steps the neutron travels a net distance corresponding to 
a mean scattering free path l, while the total net distance travelled during both fission 
event steps and scattering event steps together will be Rc , the radius of a spherical 
critical mass.
Since the number of steps squared is proportional to the distance travelled in a 

random walk we have: 
Rc

l
=√s  with s=1+

ns

nf

 .  

 Also, if σ  is the neutrons on atoms scattering process effective cross section 
and n  is the nuclear number density of atoms we have l=(σn)−1  and so 

Rc≃
√s
σn

 . If M  is the critical mass, ρ  is the density of the material and 

m  is the mass of one atom of the material, we will have: 

M=ρ
4
3
πRc

3  , n=
3

4π
M
m

1

Rc
3  , Rc≃

√s
σ
m
M
Rc

3 3
4 π

   and generally 

1≃
f σ
m√s

ρ
2 /3M1/3  where f  is a factor which takes into account geometrical and 

other effects. The critical mass depends inversely on the square of density.

In a theory with neutrons and atomic kernels as confined quarks, we should be able to
compute in lattice gauge simulation, according to (23) relations the differential cross 
section for scattering of neutrons on atomic kernels dσ  and the differential cross 

 section for the fission event process dσf  taking |v⃗1−v⃗ 2|=|⃗v|=v  as the absolute 
value of the neutrons velocity by its thermodynamic average 

v=√
2⟨ε⟩
m0

=√
3kbT
m0

 with k b  Boltzmann constant ,

T  temperature, m0  neutron mass. 
Then we can determine σ  =∫dσ  , σf=∫dσf  , s=1+ σ

σf
 . 
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                                         Fermi’s golden rule
                           Sponataneous and stimulated emission 

Consider a quantum system described by an unperturbed Hamiltonian operator
 H0  having the eigenstates |n ⟩  for eigenvalues En  : H0|n⟩=En|n ⟩  for any |n ⟩  ,     
(|n ⟩)n∈S  being a complete orthonormal set of energy eigenstates. 

 

The system evolves under a weak perturbation of H0 so that the effective Hamiltonian 
operator of the system is considered to be
H=H0+

~H (t )      with t∈ℝ  the time variable and the general state of the system 

 (belonging to the system Hilbert space of wavefunctions)  |ψ ⟩=|ψ(t)⟩  satisfies the 

 Schroedinger equation iℏ ∂
∂ t
|ψ(t) ⟩=(H0+

~H (t))|ψ( t)⟩          (1) . 

 We can expand |ψ(t)⟩  in the form |ψ(t)⟩=∑
n

an(t)exp(−i En t /ℏ)|n ⟩       (2) 

  with an=an(t)  being unknown functions and |an(t)|
2  being the transition 

 probability at time t  into the state |n ⟩ .

 

 We assume that at time t=0  the system is in an initial state |i ⟩  : |ψ(0) ⟩=|i ⟩  and so 
  an(0)=δni  for any n∈S .

 

 For a measured final state |f ⟩  at time t  we have that w f i=|af (t)|
2  is the transition 

 probability after a transition time t  from the initial state |i ⟩  to the final state |f ⟩ .
 

Plugging (2) into (1) we obtain :

i ℏ
d ak (t)

d t
=∑

n
⟨k|~H (t)|n⟩an(t)exp(i t(E k−En)/ℏ)        (3)  

 For ~H=0  it is evident that ak (t)=ak (0)=δki  and so in the zero-th order form  

 of (3), since ~H  is weak, we can take an(t)≈δni  and we have 

i ℏ
d af (t)

d t
=⟨ f |~H (t )|i⟩ exp(iωf i)            (4)  where ωf i=

1
ℏ (Ef−Ei)

i ℏ af (t)=∫
0

t

⟨ f |~H (t ′)|i⟩ exp(iωf i t′)d t ′

 

 Suppose ~H  is a periodic perturbation with ω  pulsation. Since ~H  is self-adjoint 
  we must have ~H (t)=F exp(−iω t)+F + exp (iω t)  and from (4) follows 

af (t)=−⟨ f |F|i⟩
exp (i(ωf i−ω) t)−1

ℏ(ω f i−ω)
−⟨ f |F +|i⟩

exp (i(ωf i+ω) t)−1

ℏ(ω f i+ω)
          (5) . 

 

 We have resonance values of ω f i  at ±ω  . 
 If Ef>Ei  we have a resonant absorption of energy at ω=ωf i  . 
 If Ef<Ei  we have resonant emission of energy at ω=−ωf i  . 

 

For ω = ωf I > 0 it is therefore sufficient to keep the first term of (5) and for 
ω = - ωf I > 0 it is sufficient to keep the second term of (5) .
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Hence in the case of emission ω = ωi f we have 

|af|
2=4|⟨ f |F +|i⟩|2

sin2(1
2
(ωi f−ω) t)

ℏ2(ωi f−ω)
2

  

d w f i

d t
= 2
ℏ2|⟨ f |F

+|i⟩|2
sin ((ωi f−ω)t)
ωi f−ω               (6) 

 

 For f a(x)=
sin ( π

a
x)

π x
 with a>0  , 

rect (aξ)={1  for ξ∈(− 1
2a

,
1

2 a
)

1
2

 for ξ∈{− 1
2 a

,
1

2 a
}

0  for ξ∈ℝ∖[− 1
2a

,
1

2 a
]

    

 

 taking the inverse Fourier transformation ℱ  on temperate distributions  

 space S′(ℝ)  we have         ℱ (rect (aξ))(x)= ∫
− 1

2a

1
2 a

exp (−2π i ξ x)d x=f a(x)  

lim
a→0

rect (aξ)=1   ,  lim
a→0
ℱ (rect (aξ))=lim

a→0
f a( x)=lim

a→0
ℱ (1)=δ(x)

 

Therefore , for large t > 0 we can consider 
sin ((ωi f−ω) t)
ωi f−ω =πδ(ωi f−ω)=πℏδ(Ei−Ef−ℏω)  and so for large  t  we have 

d w f i

d t
=2π
ℏ |⟨ f |F

+|i⟩|2δ(Ei−E f−ℏω)  for resonant emission        (7)  

 and in a similar way for resonant absorption, for large t  we have 
d w f i

d t
=2π
ℏ |⟨ f |F|i⟩|

2δ(E f−Ei−ℏω)          (8) . 

 

 If Γi→ f=
d wf i

d t
 is the |i ⟩  to |f ⟩  transition probability rate and N f , N i  are the  

 are the occupancy numbers of |f ⟩  respective |i ⟩  at a time moment t  then 
d N i

d t
=−Γi→ f N i     ,    N i(t)=N i(0)exp(−Γi→ f t )  . 

 

 Suppose |i ⟩  are excited states and i→f  transitions occur by spontaneous emission. 

 Then considering P(t)=
N i(t)

∫
0

∞

N i(t′)d t′
=Γi→ f exp (−Γi→ f t)  the mean lifetime of 

 an excited state is τ  =∫
0

∞

t P(t)d t= 1
Γi→ f

.
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An electron in an atomic system (one atom system of a gas or a crystal lattice system, 
a semiconductor crystal system with conduction band and valence band) can jump 
from one energy level to another energy level if the system Hamiltonian is perturbed 
by an electromagnetic wave having vector potential 

A=(0 , A⃗), A⃗=( ℏ
2εωV )

1/2

(ak⃗ exp (i k⃗⋅⃗x)exp(−iω t)+ak⃗
+ exp (−i k⃗⋅⃗x)exp (iω t))ϵ     

 with A=A (t , x⃗)  , x⃗∈ℝ3  , A0=0  , ϵ  -polarization versor 
V  volume of the spatial box where the system is confined , ω=k c  , 
ε  -electric permittivity of vacuum, k=‖⃗k‖ -wave number, c  - vacuum light speed

 

(see Chap. Quantization of electromagnetic field) 
If the unperturbed Hamiltonian for the electron is 

H 0=
p2

2m
+V ( x⃗)  with p=−iℏ ∇ x⃗  the momentum operator, then according to Chap.  

Lagrangian of electromagnetic field the Hamiltonian perturbation from the 
electromagnetic wave will be 
~H=

(p+e A⃗)2

2m
+V− p2

2 m
−V  with e  -electron charge ,m  -mass of electron .  

~H= e
2 m
(p⋅A⃗+ A⃗⋅p)+ e2 A⃗2

2m
 . 

 Since we consider ~H  a weak perturbation we neglect the A⃗2  term and also,  
 because ϵ⋅⃗k=0  we have p⋅A⃗= A⃗⋅p  and so 
~H=F exp (−iω t )+F + exp (iω t )     where F=( ℏ

2εωV )
1/2 e

m
a

k⃗
exp(i k⃗⋅⃗x)ϵ⋅p  . 

 

 The electron can jump from state |ψα ⟩  to state |ψβ ⟩  which are eigenstates of H 0   
 with eigenvalues Eα  respective Eβ  , α ,β∈{1,2} , α≠β  , E2>E1.

 

 If the initial state is |i ⟩=|ψ2 ⟩  and the final state is |f ⟩=|ψ1 ⟩  a photon ℏω  is emitted  
 and if the initial state is |i ⟩=|ψ1 ⟩  and the final state is |f ⟩=|ψ2 ⟩  a photon ℏω  is 
 absorbed and this occurs at (or near to) resonance values ℏω=E2−E1  , ω=2π ν  , 
ν  -the freqequency of the perturbing electromagnetic wave .

 

The perturbing field can be a electromagnetic wave at frequency near to the 

resonance value 
E2−E1

h
 which produces a stimulated emission or a environmental  

single photon (or a vacuum fluctuation) at the same resonance frequency , in which 
case we have a spontaneous emission. We can have also absorption in the presence of 

 a perturbing electromagnetic field with frequency near to 
E2−E1

h
 .  

According to (7) in the case of stimulated emission we can estimate the probability 
rate of the event as 
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d w21

d t
= e2

m2
π
εωV

|⟨ f |ϵ⋅p|i⟩|2⟨ak⃗
+ ak⃗ ⟩ δ(E2−E1−ℏω)         where ⟨ak⃗

+ ak⃗ ⟩  corresponds 

 to n
k⃗
 -the number of photons with wave vector k⃗  and polarization versor ϵ  ( see 

 

Chap. Quantization of a electromagnetic field ). 

 We have [Ĥ 0 , x̂i ]=[
p̂2

2 m
, x̂i]=

1
2m
( p̂⋅[ p̂ , x̂i ]+[ p̂ , x̂i]⋅p̂)=−i

ℏ
m

p̂i   

⟨ f |[ Ĥ0 , x̂ j]|i⟩=(E f−Ei)⟨ f |x̂ j|i⟩      and so 

⟨ f |ϵ⋅p|i⟩= i
ℏ

m
e
(Ef−Ei)ϵ⋅pe   where pe=⟨ f |e ^⃗x|i⟩  is the transition dipole moment.

 

 The final state |f ⟩=|ψ1 ⟩  can have a degeneracy g1  ( the number of independent 

H0  eigenstates which correspond to the same eigenvalue as |f ⟩ ) and the transition 
 can occur from the state |i ⟩  to any of the g1  degeneracy states |f ⟩  and therefore 
d w21

d t
= π
εV

g1|ϵ⋅pe|
2 nk⃗ωδ(E2−E1−ℏω)       (9) for stimulated emission . 

 

In the same way, for absorption we will have a transition probability rate 
d w12

d t
= π
εV

g2|ϵ⋅pe|
2 nk⃗ωδ(E2−E1−ℏω)          (10)  where g2  is the degeneracy 

 of the |ψ2 ⟩  state. 

 

 For the spontaneous emission we will have a perturbing field with nk⃗=1   

 interacting with the system and so a transition probability rate 
d w21

d t
= π
εV

g1|ϵ⋅pe|
2ωδ(E2−E1−ℏω)            (11) 

 

To obtain the effective transition probability rate we must take in consideration all 
 values of the wave vector k⃗  with the versor in a solid angle ΔΩ  and 
 corresponding energy ℏk c  in an interval (E , E+d E)  . Therefore we must  

 integrate over the volume element in the k⃗  -space d3 k⃗  multiplying with 
V
(2π)3

 

 which is the number of k⃗  states in a unit volume element d k 1d k 2d k3  ( according 

 

to Chap. Canonical quantization of a scalar field ).
Therefore the transition probability rates are : 
d W 21

d t
=∫ π

εV
g1|ϵ⋅pe|

2nk⃗ωδ(E2−E1−ℏω)
V

(2π)3
d3 k⃗

d W 21

d t
= π
ℏεc3 g1|ϵ⋅pe|

2ν3 nk⃗ΔΩ        with ν=1
h
(E2−E1)            (12) 

d W 12

d t
= π
ℏεc3 g2|ϵ⋅pe|

2 ν3nk⃗ΔΩ                 (13) 

 

In the case of stimulated emission the emitted photons have the same wave vector 
and the same polarization and phase as the perturbing photons, therefore the 
stimulated emission radiation is coherent.
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For the spontaneous emission, the direction of  k⃗  is undetermined ( ΔΩ=4π  ) and  
the perturbation is a random electromagnetic fluctuation of the medium. 

 Hence 
d W 21

d t
= π
ℏ εc3 g1|ϵ⋅pe|

2 4 πν3               (14)  

We have the following emission (absorption) Einstein coefficients :
  B2 1=

π
ℏε c3 g1|ϵ⋅pe|

2  (stimulated emission) 

  B1 2=
π
ℏε c3 g2|ϵ⋅pe|

2   (absorption) 

  A21=4π ν3 π
ℏ εc3 g1|ϵ⋅pe|

2   (spontaneous emission) 

 

We see that in the above (12) , (13) , (14) relations, the coefficients depend on the 
polarization versor of the incident photons. The incident electromagnetic wave is 
however unpolarized , and therefore the system interacts separate which each of two 
independent polarization states and so instead of |ϵ⋅pe|

2  we will have  

|ϵ1⋅pe|
2+|ϵ2⋅pe|

2     where ϵi   ,  i=1,2   with ϵi⋅ϵ j=δi j  are the two independent  
orthogonal polarization versors.
 If N i  is the state |ψi ⟩  population , N i=N i( t)  , i=1,2  then from (12) , (13) , (14) 

 we have − (∂N 2

∂ t )st .emission

=(∂N1

∂ t )st .emission

=B2 1 nk⃗ ν
3ΔΩN 2

                   (∂N2

∂ t )absorption

=− (∂N1

∂ t )absorption

=B12nk⃗ ν
3ΔΩN1

               −(∂N2

∂ t )sp .emission

=(∂N 1

∂ t )sp .emission

=A21 N 2

 

 It follows g2 B21=g1 B12   ,  A21=4π ν3 B2 1           (15) 

(∂N1

∂ t )st . emission

+(∂N1

∂ t )absorption

=B21 nk⃗ ν
3ΔΩ(N2−

g2

g1

N1)          (16) 
 

In a system at thermodynamical equilibrium temperature T we can assume a 
distribution of states according to Boltzmann distribution :

N i

N
=

gi exp (−Ei /(k bT ))
Z

   with N=∑
i

N i   ,  Z=∑
i

gi exp(−Ei/(kb T ))  , 

k b  -the Boltzmann constant,  N i   the state |ψi ⟩  population, H 0|ψi ⟩=Ei|ψi ⟩   , 
gi  degeneracy of the Ei  eigenvalue states. 

 

(see Chap. Classical statistical ensemble) 
At thermodynamical equilibrium we have that the net exchange between any two 
 levels |ψ1 ⟩   ,  |ψ2 ⟩  will be balanced.  Also , the equilibrium distribution of photons 
will be that of a photonic gas at equilibrium and so we can consider 

nk⃗=
1

exp(hν/(kb T ))−1
    with ‖k⃗‖=k=2πν /c   ,  hν  =E2−E1  
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 The delented balancing between levels represented by |ψ1 ⟩  and |ψ2 ⟩  states gives 

0=(∂N 1

∂ t )net
=4π B21 ν

3nk⃗ N2−4 πB1 2ν
3 nk⃗ N 1+A21 N2  and so 

4 πν3 B2 1 g2 exp(−E2/(k bT ))−4 πν3 g1 B12 exp(−E1/(k bT ))+
+A2 1(exp(hν /(k bT ))−1)exp(−E2/(kb T ))=0                             (17) 

 

The Einstein coefficients are fixed probabilities per time units, associated witheach 
atom and do not depend on the state of the gas of which the atoms are a part. 
Therefore (17) must hold for any T > 0 .
 For T→∞  from (17) we obtain B21 g2=B12 g1  and so (17) leads to 

4 πν3 B21 g2(1−exp (hν /(k bT )))=g2 A21(1−exp(hν/(kb T )))  
 

and we recovered (15) from the balancing of net exchange between levels , and we 
can see also that if (15) is valid , the net balancing (17) follows. 
The rate equations (12) , (13) , (14) refer only to excitation at the particular optical 

 frequency ν0=
1
h
(E2−E1) .At frequencies offset from ν0  the strenght of stimulated  

(or spontaneous emission) will not vanish, it will be decreased according to the so 
called line shape describing the broadening affecting atomic or molecular resonance. 
The broadening of the emitted spectrum at a particular resonance frequency occurs 
because the difference between the excited state and the lower one final state can 
have fluctuations. If the fluctuation is due to a phenomenon that is the same for each 
quantum emitter, there is a homogeneous broadening . If each quantum emitter has a 
different type of fluctuation, there is a inhomogeneous broadening.
Therefore the  emission probability rate for a frequency in the interval (ν , ν + d ν) 

 will be (for stimulated emission) 
d W 21

d t
=B21ν

3 nk⃗ΔΩg(ν)d ν   where vers k⃗  is 

 in the solid angle ΔΩ  , k=‖⃗k‖=2π ν/c  and g=g(ν)  is the spectral line shape  
 function defined as a distribution of frequencies such that ∫

B

g(ν)d ν  is interpreted 

 

as the probability that a photon with a wave number k=2π ν/c  , ν∈B  actually has  
a resonant frequency which causes the emission.
An example of situation where the fluctuation which determines a spectral line shape 
function is the same for each individual system of a statistical ensemble 
(homogeneous broadening) are natural or lifetime broadening fluctuations. The 
uncertainity principle relates the mean lifetime τ of an excited state with the 

 uncertainity of its energy Δ E=hΔ ν  as τΔ E≥ℏ
2

 , τΔ ν≥ 1
4 π

 and so any  

 frequency in an interval (ν0 ,ν0+Δν)  can determine an emission. 

 

When ν is an effective resonant frequency , causing emission, the atom (or molecule) 
system absorbs from the photonic electromagnetic oscillator and dissipates during 
positional fluctuations on the electronic orbit a mean  power ~P(ν)  which is  
 proportional to the probability that photons with frequency in an  
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 interval  (ν ,ν+d ν)  actually determine an emission.  
Hence we have merely a process similar to forced oscillations described by a motion 
equation of the form 
a0 q̈=Qe+Q f+Qa=−k q−α q̇+Q0 cos(ω t)     with 
Qe=−k q   -elastic force , Qf=−α q̇   -dissipative friction force, 
Qa=Q0cos (ω t)   -active oscillating force . 

 For α
a0

=2δ  , k
a0

=ω0
2   ,  

Q0

a0

=β    we have 

q̈+2δ q̇+ω0
2 q=βcos(ω t)      (18) 

 

 The homogeneous equation q̈+2δ q̇+ω0
2 q=0  has for δ<ω0  a general real solution 

 of the form q0(t)=exp(−δ t)b cos(t √ω0
2−δ 2+φ)  where b ,φ  are constants. 

 

A particular solution of (18) of the form q1(t)=A sin(ω t)+B cos(ω t)  leads to the  
system in A , B 
A(ω0

2−ω2)−2 Bδω=0     

2 Aδω+B(ω0
2−ω2)=β

 with solution A=β 2δω
(ω2−ω0

2)2+4δ2ω2=AA   ,  B=β
ω0

2−ω2

(ω2−ω0
2)2+4δ2ω2=AD   

 and so q1(t)=AA sin(ω t)+AD cos(ω t)= Ā cos(ω t−ϕ)   where  

Ā=√AA
2 +AD

2=β((ω0
2−ω2)2+4δ2ω2)−1/2   ,  ϕ=arctan (

A A

AD

)=arctan ( 2δω
ω0

2−ω2)  . 
 

 For t→∞  we have q0(t)→0  and so we can take for the absorbed power 
PA(t )=Qa q̇1(t)=Q0 cos (ω t)(ω AA cos(ω t )−ω AD sin(ω t ))

 

 The mean absorbed power on a period 2π
ω  is 

PA=
1
2

Q0ω AA=
Q0

2

a0

δω2

(ω0
2−ω2)2+4δ2ω2

The dissipated power is 
PD(t )=−Q f q̇1( t)=α q̇1

2=2δa0(ω AA sin(ω t)−ω AD cos(ω t))2  

 

The mean dissipated power on a period is 

        PD=a0δω
2(A A

2 +AD
2 )=

Q0
2

a0

δω2

(ω0
2−ω2)2+4δ2ω2=PA   

 We have ~P=~P(ω)=PD=PA=
Q0

2

a0

δω2

(ω0
2−ω2)2+4δ2ω2    

~P  has a maximum at ω=ω0  and the full width at half maximum is 

Δωres=|ω1−ω2|             where ~P(ω1 ,2)=
1
2
~P(ω0)   . 

 We obtain for ω1 ,2>0  that ω1 ,2=√ω0
2+δ2±δ   ,  Δωres=2δ  . 
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 We consider δ  a small value and so significant values of ~P  are obtained for 
|ω0−ω|∈O(ε)  with ε>0  a small value and so 

~P=
Q0

2

a0

δ
(ω0−ω)

2+4δ2+O(ε)  , ~P(ν)≈C Γ/2
(ν−ν0)

2+(Γ /2)2
   where C  is a constant 

 and Γ  is the full width at half maximum. ~P(ν)  has maximum value at ν=ν0 .
 Therefore considering ν0  sufficiently large we obtain in the case of 
 homogeneous broadening the Lorentz frequency distribution 

g(ν)≈ 1

π 

Γ/2
(ν−ν0)

2+(Γ/2)2
.

 

Inhomogeneous broadening occurs for example due the Doppler effect resulting from 
the distribution of velocities in a gas at a certain temperature.
 If v⃗  is the velocity of the atom (molecule) in a gas and the angle between v⃗  and  

 the perturbing electromagnetic wave is θ  with 
v
c
∈O(ε)  , v=‖⃗v‖ , ε  small , the 

 frequency shift is Δ ν=ν v
c

cosθ+O(ε2)   ( see Chap. Doppler effect . . .) 

 

 The dispersion (⟨(Δ ν)2⟩)1 /2  over all values of v⃗  and θ  will be σ  with 

σ2=ν0
2 ⟨ v⃗2⟩

c2 ⟨cos2θ⟩+O(ε2)≈ν0
2 ⟨ v⃗ 2⟩

2 c2

 

 According to Chap. Classical statistical ensemble we will have ⟨ v⃗2⟩= 2
m

3 kb T   

 where T  is the absolute temperature of the gas and m  is the mass of the gas atom 

 or molecule. Therefore the dispersion is σ=
ν0

c (3 kb T

m )
1/2

 and the spectral line 

 in the case of inhomogeneous broadening due the Doppler effect in a gas can be  
 a Gaussian distribution with mean value ν0  and dispersion σ :

g(ν)= 1

√2πσ
exp(− 1

2 (
ν−ν0

σ  )
2

)

 

Suppose we have two types of fluctuations a and b which have spectral line shape 
functions ga respective gb and produce a shift in resonance frequency  (Δ ν)a and 
respective (Δ ν)b .
 Therefore we have on the probability space (Φ , P)  of photons with the probability 
P :℘(Φ)→[0,1]  where P({φ})  is the probability that the photon φ  has a resonant  

 

frequency that causes emission, the random variables (Δ ν)a ,(Δ ν)b :Φ→ℝ  such  
 that (Δ ν)a ,b(φ)  is the shift in resonance frequency that is present when the  
 photon φ  perturbs the Hamiltonian of an atom. 

 

From the interpretation of g (ν) follows that 
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P∘(~ν+(Δ ν)a ,b)
−1  where ~ν :Φ→ℝ  is defined by ~ν(φ)  -frequency of the photon φ , 

 has the density ga ,b  and we must have P∘~ν−1=εν0  because ν0  is the only 
 resonant frequency when we have no fluctuations. 

( where εν0({ν})={1  if ν=ν0

0  if ν≠ν0

 , εν0  has density function δ(ν−ν0)  ) . 

 

 If ρa ,b  are the densities of (Δν)a ,b  , from the rule for densities of sums of  
 independent random variables we have ga ,b(ν)=(δ(ν−ν0)∗ρa ,b)(ν)=ρa ,b(ν−ν0)  
 ( * -the convolution operation ) 
 The total fluctuation a+b  produces a shift (Δν)a+(Δ ν)b=(Δν)a+b  and assuming 
 the fluctuations are independent we will have 
ga+b(ν)=ρa+b(ν−ν0)=(ρa∗ρb)(ν−ν0)=(ga(ν+ν0)∗gb(ν+ν0))(ν−ν0)=
=∫ga(ν−ν0−ν′+ν0)gb(ν′+ν0)d ν′=(ga∗gb)(ν+ν0)
ga+b(ν)=(ga∗gb)(ν+ν0)

 

 As proven we have (∂N1

∂ t )st .emission

=B2 1nk⃗ ν
3ΔΩg(ν)d νN2  and in the same way 

(∂N1

∂ t )absorption

=−
g2

g1

B2 1n
k⃗
ν3ΔΩg(ν)d νN1  . 

 

Therefore from stimulated emission we have a gain in emitted power 

Pnet=hν ((∂N1

∂ t )st .emission

+(∂N1

∂ t )absorption
)=hνB21ΔN nk⃗ ν

3ΔΩg(ν)d ν   

 which is positive only when we have a population inversion ΔN=N2−
g2

g1

N1>0  . 

 

The stimulated emission cross section σ21 is defined as the probability rate of 
stimulated emission transition divided by the flux number of photons (number of 
photons crossing an unit area of surface normal to propagation direction in unit time). 
If the medium is refractive (n -dimensionless refractive index) the flux will be 
affected by the medium . The flux is equal to ρ v where ρ is the density number of 
photons per unit volume and v is the propagation velocity.
 For the considered electromagnetic wave, the number of photons in the volume V  
 for a wave vector k⃗  in a d3 k⃗  volume element in k⃗  -space  is 

2nk⃗

V

(2π)3
d3 k⃗=2 nk⃗

V

(2π)3
k 2 d k ΔΩ  ( we have a factor of 2 because we are 

 considering the two independent polarization states). 

k=2π
λm
=2π

v
ν=2π

c
nν

 ( λm  is the wavelenght of the elctromagnetic wave in the medium) and so 
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ρ=2 nk⃗

1

c3 n3 ν2 d νΔΩ  and the flux will be Φ=ρ v=ρ c
n
=2 nk⃗

n2

λ2 d νΔΩ  

 where λ= c

ν   is the wavelenght of the electromagnetic wave in vacuum. 

 Hence σ2 1=

d W 21

d t
Φ =

B2 1nk⃗ ν
3ΔΩg(ν)d ν

2 nk⃗ d νΔΩ
λ2

n2=
1

8π
A2 1
λ2

n2 g(ν)  , 

 

σ21(ν)=
1

8π
A21
λ2

n2 g(ν)

Consider now a gain medium where we have a population inversion per unit volume

Δ~N= 1
V
(N2−

g2

g1

N1)  and an incident coherent beam of photons in the z  -axis 

 direction. The number of photons in the beam crossing a normal to z  -axis 
 surface Σ  of area A  in a small time interval Δ t  is Nσ  . 

 

We look at the stimulated emissions that take place in a cylindrical region along the
 z -axis with basis Σ having volume V = A Δ z (with Δ z small) . 
The number of photons crossing the surface Σ in the same interval Δt and are 
perturbing the states of electrons in the gain medium atoms is Np . As long as the 
incident beam signal intensity is small enough (that is far from saturation) so that it 
does not have a significant effect on the magnitude of the population inversion which 
would increase the gain in emitted power, and therefore since the stimulated emission 
photons have the same wave vector , phase and polarization as the incident beam 
photons would overcrease Np , we can consider Np = Nσ within the time interval we 
considered for counting Nσ . 

 The intensity of the incident beam is I= Nσ

A Δ t
h ν  . Since the stimulated emission  

photons have the same wave vector , phase and polarizations as the incident beam 
photons we have an increase of Nσ in the time interval Δt due the difference between 
stimulated emission photons and absorption photons which, ignoring the spontaneous 
emission, is (ΔN 1)net=(ΔN 1)st .emission+(ΔN1)absorption       
(ΔN 1)st .emission  gives the number of stimulated emission photons, 
(ΔN 1)absorption  gives the number of absorbed photons. 
 Therefore ΔNσ=(ΔN1)net=(ΔN1)st .emission+(ΔN 1)absorption          (19) 

 

 If Γ21  is the transition probability rate for stimulated emission, from (12) ,(13), 

 (16) and (19) follows Γ21Δ
~N A Δ z=ΔN σ

Δ t
 . 
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 The flux of perturbing photons is Φ=
N p

A Δ t
 which in the case of a small signal is 

Φ= Nσ

AΔ t
 . For a small signal that not affects Δ~N ,  taking γ0(ν)=σ 21(ν)Δ

~N   

 we derive 
Δ I
Δ z
=hν ΔN σ

A Δ t Δ z
=hν Γ21Δ

~N=h ν
Γ2 1

Φ
Nσ

AΔ t
Δ~N=σ2 1Δ

~N I    and so 

 the small signal equation for the optical intensity d I
d z
=γ0(ν) I (z)  leading to 

I (z)=exp(γ0(ν) z) I in   where I in=I (0)  is the optical intensity of the input signal. 

 

 Consider a crystal lattice of a semiconductor material with unit cells (Ω0+Rn)n  

 (see Chap. Covalent crystal lattice) , Rn=∑
i=1

3

ni a⃗i   ,  n=(ni)i=1 ,3   ,  

Ω0={(ai xi)i=1,3|x i∈[−
1
2

,1
2
]  for i=1,3}  , b⃗i=

2π
a⃗1⋅(a⃗2×a⃗3)

(a⃗i×a⃗ j)ϵi jk   (with 

no summation over j , k   ) .
 We consider a volume V=NΩ0    , ni=0 , N i  of N=N1 N2 N 3  cells. 

We consider simplified a rectangular lattice k⃗=(ki)i=1 ,3 , ki ai=2π
mi

N i

 , mi∈ℤ

 

An orthonormalized complete set of wave functions of electrons in the crystal will be 

 of the form (~ψk⃗α)k⃗α   with  ~ψk⃗α=exp (− i
ℏ Eα( k⃗) t)ψk⃗α(x)

    with (t , x)∈ℝ4  time-space coordinates and 

ψ
k⃗α(x)=

1

√NΩ0

exp (i k⃗⋅x)u
k⃗α(x)   ,  uk⃗α (x)=∑

n
exp (i k⃗ (Rn−x))u0α (x−Rn)  

 where u0α=u0α( x)∈ℝ  is a solution of ∇ 2 u0α (x)+
2m0

ℏ2 (E0α−V 0(x))u0α (x)=0  

E0α   -energy levels of a electron in a single atom cell system. 

 

 Since we can roughly consider that u0α  vanishes outside of the cell Ω0  we take  

 the normalization ∫u0α(x−Rn)u0β(x−Rm)d
3 x=δnmδαβΩ0

 

 We have ψk⃗α (x)=
1

√NΩ0

∑
n

exp(i k⃗⋅Rn)u0α (x−Rn)  and since ψk⃗α  are periodic 

 with respect to k⃗  with period (2πai
)i=1 ,3

 it is sufficient to consider only values 

k⃗=(k i)i=1 ,3  with k i∈[− πai

, π
ai )  ( the first Brillouin zone ) 

 We can verify that we have 

⟨ψk⃗α ,ψk⃗′β⟩=∑
n ,m

exp (i k⃗′⋅Rn−i k⃗ Rm)
1

NΩ0
∫u0β(x−Rn)u0α (x−Rm)d

3 x=δ k⃗ k⃗′δαβ
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and so we have chosen the correct normalization.
The energy levels in the Linear combination of atomic orbitals tight binding 
approximation (see Chap. Covalent crystal lattices …) are given by 
Eα (k⃗)=E0α−δα−2γα (cos(k1 a1)+cos (k 2a2)+cos(k 3 a3))     (20)  where 

δα=−
1
Ω0
∫u0α( x)(V (x)−V 0(x))u0α d3 x   

γα=−
1
Ω0
∑
i=1

3

∫ 1
2
(u0α (x−a⃗i)+u0α(x+a⃗i))(V ( x)−V 0(x))u0α (x)d

3 x  

V (x)=∑
n

V 0( x−Rn)   . 

 

 Since the u0α  roughly vanish outside Ω0  we can assume that 

∫u0α (x−Rn)∇ u0β(x−Rm)d
3 x≈0     for n≠m    and therefore  

∫ψk⃗α
∗ (x)( p̂ψk⃗′β)(x)d

3 x=

= 1
NΩ0

∫∑
n

exp(−i( k⃗−k⃗′)⋅Rn)(−u0α (x)i ℏ ∇u0β(x))d
3 x=

=− δ k⃗ k⃗′
i ℏ
Ω0
∫u0α (x)∇u0β(x)d

3 x=iδ k⃗ k⃗′

m0

Ω0

E0α−E0β
ℏ ∫u0α( x) x u0β(x)d

3 x   

⟨ψ
k⃗α|p̂|ψk⃗′β⟩=i δ

k⃗ k⃗′

m0

e
μαβ

E0α−E0β
ℏ                  (21) 

 where μαβ=
1
Ω0
∫u0α (x)e x u0β(x)d

3 x  is the transition dipole moment. 

 

 In the general (a⃗i)i=1 ,3  case the relation (20) becomes 

Eα (k⃗)=E0α−δα−2γα (cos(2π~k1)+cos (2π~k2)+cos(2π~k 3))   

 with k⃗=∑
i=1

3 mi

N i

b⃗i=∑
i=1

3 ~
ki b⃗i     ,  k⃗⋅a⃗i=2π~ki  and we take (~k i)i=1 ,3=

~⃗
k  , 
~
k=‖~⃗k‖ , 

 noticing that the number of k⃗  -states in a volume d~k 1d~k2 d~k3=d3~⃗k

 is N d3~⃗k=N~k 2Δ~Ω  and the first Brillouin zone corresponds to (~ki)i=1 ,3∈[− 1
2

,
1
2 )

3

 

The valence band of electrons in the semiconductor crystal lattice is defined by by 
 states ψk⃗ v  whose energy levels E1( k⃗)  for small wave numbers, and k⃗  in the first 
 Brillouin zone are, according to (20) approximated by 
E1(k⃗ )=E1(0)+γv 4 π2~k 2   with E1(0)=Ev=E0 v−δv−2γv

 

 The conduction band of electrons is defined by states ψk⃗ c  whose energy levels 

 for the same k⃗  values are approximated by 
E2(k⃗ )=E2(0)+γc 4π2~k 2   with E2(0)=E c=E0c−δc−2γ c
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 We have Ec>Ev  and at k⃗=0  , E1( k⃗)  has a maximum and E2( k⃗)  has a minimum.  
 Therefore we must have γv<0  , γc>0  and Eg=E c−Ev  is the band gap.  

Consider a electromagnetic wave with vector potential :

A⃗=ϵ(A exp (i( q⃗⋅x−ω t))+A + exp (−i(q⃗⋅x−ω t)))    with ω=q c
n

 , n  -refraction  

 index of the semiconductor medium, A∈ℂ  , ϵ  -polarization versor ,ω∈ℝ +  , 
q⃗∈ℝ3  , q=‖q⃗‖ , ϵ⋅⃗q=0

 

The Hamiltonian perturbation for the electrons in valence band and conduction band 

 can be estimated as ~H= e
2 m0

(p⋅A⃗+ A⃗⋅p)     ( m0  mass of the electron) and 

 focusing on emission (photoluminiscence), the transition probability rate from an 
 electron state ψk⃗′c=|i ⟩  of the conduction band to an electron state ψk⃗ v  in the 

 valence band will be Γi f=
2π
ℏ |⟨ψk⃗′v|

~H|ψk⃗ c⟩|
2δ(E2( k⃗)−E1( k⃗)−ℏω)  . 

 

 We can evaluate |⟨ψk⃗′v|
~H|ψk⃗ c ⟩|

2= e2

m0
2 ⟨A

+ A ⟩|⟨ψk⃗ ′v|ϵ⋅p|ψk⃗ c⟩|
2=

=⟨A + A ⟩
(E0c−E0 v)

2

ℏ2 |μv c⋅ϵ|
2δ k⃗′ k⃗    where μv c=

1
Ω0
∫u0 v (x)e x u0 c( x)d

3 x  is the 

 transition dipole moment and we used (21) . 
To obtain the total transition probability rate, we must sum over all  k⃗ , k⃗′  -states  
and consider the spin degeneracy of the final states . Hence the total transition 
 probability rate is 

Γ(ω)=4π
ℏ3 ⟨A

+ A ⟩(E0 c−E0v)
2
|μv c⋅ϵ|

2 N∫4 π~k 2δ(ℏω−Eg−4 π2(γc−γv)
~
k 2)d~k=

= 1
π ⟨A

+ A ⟩ N

ℏ3

(E0c−E0v)
2

(γc−γv)
3 /2 |μv c⋅ϵ|

2√ℏω−Eg       (22) , N= V
Ω0

 

 Since ~k  must be small for making the cos(2π~ki)≈1−2π2~k i
2  approximation in 

 relation (20) , the relation (22) is valid only for ℏω  close to Eg  and ℏω>Eg  . 
 

Also it follows that the power emitted by photoluminiscence in an unit volume is 
 given by Pc v (ω)=N cΓ(ω)ℏω  where N c  is the volumic concentration of 
conduction electrons.
If we consider an unpolarized perturbing electromagnetic wave we wil replace in the 
 above relation |μv c⋅ϵ|

2  by |μv c⋅ϵ1|
2+|μv c⋅ϵ2|

2  with ϵ1,ϵ2  two orthogonal  
polarization direction versors. 

Electrical conductivity arises due to the presence of electrons in states that are 
delocalized (extended through the material) , how are the states near the bottom of the 
conduction band Ec and near the top of the valence band Ev . In order to transport 
electrons, a state must be partially filled, containing an electron part of time.
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An electron in the conduction band that moves in j direction will move with the group 

 velocity v g=
∂ω
∂k j

(k⃗ )=1
ℏ
∂E2

∂k j

(k⃗)  (see Chap. Wave propagation) with k⃗  having 

 only the j  component not equal to zero. Therefore v̇ g=
1
ℏ
∂2 E2

∂k j
2

d k j

d t
 .  

 The momentum of the electron has only the j  component which is equal to ℏk j  .  

 The force acting on the electron is in j  direction equal to F j=ℏ
d k j

d t
 and we take 

F j=m v̇ g  with m   -the effective mass of the electron in direction j  . 

 

 Therefore, for motion in direction j  the ψk⃗ c  state electron with k⃗=k j(δi j)i=1 ,3  , 

 has an effective mass m je=
ℏ2

∂2 E2/∂ k j
2  ( we consider the quasicontinuous variation 

k j=k j(t)  for the wave vector of the transported electron). 

 

 With a⃗l=(ali)i=1 ,3  for l=1,3  we have k⃗=∑
i=1

3 ~ki b⃗i  , 
~kl=

1
2π

k⃗⋅a⃗l   ,  E2=Ec+4π2~k 2  

∂ E2

∂k j
2=2γc∑

i=1
ai j

2   ,  m je=
ℏ2

2γ c∑
i=1

3

ai j
2

 and so, since γc>0  conduction electrons 

 have positive effective mass. 

 

If an electron is taken out of the valence band then the trajectory that the electron 
would normally have taken is now missing its charge. This combination of the full 
valence band minus the electron can be converted into a picture of a completely 
empty band containing a  positively charged particle that moves in the same way as 
the electron. This particle is called a hole. In the same way as above we derive an 
effective mass in direction j of a electron near the top of the valence band as 

m j p=
ℏ2

2γv∑
i=1

3

ai j
2

 . The electrons near the top of the the valence band have negative 

 effective mass, since γv<0.

 

Since force= mass x acceleration , a negative-effective-mass electron near the top of 
the valence band would move the opposite direction as a positive-effective-mass 
electron near the bottom of the conduction band, in response to a given electric or 
magnetic force. Therefore a hole move this way as well. Thus a hole is a positive 
charge, positive-effective-mass of value – mjp  quasiparticle. 
Partial filling of the states at the bottom of the conduction band can be understood as 
adding electrons to that band. Partial filling of the states at the top of the valence band 
can be understood as taking out electrons of that band or adding holes to that band.
An electron may be excited out of its energy level by a striking photon, generating a 
electron-hole pair. Electron-hole pairs are constantly generated by thermal energy as 
well, in the absence of any energy source. Electron-hole pairs are also apt to 
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recombine. The precise mechanism of generation and recombination are governed by 
the conservation of energy and conservation of momentum. In a recombination event 
an electron loses an amount of energy larger than the band gap and thermal energy (in 
the form of phonons) or radiation (in the form of photons) is emitted.
A quantum state is partially filled only if its energy is near the Fermi level which 
expresses the thermodynamic quantity of work required from the body maintaining 
thermodynamical equilibrium to add an electron to the body or equally the work 
obtained by removing an electron from the body at thermodynamical equilibrium. 
Therefore VA - VB , the observed voltage between two points A ,B in an electric circuit, 
is exactly related to the corresponding chemical potential (see Chap. 
Thermodynamics) difference μA  -  μB in Fermi levels by the formula 

V A−V B=
μ A−μB

e
           ( e  -electron charge ).  

It can be seen that electrons will move from a body of high μ (low voltage) to low μ 
(high voltage) if a simple path is provided. This flow of electrons will cause the lower 
μ to increase and likewise the higher μ to decrease (due to charging or other repulsive 
effects). This leads to the fact that an electric circuit in thermodynamical equilibrium 
(off) state will have a constant Fermi level throughout its connected parts. 
(Thermodynamical equilibrium requires that the circuit be internally connected and 
not contain any batteries or other power sources nor any variations in temperature).
At thermodynamical equilibrium the probability that a state of energy ε is occupied 
by an electron is given by the Fermi-Dirac distribution 

f (ε)= 1
1+exp((ε−μ)/(k bT ))

    ( see Chap. Quantum statistical ensemble ) 

where T -absolute equilibrium temperature ,k b -Boltzmann constant ,μ -Fermi level.

 

In an insulator, the Fermi level lies within a large band gap far away from any states 
that are able to carry current (partially filled states).
In a metal (material with high conductivity) the Fermi level lies within a delocalized 
band. A large number of states nearby the Fermi level are thermally active and readily 
carry current.
In an intrinsic or lightly doped semiconductor the Fermi level is close enough to a 
band edge that there are a diluted number of thermally excited carriers residing near 
the band edge ( in p-type semiconductors the Fermi level is closer to the valence band 
and in n-type semiconductors the Fermi level is closer to the conduction band).

Photoluminiscence is typically initiated by photoexcitation (photons excite electrons 
to a higher energy level) . Following excitation various relaxation processes occur 
(transition between band states for example in semiconductors) and other photons are 
re-radiated. The reemitted photons can have a longer wavelenght as the 
photoexcitation photons (redshift) because intermediate transitions between states at 
higher level in the conduction band to a lower level which is closer to the bottom of 
the conduction band Ec or between states at a lower level in the valence band to a 
level which is closer to the top of of the valence band Ev can occur before a electron-
hole recombination with a emission of a photon having a energy close to and above 
the band gap Eg = Ec – Ev   occurs. 

Page 15 of 16 291 of total 515  Gh.V.B. Introd. to...QFT 



A steady value of conduction electrons concentration can be obtained by applying a 
electric field to the crystal. Thermal activation and electric field liberate atomic 
electrons (from donor levels) into the conduction band. Many of these electrons are 
accelerated by the field and collide with luminiscent centers ionizing them(creating 
holes).Light is emitted in the normal way as soon an electron recombines with a 
hole . The effect dies away when constant voltage is applied, since the electric field 
would separate electrons and holes. Therefore an alternating voltage may be used to 
create a sustained light emission.
Also when an electrode contacts a crystal to provide a flow of electrons or holes or a 
voltage is applied to a p-n junction causing a current to flow, a steady electrons 
concentration in the conduction band can be obtained.In both cases the electrons lose 
energy recombining with holes accompanied by the emission of light . The 
phenomenon is called electroluminiscence (direct conversion of electric energy into 
visible light as in LED-s (Light Emission Diodes)). 
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                                 Two component Dirac equation
                         Non-relativistic limit of Dirac equation
                               Pauli-Schroedinger equation

Taking the Dirac  spinor as ψ=(
~ψA
~ψB

)   where  ~ψA ,~ψB  are two-component fields,   

we write the Dirac equation (in the Dirac basis) as a system in the two-component 
fields:

i ∂
∂ t

~ψA+i σ⃗⋅∇~ψB=m~ψA   

−i σ⃗⋅∇~ψA−i ∂
∂ t

~ψB=m~ψB   
  

 and with ψ=exp (−i E t)(ψA
ψB)   ,  (ψA ,ψB)=(ψA ,ψB)( x⃗)   ,  ^⃗p=−i ∇   ,   

the above system becomes the Dirac equation eigenvalue problem :
E ψA−σ⃗⋅^⃗p ψB=mψA   

σ⃗⋅^⃗pψA−E ψB=m ψB

 where for simplification by choosing right measuring units we have taken ℏ=1  
 (reduced Planck constant) and c=1  (speed of light in vacuum). We can always 

 

restore this constants by dimensional analysis.
In the presence of an electromagnetic field (see Chap. Lagrangian of 
electromagnetism) we must take 
E→E−e A0   ,  ^⃗p→^⃗p+e A⃗   where A=(Aμ)μ=0 ,3( x⃗)  is a stationary electromagnetic 

 potential, e=−|e| is the electron charge and A⃗=(A k)k=1 ,3   and we have :
  

(E+e A0−m)ψA=σ⃗⋅( ^⃗p+e A⃗)ψB      (1) 

ψB=
1

E−e A0+m
σ⃗⋅( ^⃗p+e A⃗)ψA        (2)

  

 Eliminating ψB  we obtain an equation for ψA  : 

σ⃗⋅(^⃗p+e A⃗) 1
E−e A0+m

σ⃗⋅(^⃗p+e A⃗)ψA=(E−e A0−m)ψA        (3) 
  

 (We notice that ^⃗p  is a differential operator and therefore is acting on A=A ( x⃗)  )   
In a non-relativistic situation we have 

p⃗2≪m2 , E=EN R+m , EN R≪m , ᾱ=
EN R−e A0

2 m
≪1, ( p⃗+e A⃗)2≪m2  , |ψB|≪|ψA|  

 Thus 1
E−e A0+m

= 1
2 m (1−

EN R−e A0

2 m
+O(ᾱ2))         (4)   

 Taking in (4) the O (ᾱ)  approximation, relation (3) becomes:   
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EN R ψA=(e A0+
1

2m
(σ⃗⋅( ^⃗p+e A⃗))2)ψA   .   

 We have (σ⃗⋅( ^⃗p+e A⃗))2 ψA=(( ^⃗p+e A⃗)2+i ϵk l mσk ( p̂l+e A l)( p̂m+e Am))ψA   ,  
i ϵkl mσ k( p̂l+e A l)( p̂m+e Am)=eσk ϵk l m(∂l (Am ψA)+ Al∂m ψA)=−eσk Bk ψA    

  where (B k)k=1 ,3=B⃗=−∇× A⃗  is the magnetic induction field (see Chap.  

 

Electromagnetic four-potential ).
Therefore in O(ᾱ)  approximation we obtain  the Schroedinger-Pauli equation for the
ψΑ two component spinor in the non-relativistic case:

( 1
2m

( ^⃗p+e A⃗)2+e A0−
1

2m
e σ⃗⋅B⃗)ψA=EN R ψA      

which leads to a non-relativistic Hamiltonian for the two-component spinor field ψΑ 
interacting with an electromagnetic field of stationary  potential (Aμ)μ=(A0 , A⃗)  as:  

Ĥ= 1
2m

( ^⃗p+e A⃗)2+e A0−
1

2m
σ⃗⋅B⃗  .   

By gauge invariance we can choose A0 = 0 and for a constant magnetic field we can 

 choose  A1=
1
2

B x2   ,  A2=− 1
2

B x1   ,  A3=0  . 

 Then ( ^⃗p+e A⃗)2=−∇ 2+e2 A⃗2−2 ie Ak ∂k=−∇2−i e B(x2 ∂1−x1∂2)+O( A⃗2)=

=−∇2−e B⃗⋅^⃗L+O( A⃗2)  where ^⃗L= x⃗×^⃗p  is the orbital angular momentum operator. 

 

 Thus   Ĥ=− 1
2m

∇ 2− 1
2 m

e B⃗⋅(^⃗L+2 S⃗)+e A0   , where S⃗=1
2

ℏ σ⃗  is the spin   angular 

momentum operator. 
 We derive a magnetic moment for the charged e = - | e |,  spin ½  particle given by

μ=−μB gs
S⃗
ℏ   where  S⃗

ℏ  is the spin operator and μB=
|e|
2 m

ℏ  is the Bohr magneton.  

Hence we have a value gs = 2 for the so called gyromagnetic ratio of the electron. 
However we will show in Chap. Anomalous magnetic moment of the electron that 

quantum fluctuations lead to a value gs≈2(1+ e2

8π2 )≈2(1+0.00116)  .  

 The term − 1
2m

e B⃗⋅( L⃗+2 S⃗)   or  − 1
2m

e B⃗⋅(gl L⃗+gs S⃗)  ( gl , gs  gyromagnetic ratios 

 for orbital magnetic moment respective spin magnetic moment, gl=1 , gs≈2 ,  
 gs  having an anomalous contribution due to quantum fluctuations) which is the 
 potential energy corresponding to the orbital respective spin magnetic moments of 

the electron μ le=−μB gl
L⃗
ℏ   ,  μse=−μB gs

S⃗
ℏ  provides the explication of the Zeeman 

 

effect on splitting the spectral lines of an element in the presence of a static magnetic 
field.(see Chap. Perturbation theory for the two-component Dirac equation). 
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    Bohr model 

We use an approximation of the atom as a system of electron orbiting according to 
classical mechanics a circular orbit of radius r around a nucleus of charge -Ze.
(Z the atomic number,  e the electron charge) and the orbit satisfies, to be stable, the 
standing wave condition for the quantum de Broglie wave associated to the electron.
Thus, if λ is the de Broglie wavelenght of the electron wave function we must have
nλ=2πr   ,  n∈ℕ∗ .   
If v is the speed of the electron moving on a circular orbit, according to classical 

mechanics, in the Coulomb central forces potential e c A0=− Z e2

4π r
 we will have:  

m v2

r
= Z e2

4 πr 2   ,  m v2= Z e2

4π r
 ( charge units are so that ε=1  permittivity in vacuum)  

and acording to quantum mechanics de Broglie rule we must have :

m v=p= h
λ   ,  m v r=nℏ   and so m v2= Z e2

2nλ   ,  v= Z e2

2 nh
  ,  r=4 π n2 ℏ2

Z e2 m
  . 

 The energy levels are En=
m v2

2
− Z e2

4 π r
=− Z e2

8πr
=−

(Z e2)2m

32π2 n2 ℏ2

 

 Taking EN R=En   we obtain  ᾱ=
(Z e2)2

64 π2 n2  and thus we can assume that the   

Schroedinger-Pauli Hamiltonian describes the electron in the nucleus Coulomb 

potential with O(α2)  approximation if we take α= e2

4π  the fine structure constant.  

 We notice also that in the Bohr model we obtain 
p
m

=v= Z e2

4π n
  ( we obviously 

 take ℏ=1  , c=1  ) 

  

To describe the electron in the Coulomb force potential of the nucleus system with
 an O(α4)  approximation, we take in (4) the  O(ᾱ2)  approximation and also 

e A0=− Z e2

4π r
  ,  r=‖⃗x‖ considering ‖ p⃗

m‖=O(α)   ,  A⃗=0  and so (3) becomes 
  

1
2m

σ⃗⋅^⃗p(1− 1
2 m

(EN R−e A0))σ⃗⋅̂⃗pψA=(EN R−e A0)ψA           (5).   

From (2) we have :

ψB=
1

2 m (1−
EN R−e A0

2 m )σ⃗⋅^⃗p ψA=
σ⃗⋅^⃗p
2m

ψA+O (α3)ψA   ,  

⟨ψB|ψB⟩≈⟨ψA|
^⃗p2

4 m2|ψA⟩+O(α4)⟨ψA|ψA ⟩
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We take a normalization condition derived from the unit charge condition:

1=∫ J 0 d3 x⃗=∫ψ + ψd3 x⃗=⟨ψA|ψA ⟩+⟨ψB|ψB⟩=⟨ψA|(1+
^⃗p2

4 m2 )|ψA⟩+O (α4)  .  

Therefore we have a normalization 

ψA=(1−1
8

^⃗p2

m2 )φ+O(α4)     ( since 
1

√1+α2
=1−1

2
α2+O (α4)   ).    

Introducing this in (5) and multiplying both sides of the equation  by (1−
^⃗p2

8 m2 )    

and keeping only terms to order O( α4 ) we obtain after some calculus:

( ^⃗p2

2m
−

^⃗p4

8m3 +e A0+
e σ⃗⋅^⃗p A0 σ⃗⋅^⃗p

4 m2 )φ=(EN R+
^⃗p2

8 m2 e A0+e A0

^⃗p2

8 m2)φ  with ^⃗p4=^⃗p2 ^⃗p2.  

 Taking E⃗=−∇ A0  the electric field, we have E⃗=−Z e x⃗
4 πr 3   ,  

E⃗×^⃗p=− Z e

4π r3
^⃗L   ,  ∇⋅E⃗=−Z eδ3( x⃗)

^⃗p2 A0 φ=(−∇ 2 A0+2 i E⃗⋅^⃗p+ A0
^⃗p2)φ

σ⃗⋅^⃗p A0 σ⃗⋅^⃗p=−σ⃗⋅(E⃗×^⃗p)+i E⃗⋅^⃗p+ A0
^⃗p2   . 

  

 Therefore for  S⃗=1
2

σ⃗    the spin operator we obtain the following equation in the 

 normalized two-component spinor φ   : 

( ^⃗p2

2m
− Z e2

4 πr
−

^⃗p4

8m3 +
Z e2 ^⃗L⋅⃗S
8π m2 r3 +

Z e2

8 m2 δ3( x⃗))φ=EN R φ     (6) 

  

This equation gives a O(α4) approximation of the Dirac equation eigenvalue problem.

ψA=(1−
^⃗p2

8 m2 )φ   ,  ψB=
1
m (1−

EN R−e A0

2m ) S⃗⋅^⃗pψA   ,  A0=− Z e
4π r

 .  

The first two terms in the left side of (6) are the kinetic and potential energy for the 
unperturbed Hydrogen Hamiltonian. The third term is the relativistic correction to the 
kinetic energy. The fourth term is the correct spin-orbit interaction. The fifth term is 
the so called Darwin term.
We can consider that in the left side operator applied to solutions of (6) equation , the 

radius r goes not far below the Bohr radius a0=
ℏ2

mα  and δ3( x⃗)= 1
(2π)3

R3 δ x⃗ 0⃗   where

R = O ( m ) is the range of momentum. Therefore the left side of (6) operator is  
m O( α ) and so if we formulate the (6) equation for ψΑ instead of  φ , having 

φ=(1+
^⃗p2

8m2 )ψA+O(α4)ψA  and EN R=mO(α2)  according to the Bohr model, we    

get a O (α3) approximation of the Dirac equation eigenvalue problem.
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                           Solutions of the Dirac equation for
                                    the Hydrogen atom

We choose measure units for distance,time and electric charge respective, such that
 the reduced Planck constant ℏ=1  , the speed of light in vacuum constant c=1  the 
 electric permittivity in vacuum constant ε=1  . The mass of the electron is m   . 

 

The Dirac equation satisfied by the Dirac spinor field of the electron , ψ=ψ(t , x⃗) in 
presence of the Coulomb potential of the atomic nucleus with atomoic number Z ,

(Aμ)μ=(A0 ,0 , ,0 ,0)   ,  A0=− Z e
4π r

 with e=−|e|  charge of the electron, r=‖x⃗‖ is 

i γμ(∂μ+i e Aμ)ψ−mψ=0  . This leads to a Hamiltonian operator 

H=γ0γ k pk+e A0+γ
0m   with  p⃗=(pk)k=1 ,3=−i ∇     the momentum operator 

S⃗=1
2 (σ⃗ 0

0 σ⃗)  the spin operator, σ⃗  the Pauli matrices vector. 

 

The Dirac equation written as a Schroedinger equation has the form :

i ∂
∂ t

ψ=(e A0+m σ⃗⋅⃗p
σ⃗⋅⃗p e A0−m)ψ  .   

We have solutions of the form ψ=exp(−i E t)(
~ψA
~ψB
)  where ~ψA=

~ψA( x⃗) ,
~ψB=

~ψB ( x⃗)   

are two-component fields and so we have the eigenvalue problem

(σ⃗⋅⃗p 0
0 σ⃗⋅⃗p)(

~ψB
~ψA
)=(E−A0−m 0

0 E−e A0+m)(
~ψA
~ψB
)  

 with  E  the Hamiltonian eigenvalue or energy level . 

 

 We consider the operators L⃗=x⃗× p⃗   ,  J⃗= L⃗+ S⃗   ,  K=γ0 2 S⃗⋅⃗J−1
2
γ0     

 and as we know from Chap. Spin representations we have 
[Li , L j ]=ϵi j k Lk   ,  [Si , S j]=ϵi j k Sk   . 

  

On the space Hl of spherical harmonics of  degree l∈ℕ∗  that is  

H l={Y : S(0⃗ ,1)→ℂ| the function f :ℝ3→ℂ  , f ( x⃗)=‖⃗x‖ l Y ( x⃗
‖x⃗‖)  is a harmonic 

 homogeneous polynomial of degree l  in the variables (x1 , x2, x3)}  , the (Li)i=1 ,3  

 

are the generators of a spin l irreducible representations, having 
S(0⃗ ,1)={⃗x∈ℝ3|‖⃗x‖=1}  and an orthonormal basis of eigenvectors for L3  given by 
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 the functions Y l
m=(−1)m√ (2 l+1)(l−|m|)!

4 π(l+|m|)!
Pl
|m|(cosθ)exp(i mφ)

 with m∈{−l ,−l+1 , ...0 ,1 ,... , l}   ,  Y l
m=Y l

m(θ ,φ)  , 
x1=r sinθcosφ  , x2=r sin θsinφ  , x 3=r cosθ  , 

Pl
|m|  the associated Legendre polynomials Pl

m (x)=(1−x2)m /2 dm

d xm (Pl (x))  for 

m∈ℕ  , Pl(x)=
1

2l l!
d l

d xl ((x
2−1)l)  for x∈ℝ  , L⃗2=( x⃗× p⃗)2  , L⃗2Y l

m=l(l+1)Y l
m  , 

L3 Y l
m=mY l

m   , L3=−i ∂
∂φ                  and the scalar product 

⟨Y ,Y ′⟩= ∫
S( 0⃗ ,1)

Y ∗ (Θ)Y ′(Θ)dσ(Θ)

 

 We have [H , L3]=γ0[ γk pk , x1 p2−x 2 p1]   ( since [A0 , x1 p2−x2 p1]=0  because 

pi A0=−i
xi

r
d A0

d Ar

  , A0=A0(r)    ) 
 

Since [xk , pl ]=i δkl  we obtain [H , L3]=iγ0(γ2 p1−γ1 p2)  , [H , L⃗]=−iγ0(γ⃗× p⃗) . 

Also [H , S3]=
1
2
[ γ0 γk pk , iγ1 γ2]=−i γ0(γ2 p1−γ1 p2)  , [H , S⃗ ]=i γ0(γ⃗× p⃗)  .  

 Therefore [H , J⃗ ]=0  . Further we have :  

[H , K ]=[H , γ0(2 S⃗⋅⃗J−1
2
)]=[H ,γ0](2 S⃗⋅⃗J−1

2
)+γ0[H , 2 S⃗ ]⋅⃗J=

=−2 γ⃗⋅⃗p(2 S⃗⋅⃗J−1
2
)+2 i(γ⃗× p⃗)⋅⃗J

(γ⃗⋅⃗p)(2 S⃗⋅⃗p)=1
2
γk pk i ϵq lmγ

lγm J q=pq J q γ
0γ5−i ϵq km γ

m pk J q=

= p⃗⋅⃗J γ0 γ5+i(γ⃗× p⃗)

[H , K ]=−2 iγ1 γ2γ3 p⃗⋅⃗S+γ⃗⋅⃗p=1
2
γ1 γ2γ3 pk ϵkl mγ

lγm+γk pk=0   ,  [H ,K ]=0 . 

 

[K , J⃗ ]=[γ0 2 S⃗⋅⃗J−1
2
γ0 , J⃗ ]=γ0[2 S⃗⋅⃗J , J⃗ ]+[ γ0 , J⃗ ]2 S⃗⋅⃗J−1

2
[γ0 , J⃗ ]=γ0[2 S⃗⋅⃗J , J⃗ ]  

[2 S⃗⋅⃗J , J⃗ ]=[2 S⃗⋅⃗L, J⃗ ]=[2 S⃗⋅⃗L, L⃗]+[2 S⃗⋅⃗L , S⃗ ]=2 i Sk ϵk jl Ll+2 i ϵk jl Sl Lk=0   and so 

[K , J⃗ ]=0  ( because [Li , S j ]=0   ,  [Li , L j]=i ϵi j k Lk   ,  [Si , S j]=i ϵi j k Sk  ) 

 It follows also [J i , J j ]=i ϵi jk J k  , [ J⃗ 2, J 3]=0.

 

 We have four mutually commuting operators H , J⃗ 2 , J 3 , K  and we can seek for  
solutions of the Dirac equation which are sums of functions of the form 
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ψ=( f (r)ψA

i g(r)ψB
)  where ψA ,ψB  are two-component functions on the S(0⃗ ,1)  sphere 

 with (ψA ,ψB)=(ψA ,ψB)(θ ,φ)  in spherical coordinates 
(x 1 , x2 , x3)=r (sinθcosφ , sinθ sinφ , cosθ)   ,  r=‖x⃗‖

 and f , g :ℝ∗→ℝ   ,  H ψ=Eψ  , J⃗ 2 ψ= j( j+1)ψ   ,  J 3ψ=mψ   ,  K ψ=κψ
 where  j∈ℝ∗  since J⃗ 2  is hermitian. 

 

 We have K=(σ⃗⋅⃗L+I 0
0 −σ⃗⋅⃗L−I)               (1)  

K2=(γ0 2 Sk Lk+γ
0)2=Lk Ll (δkl+2 i ϵk l q Sq)+4 Sk Lk+I=L⃗2+i2 S⃗⋅( L⃗×L⃗)+4 Sk Lk+I  

L⃗×L⃗=(ϵk lm ϵl i j ϵm p q xi p j x p pq)k=(−iϵk l mϵli j ϵm p qδ j p xi pq)k=
=(iϵk l m(δlm δi q−δl qδi m) xi pq)k=i L⃗

K2=L⃗2+2 S⃗⋅⃗L+I                (2) 

J⃗ 2=( L⃗+S⃗)2=L⃗2+2 S⃗⋅⃗L+ 3
4
I=K2− 1

4
I                  (3) 

 

 Let J⃗ 0=L⃗+1
2
σ⃗   ,  J⃗=( J⃗ 0 0

0 J⃗ 0)  .  
Since ψ is an eigenstate of K it follows from (3) that ψA , ψB are eigenstates of
 J⃗ 02  and from (1) it follows that they are also eigenstates of σ⃗⋅⃗L  .   

 From (3) we have J⃗ 02=L⃗2+σ⃗⋅⃗L+ 3
4
I     (4) , κ2= j( j+1)+ 1

4
=( j+ 1

2)
2

>0  

J⃗ 02 ψA= j( j+1)ψA   ,  J⃗ 0 2ψB= j( j+1)ψB   . 

 From (4) follows now that ψA ,ψB   are eigenstates of L⃗2.

 Also we have J 3
0 ψA=mψA   ,  J 3

0 ψB=mψB         (5) 

Let L⃗2 ψA=lA (lA+1)ψA  , L⃗2ψB=lB (lB+1)ψB     (6) 
 and as we know we must have lA ,lB∈ℕ . 

  

 From (4) we obtain now σ⃗⋅⃗LψA=( j( j+1)−lA(lA+1)− 3
4
)ψA  , 

σ⃗⋅⃗LψB=( j( j+1)−lB (lB+1)−3
4
)ψB

 (7)

From (1) follows :

κ−1= j( j+1)−lA (lA+1)−3
4
=κ2−lA (lA+1)−1  

κ+1=lB (lB+1)− j( j+1)+3
4
=lB(lB+1)−κ2+1  

2κ=lB (lB+1)−lA(lA+1)  and so κ∈ℤ∗  , |κ|= j+1
2
∈ℕ∗
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 For κ>0  we obtain lA=κ−1= j−1
2

 , lB=κ= j+ 1
2
∈ℕ∗

 and for κ<0  we obtain lA=−κ= j+1
2
∈ℕ∗  , lB=−κ−1  . 

  

Since as we know the spherical harmonics Y l
k  for k=−l , l   are the eigenfunctions  

of L3 for k eigenvalue with eigenspace dimension equal to 1 and generate the l-order 
spherical harmonics satisfying L⃗2Y=l(l+1)Y  we obtain from (5) that  

ψA=αA Y lA

m−1
2 χ ++βA Y lA

m+1
2 χ−   ,  ψB=αB Y lB

m−1
2 χ+ +βB Y lB

m+1
2 χ−    where  

αA ,βA ,αB ,βB∈ℂ   ,  m−1
2
∈ℤ   ,  χ +=(10)   ,  χ−=(01)

 

From (7) we obtain :
σ⃗⋅⃗LψA=lA ψA   ,  σ⃗⋅⃗LψB=−(lB+1)ψB  for κ>0  

σ⃗⋅⃗LψA=−(lA+1)ψA   ,  σ⃗⋅⃗LψB=lBψB  for κ<0  . 
  (8)

 Let Y=αY l

m−1
2 χ ++βY l

m+1
2 χ−  and we have 

σ⃗⋅⃗L Y=σ3 L3Y + 1
2
((σ1+iσ2)(L1−i L2)+(σ1−iσ2)(L1+i L2))Y  . 

  

 Since (L1−i L2)Y l

m+1
2=c Y l

m−1
2   ,  (L1+i L2)Y l

m−1
2=c′Y

m+1
2   with  c , c′∈ℂ

 as we can derive from the commutation relations [Li , L j ]=i ϵi jk Lk  and the fact 
 (9) 

that the eigenspaces of L3 are one-dimensional and since also 
(σ1−iσ2)χ+=2χ−   ,  (σ1+iσ2)χ−=2χ +   ,  (σ1−iσ2)χ−=(σ1+iσ 2)χ +=0   

 we obtain σ⃗⋅⃗L Y=(α(m−1
2
)+βc)Y l

m−1
2+(−β(m+1

2
)+αc′)Y l

m+1
2

 

 Because (L1+i L2)(L1−i L2)=L⃗2−L3
2+L3  from (8) follows 

c c +=c c′=l(l+1)−(m+ 1
2
)

2

+m+ 1
2
=(l+ 1

2
)

2

−m2  and so c′=c∗ .  
 

 The condition σ⃗⋅⃗L Y=sY    leads to 

sα=α(m−1
2
)+βc   ,  sβ=−β(m+1

2
)+α c′   which has a non-zero solution in (α ,β)

 

 if and only if c c′=(s+ 1
2
)
2

−m2         (10)    

With s  from the (8)  conditions for σ⃗⋅⃗L Y=sY  with  Y=ψA , l=lA ;Y=ψB , l=lB   
 the (10) condition is satisfied in both cases κ>0   respective  κ<0   

 and we must take d=α
β=

d(m−1
2
)+c

−m−1
2
+d c′

  ,  d=(m±(l+ 1
2
))/c′   

s=−(m+ 1
2
)+m±(l+ 1

2
)=− 1

2
±(l+1

2
)

Page 4 of 9 302 of total 515  Gh.V.B. Introd. to...QFT 



Therefore we must take 
αA

βA
=(m+l+ 1

2
)/c′   ,  l=lA   and  

αB

βB
=(m−l−1

2
)/c′   ,  l=lB  for κ>0  , 

αA

βA
=(m−l−1

2
)   ,  l=lA   and  

αB

βB
=(m+l+1

2
)/c′   ,  l=lB    for κ<0

 If  m−1
2
=l  we take β=0.  If  m+1

2
=l  we take α=0 .

 

 Normalizing ψA  and ψB  such that |αA|
2+|βA|

2=1   ,  |αB|
2+|βB|

2=1  we can always 
 change ψA  and ψB  each with an arbitrary phase factor exp(iθA)  , exp (iθB)
 and the conditions K ψ=κψ  , J 3 ψ=mψ  , J 2ψ= j( j+1)ψ   ,  

L2ψA=lA(lA+1)ψA   ,  L2ψB=lB(lB+1)ψB  and (8) for  σ⃗⋅⃗L  and ψA  , ψB   are  

 

still satisfied.

 Let κ>0  . Then σ⃗⋅⃗LψA=lA ψA  , J 3
0 ψA=mψA   ,  lA=κ−1= j−1

2
  ,  

σ⃗⋅⃗LψB=−(lB+1)ψB=−(lA+2)ψB   ,  lB=κ= j+ 1
2
=lA+1.

 

 Let Y=σ⃗⋅⃗x
r

ψA  . We have 

[L j ,
xi

r
]=ϵ j kl xk [ pl ,

xi

r
]=ϵ j k l x k xi i

xl

r3−i ϵ j kl

x k

r
δil=i ϵ j ik

xk

r
   and so  

[J 3
0 , σ⃗⋅⃗x

r
]=[L3 , σ⃗⋅⃗x

r
]+[1

2
σ3 , σ⃗⋅⃗x

r
]=σ⃗⋅[L3 , x⃗

r
]+ 1

2
[σ3 , σ⃗ ]⋅x⃗

r
=

=iσ j ϵ3 jk

xk

r
+i ϵ3 j kσ k

x j

r
=0.   Since J 3

0ψA=mψA  we obtain now J 3
0Y=mY    (11) 

 

We have also 
(σ⃗⋅⃗x)(σ⃗⋅⃗L)=σk xkσl ϵli j xi p j=(δkl+iϵk l qσq)ϵl i j xk xi p j=

=i(δk j δq i−δk iδq j)σq xk xi p j=σ⃗⋅⃗x (r ∂
∂r )−ir 2σ⃗⋅⃗p

σ⃗⋅⃗p=1
r
σ⃗⋅⃗x

r (−ir ∂
∂r

+i σ⃗⋅⃗L)        (11') 

 

[ σ⃗⋅⃗L,
σ⃗⋅⃗x

r
]=σ k [Lk ,

σ j x j

r
]+[σk ,

σ j x j

r
]Lk=σkσ j[Lk ,

x j

r
]+[σk ,σ j]

x j

r
Lk=

=−2
σ⃗⋅⃗x

r
+2(ir σ⃗⋅⃗p−σ⃗⋅⃗x

r
x j∂ j)=−2

σ⃗⋅⃗x
r

+2 ir σ⃗⋅⃗p−2
σ⃗⋅⃗x

r
r ∂
∂r

=

=−2
σ⃗⋅⃗x

r
−2

σ⃗⋅⃗x
r

σ⃗⋅⃗L   and we obtain  σ⃗⋅⃗LY=−(lA+2)Y        (12) .

  

Because ψΑ is a combination of lA -order spherical harmonics it follows that 
rl A ψA(θ ,φ)  is a homogeneous harmonical polynomial of degree lA  and rlB Y  is a 
homogeneous polynomial of degree lB=lA+1  in the variables x1 , x2 , x3  . Thus if 
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 we show that ∇ 2(r lB Y )=0  , we can derive that L⃗2 Y=lB (lB+1)Y .  

 We have ∇ 2(rlB Y )=∇2(r lA σ⃗⋅⃗x ψA)=rlA ψA (∇
2(σ⃗⋅⃗x))+2∂ j(σk xk)∂ j(r

lA ψA)+

+σ⃗⋅⃗x ∇ 2(rlA ψA)=2 i σ⃗⋅⃗p(rlA ψA)=
2
r
σ⃗⋅⃗x

r (r ∂
∂r

(rlA)ψA−rlA σ⃗⋅⃗LψA)=0  . 

(because σ⃗⋅⃗L  acts only on the angular part of rl A ψA  ) and so L⃗2Y=lB(lB+1)Y  (13).

 

Considering (11) , (12) and (13) it follows now that Y is determined up to a phase  

 
 factor exp(iθB)  by αB ,βB  with 

αB

βB
=(m−lB−

1
2 )/c′  , since we have normalized 

ψA  , ψB  and ( σ⃗⋅⃗x
r )

2

=I  , as Y=exp(iθB)ψB  and so ψB=exp (−iθB)
σ⃗⋅⃗x

r
ψA  . 

 

 We can always choose the phase factors exp(iθA) ,exp (iθB)  such that 

ψB=−
σ⃗⋅⃗x

r
ψA    ,  ψA=−

σ⃗⋅⃗x
r

ψB  . 
  

In a similar way we treat the case κ<0 interchanging the roles of A and B . 

 Taking ~ψA=f (r)ψA   ,  ~ψB=i g(r)ψB  , F=r f (r) ,G=r g(r)   ,  α= e2

4π

 considering (11') , the eigenvalue problem for ψ=(
~ψA
~ψB
)  becomes the system : 

 

{G′+ κG
r

= (m−E−Z α
r )F

F ′− κF
r

= (m+E+Zα
r )G

 

With the guidance of the non-relativistic solution (see Chap. Perturbation theory for 
the two-component Dirac equation) we may assume that E2 < m2 and taking 
ρ=√m2−E2r  , k 1=m+E  , k2=m−E  the system becomes:  

{( ∂∂ρ+ κρ )G = (√ k 2

k1

−Z α
ρ )F

( ∂∂ρ−κ
ρ )F = (√ k1

k2

+ Z α
ρ )G

 

Considering again the non-relativistic solutions we will postulate a solution of the 
form:

F=exp (−ρ)ρs ∑
m=0

∞
amρ

m    ,   G=exp(−ρ)ρs ∑
m=0

∞
bmρ

m   where obviously we do not   

confuse the index m  with the mass m.
The system above leads to recursion relations :
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{−bm+bm+1(s+m+1)+κbm+1−am√ k2

k1

+am+1 Z α = 0

−am+am+1(s+m+1)−κam+1−bm√ k1

k2

−bm+1 Z α = 0

   

 We assume that the ρs  term is the lowest order term in the series for (F , G)  and  
 so we have b−1=a−1=0   ,  (a0 , b0)≠(0,0)  in the recursion relation with m∈ℤ

 

which can be written as :

(s+m+1+κ Zα
−Z α s+m+1−κ)(bm+1

am+1
)=( 1 √ k2

k1

√ k 1

k 2

1 )(bm

am
)      (14)  

 Therefore s2=κ2−Z2α2  and for the solution to be finite at ρ=0  we must take 

s=√κ2−Z2α2  and 
s+κ
Z α =−

a0

b0

 ( κ  is a non-zero integer and Z α  is small ).
 

The recursion relation (14) implies :

(bm+1

am+1
)= 1

(m+1)(2 s+m+1)(s+m+1−κ −Zα √ k1

k2

Zα (s+m+1+κ)√ k 1

k 2

)(1 √ k2

k1

1 √ k2

k1

)(bm

am
)  and 

bm+1+√ k2

k1

am+1=
1

(m+1)(m+1+2 s)
(2(s+m+1)+Z α(√ k2

k1

−√ k1

k2
))(bm+√ k 2

k 1

am)

 

 If for a value m=m0∈ℕ  we have bm 0+√ k 2

k 1

am0=0  , because obviously we have 

(s+m0+1)2−κ2+Z2α2>0  ( with s=√κ2−Z2α2  ) it follows from (14) that 
bm0+1=am0+1=0  and by induction bm=am=0  for m∈ℕ  , m>m0  . 

 

 Hence, excepting the trivial solution F=exp(−ρ)ρs a0   ,  G=exp (−ρ)ρs b0  with  

s=√κ2−Z2α2   ,  s+κ
Zα

=−
a0

b0

=√ k 1

k 2

 leading to 

E=E0=m− Z2α2

κ(κ+s)
=(s+κ)2−Z2α2

(s+κ)2+Z2α2 m  , 

 

 we can assume b0+√ k 2

k 1

a0≠0  and so we will have  
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bm+1+√ k2

k1

am+1=(∏
n=0

m
2(s+n+1)+Zα(√ k2

k1

−√ k1

k2
)

(n+1)(n+1+2 s) )(b0+√ k2

k1

a0)  .   

 If for m0=⌊Z α(√ k1

k2

−√ k2

k1
)⌋+1  we have that for k=0 ,m0  is satisfied  

2(s+k+1)+Z α(√ k 2

k 1

−√ k 1

k 2
)≠0  then we obtain from the recursion that 

bm0+√ k 2

k 1

am 0≠0  and 

 

|∑m=0

∞
bmρ

m+√ k 2

k 1

amρ
m|≥−|∑m=0

m0

bmρ
m+√ k2

k1

amρ
m|+

+|bm 0+√ k 2

k1

am0||∑m=1

∞ 1
(m0+1)...(m0+m)

ρm 0+m|≥−|∑m=0

m0

bmρ
m+√ k 2

k 1

amρ
m|−

−|bm0+√ k 2

k 1

am0||∑m=0

m 0 1
m!

ρm|m0!+|bm0+√ k 2

k 1

am0|m0!exp(ρ)

 

 Therefore we obtain G+√ k 2

k 1

F> 1
2
ρs|bm0+√ k 2

k 1

am0|m0!   for large ρ   ,  ρ→∞  

 and so the ψ  function would be a not normalizable function. 

 

 Hence we must consider that exists n=nr∈ℕ
∗  such that we have 

2(s+nr)+Z α(√ k 2

k 1

−√ k 1

k 2
)=0        (15) 

 

The energy levels are therefore quantized as 

E=Enr , j  , nr∈ℕ
∗  , κ=±( j+1

2
)∈ℤ∗  , j≥0  with E  determined from (15) 

Enr , j=
mc2

√1+ Z2α2

(nr+√( j+ 1
2
)
2

−Z2α2)
2

  

 We normalize ~ψB  with b0=1  and then a0=
s+κ
Zα

 , (a0 , b0)  are determined by  

κ=±( j+ 1
2)  and for a given nr  we have E=Enr , j  , f , g  determined. 
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The solutions are ψ=( f (r)ψA

i g(r)ψB
)  with   

ψA=ψl A , j
m j =αA Y lA

m j−1
2 χ++βA Y lA

m j+1
2 χ−

ψB=ψlB , j
m j =αB Y lB

m j−1
2 χ++βB Y lB

m j+1
2 χ−

 

 for κ= j+ 1
2

 we have {α A

βA
=(m j+lA+

1
2 )/c′  , lA= j−1

2
αB

βB
=(m j−lB−

1
2)/c′  , lB= j+ 1

2

 for κ=− j−1
2

 we have {α A

βA
=(m j−lA−

1
2)/c′  , lA= j+ 1

2
αB

βB
=(m j+lB+

1
2 )/c′  , lB= j−1

2

 

 Also we have σ⃗⋅⃗x
r

ψlA , j
m j =−ψlB , j

m j  .  

For any j , mj there are two solutions (determined up to a multiplication with a 

constant) having the same energy level Enr, j  ( corresponding to κ=±( j+1
2 )   ) .  

 The energy level Enr , j  has a degeneracy 2(2( j+ 1
2
)+1)  , corresponding

 to the m=m j∈
1
2
+ℤ  satisfying |m|≤ j  for κ>0 ; |m|≤ j+1  for κ<0  for j∈ℕ∗−1

2

 

Page 9 of 9 307 of total 515  Gh.V.B. Introd. to...QFT 



28. Unperturbed two component Dirac equation for the
       Hydrogen atom 
      Perturbation theory for the two component Dirac
       equation for the Hydrogen atom 

 308 of total 515  Gh.V.B. Introd. to...QFT 



                         Unperturbed two-component Dirac equation
              Perturbation theory for the two-component Dirac equation

 We can consider a Hamiltonian for the electron in the Coulomb potential field of the 
atomic nucleus which leads to the (6) equation in O(α3) approximation of the Dirac 
equation for the ψΑ component of the electron Dirac spinor field in Chap. Non-
relativistic limit of the Dirac equation, considered without the relativistic correction 
to kinetic energy term , the spin-orbit interaction term and the Darwin term.
The unperturbed Hamiltonian is therefore 

H 0=
^⃗p2

2m
+V   which applies to the ψA  component of the Dirac spinor with 

V=− Zα
r

  ,  r=‖x⃗‖  and  α= e2

4 π
  the fine structure constant.  

  

The corresponding time independent Schroedinger equation is:

(∇ 2+ Z α
r

+E)ψA=0         (1) .  

Following the solutions in Chap. Solutions of the Dirac equation for the Hydrogen 
atom we search for solutions ψΑ of (1) that are eigenfunctions of the operators

J⃗ 2 , L⃗2 ,σ⃗⋅⃗L  and J 3  where J⃗=L⃗+S⃗   ,  S⃗=1
2
σ⃗   such that  

J⃗ 2ψA= j( j+1)ψA  , j≥0  ; L⃗2 ψA=l(l+1)ψA  , l= j±1
2

 , l∈ℕ

σ⃗⋅⃗LψA=lψA  if l= j−1
2

  (  κ>0   )  ; σ⃗⋅⃗LψA=−(l+1)ψA  if l= j+1
2

  (  κ<0   )  

J 3ψA=mψA  , m∈1
2
+ℤ  , |m|≤ j  for l= j−1

2
  ,  |m|≤ j+1  for l= j+ 1

2

 

 and so we take ψA=
F (r)

r
Y  , Y=Y lm=ᾱY l

m−1
2 χ ++β̄Y l

m+1
2 χ−   with  

Y l
k  the spherical harmonics and χ +=(10)  , χ−=(01) ,

ᾱ
β̄
=m+ j

c∗  for l= j−1
2

  ,  ᾱ
β̄
=m− j−1

c∗  for l= j+1
2

,

β̄=0  if m+1
2
>l   ,  ᾱ=0  if m−1

2
<−l   ;  |̄α|2+|̄β|2=1 ,

(L1−i L2)Y l

m+
1
2=c Y l

m−
1
2   ,  (L1+i L2)Y l

m−
1
2=c∗ Y l

m+
1
2 .

 

 Since ∇ 2= ∂2

∂r 2+
2
r
∂
∂r

− 1
r 2 L⃗2  the (1) equation becomes:   
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F″−
l(l+1)

r2 F+2 m Z α
r

F+2m E F=0             (2).   

 Taking F (r)=G (ξ)  with ξ=2√2m|E|r  for E<0  the equation (2) becomes 

 the Whittaker function equation d2G
dξ2 +(− 1

4
+ k
ξ+

1
4
−μ2

ξ2 )G=0  with parameters 

k=√ m
2|E|

 , μ=l+ 1
2

.

  

The Whittaker equation has a fundamental system of solutions Mk , μ , Wk , μ given by

M k ,μ(z)=z
1
2
+μ

exp(− 1
2

z)(1+∑
p=1

∞ (1
2
+μ−k )...(1

2
+μ−k+ p−1)

p!(2μ+1) ...(2μ+ p)
z p)  

W k ,μ(z)=
Γ(−2μ)

Γ(1
2
−μ−k)

M k ,μ(z)+
Γ(2μ)

Γ(1
2
+μ−k)

M k ,−μ(z)

  

As in Chap. Solutions of the Dirac equation for the Hydrogen atom we conclude that 
the only acceptable solutions for which the ψΑ is a normalizable function are 
G(ξ)=M k ,μ(ξ)   with  k=l+1+nr  where nr∈ℕ   ,  Mk ,μ(ξ)    being in this case  
a polynomial of degree nr .
 ( the Mk ,−μ(z)  makes the ψA  inacceptable in 0  and for nr∉ℕ  , as in Chap.  
 Solutions of the Dirac equation for the Hydrogen atom, the Mk ,μ(z)  increases not 

 less than a C z
1
2
+μ

 for z→∞  ). 

 

 Therefore the energy levels are quantized by n=l+1+nr   ,  nr∈ℕ  , l∈ℕ  with 

√ m
2|E|

Zα=n  , En=−
m Z2α2

2 n2  , n∈ℕ∗  and the solutions for F  are (3) : 

Fnl(r)=M
n , l+1

2

(2 Z mα
n

r)=M
n , l+1

2

( 2 Z
na0

r)=exp(− ξ
2
)ξl+1 (n−l−1)!(2 l+1)!

(n+l)!
Ln−l−1
(2l+1) (ξ)

 where a0=
1

mα  is the Bohr radius and ξ=2Z r
n a0

 , Ln
(β)  is the generalized Laguerre 

 polynomial for n∈ℕ   ,  Ln
(β)(x)=x−β ex 1

n!
dn

d xn (e
−x x n+β)   ,  ex=exp (x)   ,  

Ln
(β)(0)=Γ(n+β+1)

n!Γ(β+1)
.

  

 We have ∫
0

∞

xβ+1 e−x(Ln
(β)(x))2 d x=∫

0

∞ 1
(n!)2

dn

d x n (e
−x xn+β) x−β+1 ex dn

d xn (e
−x xn+β)d x=  
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=∫
0

∞ 1
(n!)2

(−1)n e−x xn+β dn

d xn (x−β+1 ex d n

d xn (e
−x xn+β))d x=

=∫
0

∞ 1
(n!)2

e−x (xn+β+1(n+1)!−xn+β n(n+β)n!)d x=
Γ(n+β+1)

n!
(2n+β+1)  . 

 

 With Fn l  given by (3) , Rn l=
Fn l(r)

r
  we will have for  n=k+l+1  , β=2 l+1  

∫
0

∞

Rn l
2 (r)r 2d r=

na0

2 Z
∫
0

∞

e−ξξβ+1((n−l−1)!(2 l+1)!
(n+l)! )

2

(Lk
(β)(ξ))2d ξ

∫
0

∞

Rnl
2 (r)r2 d r=

n2 a0

2 Z
(n−l−1)!
(n+l)!

((2 l+1)!)2   and so the normalized solutions are:  

 

ψn lm ( x⃗)=
2

n2 ( Z
a0
)
3 /2√ (n−l−1)!

(n+l)!
exp(−ξ/2)ξl Ln−l−1

(2 l+1) (ξ)Y l m(θ,φ)   where  

x⃗=(r sinθcosφ ,r sinθ sinφ , r cosθ)   ,  ξ=2 Z r
n a0

  ,  

l∈ℕ  , n∈l+1+ℕ  , m∈1
2
+ℤ  , |m|≤l+ 1

2

 

 We notice that we have two sets of ψn lm  solutions: one with Y l m  determined 
 for l= j−s  and one with Y l m  determined for l= j+s  having the specifications 

s=1
2

  ,  J⃗ 2 ψA= j( j+1)ψA  , j>0 .  We denote the two set solutions  ψn lm j , j=l±s .

 

Another complete set of En eigenstates are the 

ψn lm ±  with ψn lm ±=Rn l(r)Y l

m∓1
2 (θ ,φ)χ ±  , m=m j=ml+ms  , ms=±

1
2

  

 The ψnl m j  are H 0 , L⃗2 , J⃗ 2, S⃗⋅⃗L,J z  eigenstates with eigenvalues 

 respective En ,l(l+1) , j( j+1) , 1
2

l   if  l= j−1
2

 , 

− 1
2
(l+1)   if  l= j+1

2
 (for S⃗⋅⃗L) and m=m j .

 

 The ψnl m ±  are H0 , L⃗2 , J⃗ 2 , Lz , S z  eigenstates with eigenvalues 

 respective En ,l(l+1) , j( j+1) ,ml=m∓1
2

,ms=± 1
2

.
 

 We notice also that we have ψn lm (0)=0  for l>0  and |ψn0m (0)|=
1
√π ( Z

n a0
)

3 /2

   (4).  
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 Let ψ=ψn lm=Rl n(r)Y l m(θ ,φ)   ,  Rn l (r)=
u(r)

r

  and for  s∈ℤ  : ⟨r s⟩=⟨ψ|rs|ψ⟩=∫
0

∞

u2(r)r s d r  . 

 

Considering (2) we obtain 

u″=(l(l+1)
r2 − 2

ar
+ 1

n2 a2)u   where  a=
a0

Z
 and so 

r su″=(l(l+1)r s−2−2
a

r s−1+ 1

n2 a2 r s)u
  

∫
0

∞

u r su″d r=l(l+1)⟨rs−2⟩−2
a
⟨rs−1⟩+ 1

n2a2 ⟨r
s⟩         (5) .   

∫
0

∞

u r su″d r=−I 1−I 2   with  I 1=∫
0

∞

u′rs u′d r   ,  I 2=s∫
0

∞

u rs−1 u′d r    

I 1=−
2

s+1
∫
0

∞

u′rs+1u″d r=− 2
s+1

∫
0

∞

u′rs+1( l(l+1)
r2 −2

a
1
r
+ 1

n2 a2 )ud r    

 For any k  we have ∫
0

∞

u′r k u d r=−∫
0

∞

u r k u′d r−k∫
0

∞

ur k−1u d r  and so 

∫
0

∞

u′rk u d r=− k
2
⟨r k−1⟩   ,  I 2=−

s(s−1)
2

⟨rs−2⟩  , 

∫
0

∞

u′r s+1u″d r=−
l(l+1)(s−1)

2
⟨r s−2⟩+ s

a
⟨r s−1⟩− s+1

2 n2 a2 ⟨r
s⟩ .

  

 Thus (s+1) I 1=l(l+1)(s−1)⟨r s−2⟩−2 s
a
⟨rs−1⟩+ s+1

n2a2 ⟨r
s⟩

(s+1)∫
0

∞

u r su″d r=−l(l+1)(s−1)⟨rs−2⟩+2 s
a
⟨r s−1⟩− s+1

n2 a2 ⟨r
s⟩+

s(s2−1)
2

⟨r s−2⟩  (6). 

 

Considering (5) and (6) we obtain now the Kramers-Pasternak relation:
s+1
n2 ⟨r s⟩−(2 s+1)a ⟨r s−1⟩+ s

4
((2 l+1)2−s2)a2⟨rs−2⟩=0      (6')   

 For s=0  it follows ⟨1
r ⟩= 1

n2a
       (7) 

 and for s=−1  it follows a ⟨r−2⟩=l(l+1)a2⟨r−3⟩       (8) . 

  

Suppose now we have a Hamiltonian depending on a parameter H = H(λ) and the 
normalized states ψ=|ψ(λ)⟩  satisfying for E(λ)∈ℝ  : H (λ)|ψ(λ)⟩=E(λ)|ψ(λ)⟩ 
Since the states are normalized we have 
E(λ)=⟨ψ(λ)|H (λ)|ψ(λ)⟩        (9) 

( d
d λ ⟨ψ(λ)|)|ψ(λ) ⟩+ ⟨ψ(λ)|( d

d λ|ψ(λ)⟩)=0  and from (9) we will obtain 
 

the Feynman-Hellmann theorem:

Page 4 of 24 312 of total 515  Gh.V.B. Introd. to...QFT 



d E(λ)
dλ =⟨ψ(λ)|d H (λ)

d λ |ψ(λ)⟩          (10) .   

Taking λ=l as a real parameter, with 

H (l)=− 1
2m

d2

d r 2+
l(l+1)
2m r2 −

1
2 m

2
r

d
d r

−Z α
r

  ,  |ψ(l)⟩∝Rn l(r)  , n=nr+l+1  , 

Rn l :ℝ +→ℝ   belonging to the Hilbert space Lr2

2 ([0 ,∞ ) ,ℝ)  having scalar product 

⟨u , v ⟩=∫
0

∞

u v r2 d r ,

E(l)=− 1
2 m

1
(nr+l+1)2 a2  for fixed nr∈ℕ  we have 

d H (l)
d l

= 2 l+1
2m r2  and so 

 plugging into (10) we obtain for l∈ℕ  that ⟨ 1
r2 ⟩= 1

l+1
2

1
n3 a2        (11)

 and with (8) : ⟨ 1
r3 ⟩= 1

l(l+1
2
)(l+1)

1
n3a3              (12). 

   

Consider now the unperturbed Hamiltonian which is assumed to have no time 
dependence, H0 , having eigenvalues (En

(0))n∈ℕ∗  and let for a given eigenvalue E0   ,

an orthonormal set of eigenfunctions, (|k 0 ⟩)k∈D  which is complete in the eigenspace  
 of E0  having E0=Ek

(0)   ,  H0|k0 ⟩=E0|k0 ⟩   for any  k∈D .   
Let λ V a Hamiltonian representing a weak physical disturbance (with λ a 
dimensionless parameter , λ≪1 ,λ≥0  ) . 
 The perturbed Hamiltonian is H=H 0+λV . 

For V k l=⟨k 0|V|l0⟩  , k , l∈D  we have that (V k l)k , l  is a self-adjoint complex matrix 
and we find (αk l)k, l  an unitary matrix such that ∑

l , k∈D
αp l

∗ V l kαn k=δp nϵp  with ϵp∈ℝ  
 

 for any p ,n∈D .  Thus with Einstein summation convention for l , k∈D  we have 
⟨α p l l

0|V|k 0αnk ⟩=δ pnϵn  for any p ,n∈D .
 

 The perturbed eigenstates |n ⟩  depend on λ  and satisfy 
(H 0+λV )|n ⟩=En|n ⟩            (13) 

|n⟩=|n(0) ⟩+λ|n(1) ⟩+λ2|n(2) ⟩+...
En=En

(0)+λ En
(1)+λ2 En

(2)+...

 where |n(0) ⟩=∑
k∈D

αn k|k 0 ⟩   ,  |n(l) ⟩= 1
l!|d n

d λ ⟩(0)   ,  En
(l)=1

l!
d En

d λ (0)   for  l∈ℕ  , 

En
(0)=E k

(0)=E0  for n∈D  , k∈D  with E0  the eigenvalue corresponding to the  

Sp[(|k0 ⟩)k∈D ]  eigenspace of  H 0.

  

 We can define |n ⟩  such that ⟨n|n⟩=1  and ⟨n|n(0)⟩∈ℝ  .  
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 Differentiating (13) with respect to λ  and making λ=0  we obtain 
H0|n(1) ⟩+V |n(0) ⟩=En

(1)|n(0 )⟩+En
(0)|n(1)⟩     (14) and multiplying this with ⟨n(0 )| follows 

En
(1)=⟨n(0)|V|n(0)⟩=ϵn.

 

 Since ⟨n|n⟩=1  , by differentiation with respect to λ  we derive 
⟨n(0)|n(1)⟩+⟨n(1)|n(0)⟩=0  and because ⟨n|n(0)⟩∈ℝ  it follows ⟨n(0)|n(1)⟩=0 .

  

 Let (|l(0) ⟩)l∉D  the other eigenstates forming with (|k 0 ⟩)k∈D  a complete orthonormal  

 system of eigenfunctions for H 0  having H 0|l(0) ⟩=El
(0)|l(0 )⟩  , E0=En

(0)≠El
(0)∈ℝ

 for any l∉D .  Multiplying (14) with ⟨l(0)| with l∉D  it follows 

⟨l(0)|n(1)⟩=∑
k∈D

⟨ l(0)|V|αnk k 0⟩
En
(0)−El

(0)  .  

  

 Taking |n ⟩=∑
k∈D

αnk|k 0 ⟩+λ ∑
l∉D ,k∈D

⟨ l(0)|V|αnk k 0⟩
En

(0)−El
(0)

|l(0) ⟩+O(λ2)           (15)  

we verify that ⟨m(0)|(H0+λV−En)|n⟩=O(λ2)  for any |m(0) ⟩=∑
k∈D

αmk|k0 ⟩  , m∈D

 and ⟨ l(0)|(H0+λV−En)|n⟩=O (λ2)  for any l∉D .
 

 Therefore |n ⟩  given by (15)  is a weak solution to the time-independent Schroedinger 
equation (H0+λV )|n⟩=En|n ⟩  to O(λ2)  approximation on the equation.  

The above formulas for  eigenstates and eigenvalues corrections |λ n(1) ⟩  and λ En
(1) to 

the unperturbed |n(0)⟩  and En
(0)  implies  that the perturbation theory can be 

legitimately used when the perturbation λV satisfies 

∑
l∉D|⟨l

(0)|λV|n(0)⟩
En
(0)−El

(0) |
2

≪1   ,  ‖(λV k l)k , l∈D‖≪|En
(0)| for any n∈D       (*).   

Suppose we have to compute the corrections to eigenvalues and eigenstates for a 
unperturbed Hamiltonian H0 and a total of two small perturbations λV1 and  λV2 with a 
perturbed Hamiltonian H = H0 + λV1  + λV2 . 
We can proceed in two ways:
1) First we calculate the corrections produced for the H1 = H0 + λV1 Hamiltonian:
        En 1=En

(0 )+λ En1
(1)+O(λ2)  

        |n1 ⟩=|n(0) ⟩+λ|n1
(1) ⟩+O (λ2)  . 

 

    Then we calculate the corections produced for the H2 = H0 + λV2 Hamiltonian:
         En2=En

(0)+λ En2
(1)+O(λ2)  

         |n2 ⟩=|n(0) ⟩+λ|n2
(1) ⟩+O(λ2)  . 

 

     To obtain the final corrections we add the H1 and H2 corrections:
         En=En

(0 )+λ En 1
(1)+λ En2

(1)+O(λ2)  
         |n ⟩=|n(0) ⟩+λ|n1

(1) ⟩+λ|n2
(1) ⟩+O (λ2)  . 
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    Obviously we have Eni
(1)=⟨n(0)|V i|n

(0)⟩  

                                    |ni
(1) ⟩=∑

l≠n

⟨l(0)|V i|l
(0)⟩

En
(0)−El

(0)
|l(0) ⟩  for i=1 ,2   . 

  

2) First we calculate the corrections produced for the H1 = H0 + λV1 Hamiltonian as 
in the precedent case.
     Then we consider H1 as an unperturbed Hamiltonian on which we apply the λV2

     perturbation taking the corrections with En̄
(0)=En 1   ,  |n̄(0) ⟩=|n1 ⟩  :  

    En̄=En1+λ En̄
(1)+O(λ2)  

    |̄n ⟩=|n1 ⟩+λ|̄n(1) ⟩+O(λ2)

     with |̄n(1) ⟩=∑̄
l≠n̄

⟨ l̄ (0 )|V 2|n̄
(0)⟩

En̄
(0)−E l̄

(0) |̄l (0)⟩   ,  E n̄
(1)=⟨n1|V 2|n1⟩  

        |̄l (0) ⟩=|l1 ⟩=|l(0) ⟩+λ|l1
(1) ⟩+O (λ2)   ,  E l̄

(0)=El 1=El
(0)+λ El 1

(1)+O(λ2)   where 

        H 1|l1 ⟩=El 1|l1 ⟩   ,  H 1|n1 ⟩=En1|n1 ⟩ .

  

     The final perturbed states and energy eigenvalues are in case 2) the 
      |̄n ⟩    respective  En̄  .  
We can verify that we have :
|̄n(0) ⟩=|n1 ⟩=|n(0) ⟩+O(λ)   ,  |̄l (0) ⟩=|l(0)⟩+O(λ)  

En̄
(0)=En1=En

(0)+O(λ)   ,  E l̄
(0)=El 1=El

(0)+O(λ)   

En̄
(1)=En2

(1)+O(λ)   ,  |̄n(1) ⟩=|n2
(1) ⟩+O(λ)

En̄=En+O (λ2)   ,  |̄n ⟩=|n ⟩+O(λ2) .

  

Therefore, to O(λ2) approximation we obtain approximatively the same result for both 
ways 1) and 2) in calculation of the corrections for the unperturbed Hamiltonian H0 

perturbed with λV1 +  λV2 = λV. Obviously we will usually proceed the 1) way.

As we proved in Chap. Non-relativistic limit of the Dirac equation, for the ψΑ first 
two-component part of the Dirac spinor describing the electron in the atomic nucleus 
Coulomb potential field, we have the O(α3) approximation for the Dirac equation 
eigenvalue problem as a time-independent two complex components Schroedinger 
equation:

( ^⃗p2

2m
−Z α

r
−
^⃗p4

8 m3 +
Zα

2 m2 r3

^⃗L⋅⃗S+π
2

Zα
m2 δ

3( x⃗))ψA=EN RψA  where 

ψA :ℝ3→ℂ2  , ψA=ψA ( x⃗)   ,  α=
e2

4 π
 is the fine structure constant, m  is the electron 

 

rest mass , Z is the atomic number of the nucleus.
Hence we have the unperturbed Coulomb potential Hamiltonian
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H 0=
^⃗p2

2m
−Z α

r
 and three perturbations known as λV kin=−

^⃗p4

8 m3   ,  

λV sp.or=
Z α

2 m2 r3
^⃗L⋅⃗S   ,  λV Darwin=

π
2

Z α
m2 δ

3( x⃗) .
  

We show that λVkin is indeed the relativistic correction to the kinetic energy, λVsp.or is 
the correction from the spin-orbit interaction while λVDarwin is a correction that comes 
precisely from the Dirac equation. 
The relativistic form of the kinetic energy is 

T=√ p⃗2+m2−m= p⃗2

2 m
− p⃗4

8 m3 +mO(( p⃗2

m2 )
3

)   . 

 In the Bohr model (see Chap. Two-component Dirac equation) we have 
p
m
= Zα

n
=O(α)  and so λV kin  is a mO(α6)  approximation to the kinetic energy. 

 

To apply perturbation theory for the λVkin perturbation we must verify that the (*) 
relations are satisfied for λV = λVkin and ψ = ψnlm solutions to the unperturbed 
Hamiltonian eigenvalue problem corresponding to energy level

En
(0)=−m

Z2α2

2 n2 =−
1

2m n2 a2  , n∈ℕ  , n≥l+1  , a=
a0

Z
= 1

mα Z
 .  

 The −λV kin=
^⃗p4

8 m3  is positive semi-definite and so for any |φ ⟩ ,|η ⟩  we have 

|⟨φ|λV kin|η⟩|
2≤⟨φ|λV kin|φ⟩ ⟨η|λV kin|η⟩                 (16) 

 

Therefore, considering the sum for the λVkin perturbation 

Sn=∑
l∉D|⟨ l

(0)|λV|n(0)⟩
En
(0)−El

(0) |
2

 we have 

|⟨ l(0 )|λV|n(0)⟩|2≤⟨l(0)|λV|l(0)⟩⟨n(0 )|λV|n(0)⟩

⟨ψ|λV|ψ⟩=− 1
2m ⟨ ^⃗p2

2m
ψ| ^⃗p2

2m
ψ⟩=− 1

2m
⟨ψ|(En

(0)+ Zα
r

)
2

|ψ⟩=

=− 1
2m

(En
(0)2+Z2α2⟨ 1

r2 ⟩+2 E(0)Z α ⟨1
r ⟩)= m

8 n4(2 l+1)
Z4α4(6 l+3−8 n)        (17) .

 

where we used (7) and (11) . 
 Thus having (16) and (17) and considering for an energy level k∉D  all ψk qm  

 with q=0 , k−1  , |m|≤q+1
2

 , m∈1
2
+ℤ  , j=q±1

2
 solutions for the unperturbed 

 Hamiltonian eigenvalue problem with eigenvalue E k
(0)  we obtain: 
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Sn≤ ∑
k≠n , k≤2n (Z4α4 4( 1

k 2−
1
n2 )

−2 8 n−6 n−3
8 n4(2 l+1)

∑
q=0

k−1 2(2q+3)(8 k−6 q−3)
8 k 4(2 q+1) )+

+ ∑
k=2n+1

∞ 8
9

Z4α4 8 n−6 l−3
2 l+1

4

8k 4 (8 k2−3k−3k (k−1)).

 

After some increasings and using ∑
k=1

∞ 1
k2=

π2

6
 we obtain  

Sn≤2 Z4α4 8 n−6 l−3
2 l+1 ( 5

16
n2+10

9 ) π2

6
≤C n3 Z4α4=O(α4)≪1  .  

 considering (17) , ‖(λV kl)k , l∈D‖ for λV=λV kin  can be estimated as the equivalent  

 norm Cn=∑
k∈D

λ|ϵk|=∑
k∈D

−⟨k(0)|λV kin|k
(0)⟩=∑

q=0

n−1 2(2 q+3)(8n−6 q−3)
8 n4(2q+1)

m Z4 α4   

 and so Cn≤
10

4 n2 m Z4α4≪|En
(0)|=m Z2α2

2 n2  . 

 

Therefore the (*) conditions are satisfied for the kinetic energy correction 
perturbation and we can use perturbation theory for this perturbation. 
Thus for λV = λVkin for the perturbation theory we take

|k 0 ⟩=ψn l m j   ,  |l0 ⟩=ψn l′m′ j′  and have V k l=−⟨ψnml j|
^⃗p4

8 m3|ψn l′m′ j′⟩=

=− 1
2 m

⟨ψn l m j|(En
(0)+ Z α

r
)
2

|ψn l′m′ j′⟩=δl l′δmm′δ j j′
6 l+3−8 n

8 n4(2 l+1)
m Z4α4 .

 

(Obviously we do not confuse the m index of the solution with the m of the electron 
mass).
 Hence the  (V kl)k, l∈D  matrix is already diagonalized by the chosen ψn l m j  with 

 fixed n∈ℕ∗  and l ,m, j  describing the indexed set D  of En
(0)  eigenfunctions 

 and the first order corrections to the energy level |n(0) ⟩=ψnl m j  unperturbed 

 eigenstate are: λ En
(0)= 6 l+3−8 n

8 n4(2 l+1)
m Z4α4=− 1

2 m
En

(0)2( 4 n

l+ 1
2

−3)  . 

 

As we learned in Chap. Magnetic moment of the electron, the electron has a magnetic 

 moment μ⃗=−μB gS
S⃗
ℏ  where μB=

|e|
2 m

ℏ  is the Bohr magneton and gS≈2  is the  

gyromagnetic ratio.
 The electron is considered moving with velocity v⃗  in the rest frame of the nucleus,  
in the Bohr atom model approximation. In the rest frame of the electron, in a non-
relativistic approximation we have a magnetic field
B⃗=−v⃗× E⃗  (we take c=1 ,ℏ=1  ) where (see Chap. Relativistic dynamics) 

Page 9 of 24 317 of total 515  Gh.V.B. Introd. to...QFT 



E⃗=−∇ A0=∇ Z e
4π r

=− Z e
4π

x⃗
r3  is the electric field in the rest frame of the nucleus.  

The corresponding energy of the magnetic moment in this magnetic field is (see 
Chap. Magnetic moment) ΔH L=−μ⃗⋅⃗B  and ΔH L  is called the spin-orbit Larmor  
interaction energy.

 We have B⃗=− x⃗×v⃗ Z e
4π r3=−

1
m

Z e
4π r3 L⃗  

ΔH L=−
1
m
μB gS

Z e

4 πr 3 L⃗⋅⃗S=gS
Z α

2 m2 r3 L⃗⋅⃗S .
  

Consider now the nucleus rest frame R and at moment of time t in R the rest frame of 
the electron R’ which moves in R with  velocity v⃗ (t) .The space-time coordinates of  
a point in R are X and in R’ are X’ (as column vectors).
Then (see Chap. Lorentz transformations) we have :

X′=B( v⃗)(X−(t , 0⃗)T)  with 

B( v⃗)=( γ (−γ vi)i=1,3
T

(−γ vi)i=1 ,3 (δi j+
γ−1

v2 vi v j)
i , j=1,3

)   where  γ= 1

√1−v2
 . 

 

At the moment t’ = t + Δt we have an instantaneous rest frame R’’ so that when X’’ 
are the coordinates in R’’, we have
X″=B( v⃗+Δ v⃗)(X−(t , 0⃗)T)   ,  Δ v⃗=v⃗ (t′)−v⃗ (t)   , X″=B( v⃗+Δ v⃗)B(−v⃗ )X′  . 
 Since B( v⃗+Δ v⃗)B(− v⃗)  is a Lorentz transformation we have 
B ( v⃗+Δ v⃗)B (−v⃗)=R(Δθ , n⃗)B(Δ b⃗) .

 

Then considering an infinitesimal time interval Δt we  obtain R(Δθ , n⃗)  an  
infinetesimal rotation of angle Δθ around an axis with a  versor n⃗  orientation and  
B(Δ b⃗)  an infinitesimal boost given by the infinitesimal velocity Δ b⃗  .  
Then taking the Lorentz group generators (J k)k=1 ,3 ,(K k)k=1 ,3  with  
(J k)i j=−ϵi j k   ,  (J k)0α=(J k)α0=0   ,  (K k )0 i=(K k)i 0=δik   ,  (K k)00=(K k)i j=0   for  
i , j , k=1 ,3    ,  α=0,3  we will have 
R (Δθ , n⃗)=exp(−Δθnk J k)≈ I−Δ θ⃗⋅⃗J   ,  B(Δ b⃗)=exp(−Δ b⃗⋅K⃗ )≈I−Δ b⃗⋅K

B( v⃗+Δ v⃗)B(−v⃗)≈ I−Δθ⃗⋅⃗J−Δ b⃗⋅K⃗

 

 Therefore X′=( I+Δ θ⃗⋅⃗J+Δ b⃗⋅K⃗ )X″ .   
Whitout loss of generality we can suppose that
v⃗=(β ,0 ,0)=β⃗   ,  Δ v⃗=(Δβx ,Δβ y , 0)=Δ β⃗  and so 

B (− v⃗)=(
γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

)  
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 We neglect the O((Δβ)2)  and O(β4)  terms and after some calculus we obtain 

|⃗v+Δ v⃗|2≈β2+2βΔβx   ,  
1

√1−(v⃗+Δ v⃗)2
≈γ+γ3βΔβx

B( v⃗+Δ v⃗)≈(
γ+γ3βΔβx −(γβ+γ3Δβx) −γΔβ y 0

−(γβ+γ3Δβx) γ+γ3βΔβx

γ−1
β Δβ y 0

−γΔβ y
γ−1
β Δβ y 1 0

0 0 0 1
)  

Λ=B(β⃗+Δ β⃗)B(−β⃗)≈(
1 −γ2Δβx −γΔβy 0

−γ2Δβx 1 − 1−γ
β Δβy 0

−γΔβ y
1−γ
β Δβ y 1 0

0 0 0 1
)  .  

 Let Δ β⃗∥=(Δβx ,0 ,0)   ,  Δ β⃗⊥=(0 ,Δβ y ,0)  and in general, rotational invariance  

 defines Δ β⃗∥=(v⃗⋅Δ v⃗) v⃗
‖v⃗‖

  ,  Δ β⃗⊥=v⃗−( v⃗⋅Δ v⃗) v⃗
‖v⃗‖

  and we have  

Λ≈ I−γ−1

β2 (β⃗×Δβ)⋅⃗J−γ(γ Δβ⃗∥+Δ β⃗⊥ )⋅K⃗  and so 

Δ θ⃗≈ γ2

γ+1
v⃗×Δ v⃗   ,  Δ b⃗≈γ(γΔ v⃗∥+Δ v⃗ ⊥ )        (18). 

 

R’  is the instantaneous rest frame of the electron at time τ = t in R and R’’  is the 
instantaneous rest frame of the electron at time τ = t + Δt in R . 
Consider a particle P at rest in the frame R’’ 
 on location r⃗ ″  and time coordinate variable s″  in R″  so that we have 
X P″

T=XP″
T(s″)=(s″ , r⃗ ″)   ,  X P−(t , 0⃗)T=XP( τ)−(t , 0⃗)T=B (− v⃗(τ))X P″(s″)  

X P0(τ)=τ  , s″=s″(τ)   ,  s″(t)=0   ,  v⃗( τ)=v⃗ (t)+Δ v⃗( τ)   ,  τ=t+Δ t   

X P′=XP′(s′)=B( v⃗ (t))B(−v⃗ (τ))X P″(s″)=(I+Δ θ⃗⋅⃗J+Δ b⃗⋅K⃗ )X P″(s″)=
=(s″+Δ b⃗⋅⃗r ″, s″Δ b⃗+ r⃗ ″−Δ θ⃗× r⃗ ″)T=(s′ ,(s′−Δ b⃗⋅⃗r″)Δ b⃗+ r⃗ ″−Δ θ⃗× r⃗ ″)T

 

s′=s′(τ)=s″+Δ b⃗⋅⃗r ″   ,  s′( t)=Δ b⃗(t)⋅⃗r ″=0   ,  Δ b⃗(t)=0⃗   ,  Δ θ⃗(t)=0⃗  .  
The velocity of the particle P in the R’  frame at time τ = t is 

w⃗=lim
τ→t ( X Pi′(s′(τ))−X Pi′(s′(t))

s′( τ)−s′(t) )
i=1 ,3

=

=lim
τ→ t

(s′(τ)−Δ b⃗(τ)⋅⃗r ″)Δ ⃗(b)(τ)−Δ θ⃗ (τ)× r⃗ ″
s′(τ)−s′(t)

=− Δ θ⃗
Δ s′

(t)× r⃗″       (18'). 
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Since R’  is the instantaneous rest frame for the electron at time τ = t and R’’ is the 
instantaneous rest frame for the electron at time τ = t + Δt  we have 
Δ t
Δ s′

(s′(t))=γ  and so Δ θ⃗
Δ s′

=γ Δ θ⃗
Δ t

(t )    and from (18) , (18') follows now that  

the instantaneous rest frame of the electron experiences an instantaneous rotation of 

 angular velocity ω⃗T=−
Δ θ⃗
Δ s′

=−
γ3

γ+1
v⃗×a⃗  where a⃗=d v⃗

d t
 is the electron  

acceleration in R , the rest frame of the nucleus fact known as the Thomas precession 
effect.

We represent the spin ½ electron with spin angular momentum 
S⃗  as a rotating ball B  of radius R  with center in the origin of the R′  frame and 

 spinning with  a constant angular velocity ω⃗  having a uniformly distributed 
  mass with density ρ  such that : 
S⃗=∫

B
ρ x⃗×(ω⃗×x⃗)d3 x⃗   . Let ω⃗=(0 ,0 ,ω)  and so we have 

S⃗=∫
B

ρ( x⃗2 ω⃗−( x⃗⋅ω⃗) x⃗)d3 x⃗=∫
0

R

ρr 4 4 π ω⃗d r−∫
B

ρ z2ωez d 3 x⃗=

=4π R5

5
ρω⃗−2πω ez∫

0

R

ρ∫
0

π

r 4 cos2(θ)sin (θ)dθd r=ω⃗ R5

5
2πρ(2−2

3
)= 8

15
π R5ρω⃗  . 

 

The spin angular momentum is collinear with the magnetic moment since we have
μ⃗=−μB gS S⃗  and the magnetic moment must align with the magnetic field which is 

B⃗=− x⃗×v⃗
Z e

4π r3 . In the Bohr model the electron orbits a circular orbit with constant 

 angular velocity which is collinear with L⃗  and so B⃗=−Z e

4π r3

1
m

L⃗   ,  a⃗=− v⃗2

a0
2

Z2

n4 x⃗  , 

 where a0=
1

mα  is the Bohr radius. 

 

 Therefore ω⃗T∥x⃗× v⃗∥B⃗∥μ∥S⃗∥ω⃗  and we can consider ω⃗=λ ω⃗T  , λ∈ℝ  .  
The instantaneous rotation with angular velocity ωT , known as Thomas precession 
produces as we know three inertial forces acting on the spinning in the electron rest 
frame R’ electron ball B which has a distribution of velocities in R’ given by 

v⃗′=ω⃗× x⃗′  and we have S⃗=∫
B

ρ x⃗×(ω⃗×x⃗)d3 x⃗= 8
15

π R5ρω⃗   .  

The inertial forces are:

     - the Euler force with density −ρ
d ω⃗T

d s′
× x⃗′  

     - the centrifugal force with density −ρω⃗T×(ω⃗T×x⃗′)  
     - the Coriolis force with density −2ρ(ω⃗T×v⃗′)=−2ρ(ω⃗T×(ω⃗×x⃗′))  . 
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 We have 
d ω⃗T

d s′
= d t

d s′
d ω⃗T

d t
=
−γ4

γ+1
v⃗× d a⃗

d t
  . Taking a⃗=− v⃗ 2

a0
2

Z2

n4 x⃗  we obtain 

d a⃗
d t

=− Z2

a0
2 n4 v⃗ 2 v⃗   and so  

d ω⃗T

d s′
=0  and the Euler force is vanishing. 

 

The energy corresponding to the centrifugal force field is 
E cf=∫

B

( ∫
Γ(x⃗)

−ρ(ω⃗T×(ω⃗T× x⃗′))⋅d x⃗′)d3 x⃗   where  Γ( x⃗)  is a path in B  from the  

 origin 0⃗  to x⃗∈B  and the origin is the zero energy point for the centrifugal field.  
 

 Hence Ecf=∫
B

( ∫
Γ( x⃗)

ρ(ω⃗T
2 x⃗′−ω⃗T(ω⃗T⋅⃗x′))⋅d x⃗′)d3 x⃗=∫

B

1
2
ρ ((ωT 1

2 +ωT 2) x3
2+

+(ωT 1
2 +ωT 3

2 ) x2
2+(ωT 2

2 +ωT 3
2 ) x1

2 )d3 x⃗=∫
0

R

ρ ω⃗T
2 r4∫

0

π

cos2(θ)sin (θ)dθ∫
0

2π

dφd r

Ecf=
4πρR5

15
ω⃗T

2             (19) .

 

 Because as we established ω⃗=λ ω⃗T , in the same way we obtain for the energy  

 corresponding to the Coriolis force field E cor=
8πρR5

15
ω⃗⋅ω⃗T=S⃗⋅ω⃗T           (20) 

 We have also 
E cf

Ecor

=
ωT
ω =

ωT

‖⃗S‖
8πρ
15

R5= 4
5
ωT R2 m            (21) 

 (since  ‖S⃗‖=1
2

 and m= 4
3
π R3ρ )

 

We have to estimate the electron radius R considering the energy necessary to 
assemble an amount of charge q into a given sphere of radius r.

The electrostatic potential at a distance r  from a charge q  is V (r)= q
4π r

. 

To bring an additional amount of charge dq from infinity necessitates putting energy 
into the system by an amount d U=V (r)d q    (22).  
If the sphere is assumed to have a constant charge density ρ then 

q=ρ 4
3
πr 3   ,  d q=ρ4π r2 d r   .  

Integrating (22) from zero to the final radius R yields the expression for the total 
energy U.

U=∫
0

R 1
4π r

ρ2 16π2

3
r5 d r= 4

15
π R5ρ2= q2

4π
3
5

1
R

 .  

q is now interpreted as the electron charge e and the energy U is set to the relativistic 
rest mass energy of the electron m and so we must have 

m= e2

4π
3
5

1
R

  ,  R=3
5
α
m

 .  
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As we proved , in a non-relativistic approximation of the electron orbiting the 
nucleus:

ω⃗T=−
γ3

γ+1
v⃗×a⃗=− 1

2
v⃗×a⃗  and from the Bohr model follows 

a⃗=− v⃗2

a0
2

Z2

n4 x⃗   ,  ‖a⃗‖=m

n4 Z3α3   ,  a0=
1

mα
 , 

‖⃗v‖= Zα
n

  ,  ωT=
Z4α4

n5 m

 Thus 
Ecf

Ecor

=4
5

Z4α4 m

n5

9
25

α2

m2 m= 36
125

Z4α6

n5 =O(α6)  and we can neglect the  

 

centrifugal inertial forces potential energy and we have a energy from the Thomas 
precession given by 

Ecor=S⃗⋅ω⃗T=−S⃗⋅ 1
2

v⃗×a⃗=− 1
2

S⃗⋅Z4α4 m2

n6 x⃗×v⃗=− 1
2

Zα
m2 r3 L⃗⋅⃗S    ,  

 because from the Bohr model we have r= n2

Z mα  . 

 

Therefore we have a spin-orbit interaction correction given by 

ΔH SO=ΔH L+E cor=Z α
gS−1

2m2r 3 L⃗⋅⃗S  which for gS≈2  leads to the 

λV sp.or=
Z α

2 m2 r3 L⃗⋅⃗S

 

The ψn lm j  solutions of the unperturbed eigenvalue problem are also eigenfunctions

 of the S⃗⋅⃗L  operator with S⃗⋅̂⃗L|ψn lm j
 ⟩=1

2
l|ψn l m j

 ⟩  if l= j− 1
2

  ,  

S⃗⋅^⃗L|ψn l m j
 ⟩=− 1

2
(l+1)|ψn l m j

 ⟩  if l= j+ 1
2

 and so (V k l)k , l∈D  is already diagonalized 

 

for the λV = λVsp.or perturbation since it follows from the structure of the ψnlmj 

solutions that ⟨ψn l m j|
1
r 3|ψn l′m′ j′⟩∝δl l′δmm′δ j j′. 

Therefore, with the perturbation λV=λV sp.or  , |k(0) ⟩=ψnl m j   ,  |l(0 )⟩=ψn′ l′m′ j′    

  we have |⟨k(0)|λV|l(0)⟩|2≤δl l′δmm′δ j j′ sl
2 Z2α2

4 m4 (gS−1)2 ⟨k(0)|1

r3|k
(0)⟩ ⟨l(0)|1

r 3|l
(0)⟩=

=( sl

l(l+1
2
)(l+1))

2
Z2α2

4 m4 (gS−1)2
δll′δm m′δ j j′

n3 n′3 a6

  where    sl=
1
2

l  if l= j−1
2

 , sl=−
1
2
(l+1)  if l= j+ 1

2
.
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It follows now , after some increasings and calculus that

‖(λV k l)k, l∈D‖
1

|En
(0)|
≤(2+∑l=1

n−1 2 l+3

l2 ) 2n2

Z2α2 m
m

Z4α4

n3 ≤6+π2+4 logn
n

Z2α2≪1  , 

Sn=∑
l∉D|⟨l

(0)|λV|n(0)⟩
En

(0)−El
(0) |

2

≤∑
k≠n

4
m2 Z4α4 ( 1

n2−
1
k2 )

−2 Z8α8 m2

n3 k 3 (2+∑l=1

k−1

(2 l+3) 1
(l(l+1))2 )≤

≤Z4α4 ∑
k≠n ( 1

n2−
1

k 2)
−2

(1+π2+ 1
k ) 1

n3 k 3≤Z4α4 ∑
k=2n

∞ 16
9 (1+π2+ 1

k ) n

k 3+

+Z4α4( 1

n2−
1

(n+1)2 )
−2

∑
k=1

∞ (1+π2+ 1
k ) n

k 3≤Z4α4 n(n+4)2

4
∑
k=1

∞ (1+π2+1
k ) 1

k3=

=
n(n+4)2

4
((1+π2)ζ(3)+ζ(4))Z4α4=O(α4)≪1  . 

 

Thus the (*) conditions are satisfied for the spin-orbit interaction perturbation and we 
can use perturbation theory for this perturbation.
For ψnl m j=|n(0) ⟩  unperturbed eigenstate we have the energy level corrections of first

 order are given by λ En
(1)=⟨n(0)|λV sp.or|n

(0)⟩= Z α
2 m2 (gS−1) sl ⟨ 1

r3 ⟩
 where sl=

1
2

l  if l= j−1
2

 and sl=−
1
2
(l+1)  if l= j+1

2
 . 

 

λ En
(1)= 1

2m
En
(0)2(gS−1) 4 n

(2 l+1)(l+1)
 for l= j−1

2
 

λ En
(1)=− 1

2 m
E(0)2(gS−1) 4 n

l(2 l+1)
 for l= j+ 1

2
.

 

 For the λV=λV Darwin=
π
2

Zα
m2 δ

3( x⃗)  perturbation we have 

⟨ψn l m|λV|ψn′ l′m′⟩=ψnl m
+ ( 0⃗)ψn′l′m′(0⃗)

π
2

Zα
m2  and so this perturbation affects only 

 states |n(0) ⟩=ψn0m  with l=0.

 

Since the Darwin term affects only the l = 0 states , the D set for the Darwin term 
perturbation and unperturbed energy level En

(0) can be taken as 

{√ Z
2πa0 n

Rn0 χ+ ,√ Z
2πa0 n

Rn0χ −} and so (λV k l)k ,l∈D  is already diagonalized and 

Sn=∑
l∉D|⟨l

(0)|λV|n(0)⟩
En

(0)−El
(0) |

2

=∑
k≠n ( 1

n2−
1
k2 )

−2 4
Z4α4 m2

π2

4
Z2α2

m4

1
π2

Z6α6 m6

n3 k 3 ≤

≤Z4α4 n(n+4)2

4
ζ(3)=O (α4)≪1
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The energy level corrections at first order for the Darwin term perturbation for the 
unperturbed En

(0) eigenvalues and l = 0 states are 

λ En
(1)=⟨n(0 )|λV|n(0)⟩= π

2
Z α
m2

1
π

Z3α3m3

n3 =1
2

Z4 α4 m

n3 =Z2α2

n
|En

(0)|= 1
2m

4 n En
(0)2  .  

Therefore we see that perturbation theory can be applied for the Darwin term and we 
have the above correction to energy levels.
The total energy level correction for the combined relativistic kinetic energy, 
spin-orbit interaction and Darwin term perturbations, according to the above 
considerations is 

Δ En=−
En
(0 )2

2m ( 4 n

l+1
2

−3−(gS−1) 4 n

2(l+1
2
)(l+1)

−4 nδl 0)   for  l= j−1
2

 and 

Δ En=−
En
(0 )2

2m ( 4 n

l+1
2

−3+(gS−1) 4 n

2 l(l+1
2
))    for  l= j+1

2
.

 

From the Dirac equation solution (see Chap. Solutions to the Dirac equation for the 
Hydrogen atom) we have a O(α6) approximation of the energy levels given by 

 (for n=nr+ j+1
2

) 

En≈
m

√1+ Z2α2

(n−1
2

Z2α2( j+ 1
2)

−1

)
2

≈m(1− Z2α2

2n2 −
1
2

Z4α4

n3 ( j+ 1
2)

−1

+ 3
8

Z4α4

n4 )=

=m+En
(0)− 1

2m
En
(0 )2( 4 n

j+ 1
2

−3)   . 
 

 For l= j−1
2

 we have 4 n

j+1
2

= 4 n

l+1
2

− 4 n

2(l+ 1
2)(l+1)

  

 and for l= j+ 1
2

 we have 4 n

j+ 1
2

= 4 n

l+ 1
2

+ 4 n

2 l(l+1
2 )

  . 

 

 With gS=2  we conclude that to O(α6)  approximation,  the perturbation energy level 
coincides with the Dirac equation solution energy level , except the case l = 0 for 
which the computed spin-orbit correction by perturbation theory  is always 

undetermined due the l

l(l+ 1
2
)(l+1)

=0
0

 indetermination which occurs (since l∈ℕ  ) 
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 because ⟨ 1

r3 ⟩=C 1

l(l+1
2
)(l+1)

=∞  for l=0  . 

Since S⃗⋅^⃗L|ψn0m j
 ⟩=0  , in the case l=0  we must take the spin-orbit correction to the 

 energy level to be zero and so, since for l=0  we have j=1
2

 , 4 n

j+1
2

= 4 n

l+1
2

−4 n  

 the pertubation theory energy level is equal, in O(α6)  approximation, 
 to the Dirac equation solutions energy level even in the l=0  case. 

 

In Chap. Non-relativistic limit of the Dirac equation we derived a magnetic moment 

of the electron μ⃗=−μB (gL L⃗+gS S⃗)  with gL=1  , gS≈2  and μB=
|e|
2m

 the  Bohr 

magneton, gL orbital angular momentum gyromagnetic ratio, gS spin angular 
momentum gyromagnetic ratio. Thus in the presence of a constant magnetic field 
B⃗  we have a perturbation of the electron in the Coulomb potential field of the  
atomic nucleus Hamiltonian H given  by λV M=−μ⃗⋅⃗B   .  

 If the field B⃗  is weak,  the spin-orbit interaction dominates over the effect of the 
external magnetic field (through the Larmor interaction energy) and we must include 
in H at least the spin-orbit interaction perturbation λVsp.or . The diagonalization of 
(V k l)k , l∈D  for the λV sp.or+λV M  perturbation will occur ( since |λV M|≪|λV sp.or|)  
then with a good approximation for the same  states (∑

k∈D
αn k|k 0 ⟩)n∈D=(|n(0) ⟩)n∈D   for  

which occurs for the λVsp.or perturbation , that means for the

(ψn lm j)n , l ,m, j=(|k(0)⟩)k∈D  with l=0 , n−1  , m∈1
2
+ℤ  , |m|≤l+1

2
 , j=l±1

2
 for each 

 energy level En
(0)  , n∈ℕ∗ .  Moreover, the spin angular momentum generating a  

 magnetic moment −μB gS S⃗  will be parallel with the magnetic field in the electron 

 

rest frame which being approximatively aligned with the orbital angular momentum 
as we derived for the Larmor interaction energy (since the external magnetic field is 
weak and the magnetic moment tends to align with the acting on it magnetic field) 
leads to the conclusion that we can consider that the expectation values of the 
S⃗  and L⃗  operators are parallel and since J⃗=S⃗+ L⃗  we have 

⟨gL L⃗+gS S⃗⟩=⟨gL
J⃗⋅⃗L
J⃗ 2 J⃗+gS

S⃗⋅⃗J
J⃗ 2 J⃗ ⟩           (23) .

 

The first energy level correction introduced by λVM  +  λVsp.or is 
⟨k(0)|λV M+λV sp.or|k

(0)⟩  and therefore the correction corresponding to λV M  is  

λ En
(1)=⟨k(0)|λV M|k

(0)⟩  with |k (0) ⟩=|ψ  n l m j⟩ .   
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 The |ψ  n l m j ⟩   are H , J⃗ 2 , L⃗2 , J z , S⃗⋅⃗L  eigenstates and therefore also 

J⃗⋅⃗L
J⃗ 2  and J⃗⋅⃗S

J⃗ 2  eigenstates and we have, considering without loss of generality that 

B⃗=(0 ,0 ,B) ,  the energy level correction introduced by λV M , considering (23) is

λ En
(1)=μB B m j ⟨ψn l m j|gL

J⃗⋅⃗L
J⃗ 2 +gS

J⃗⋅⃗S
J⃗ 2 |ψn l m j⟩  and since J⃗=S⃗+ L⃗  , 

J⃗⋅⃗L=1
2
( J⃗ 2+ L⃗2−S⃗2)  , J⃗⋅⃗S=1

2
( J⃗ 2−L⃗2+S⃗2)  , S⃗2=3

4
I  we obtain, taking gL=1  that 

λ En
(1)=μB B m j

1
2 j( j+1)

( j( j+1)+l(l+1)−3
4
+gS( j( j+1)−l(l+1)+ 3

4
))

λ En
(1)=μB B m j(1±

gS−1

2 l+1
)  with +  for j=l+ 1

2
 and  − for j=l−1

2
.

 

The relativistic kinetic energy correction splits an unperturbed energy level En
(0)  in n 

sublevels (En l)l=0 ,n−1  . The spin-orbit interaction adds more splitting of each En l  in

two sublevels for j=l±1
2

, En l j .  A weak constant uniform magnetic field splits  

each En l j  in 2 l+2  levels for each m j∈
1
2
+ℤ  with |m j|≤l+1

2
.  This splitting of  

 

atomic energy levels in the presence of a weak magnetic field is known as the 
Zeeman effect.
If the field B⃗  is sufficiently strong to disrupt the spin-orbit coupling, the (|n(0) ⟩)n∈D   
 diagonalizing (V k l)k , l∈D  for the λV M+λV sp.or  perturbation system of  unperturbed 
eigenstates for a En

(0)  = E0 unperturbed energy  eigenvalue will be in a good 
approximation the system that diagonalizes the (V k l)k , l∈D=(⟨k

0|V M|l
0⟩)k , l∈D  matrix  

 for the λV M  perturbation, which considering B⃗=(0 , 0 ,B)  is (ψn lm ± )l=0 ,n−1 ,|m∓1
2|≤ l

.  

 ( with m∈1
2
+ℤ  )  

Thus the energy level correction introduced by λVM perturbation for a sufficiently 
strong magnetic field is 
λ En

(1)=μB B ⟨ψnl m ±|gL Lz+gS S z|ψn lm ± ⟩=μB B (ml+gS ms)    where we take gL=1. 
The splitting of atomic energy levels in the presence of a strong magnetic field is 
known as the Paschen-Back effect.
 Taking B⃗=(0 , 0 , B)  in the Zeeman effect case, for l∉D ,|n(0) ⟩=|ψ  n lm j ⟩  we have 

|l(0) ⟩=|ψ  n′l′m′ j′ ⟩   ,  n′≠n   ,  

⟨ l(0)|λV M|n
(0 )⟩=⟨ l(0)|μB B(gL Lz+gS Sz)|n

(0)⟩=⟨l(0)|μB B gL J z|n
(0)⟩+

+(gS−gL)μB B ⟨l(0)|S z|n
(0)⟩=(gS−gL)μB B ⟨l(0)|S z|n

(0)⟩  , 
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Sz|ψ  nl m j ⟩=1
2

Rn l(r)(α j Y l

m−1
2 (θ ,φ)χ +−β j Y l

m+1
2(θ ,φ)χ− )  

|ψ  n′ l′m′ j′ ⟩=Rn′l′(r)(α j′Y l′

m′−1
2 (θ ,φ)χ+ +β j′Y l′

m′+1
2 (θ ,φ)χ− )  . 

 

 Hence if ⟨l(0)|Sz|n
(0)⟩≠0  we must have l=l′  , m=m′  , α jα j′

∗≠β jβ j′
∗  , n=n′  .  

Since n′≠n  we conclude that in the Zeeman effect case the first order corrections
to the energy eigenstates, namely λ|n(1) ⟩  must vanish. 

 

Also in the Paschen-Back effect case, since the unperturbed eigenstates 

|ψn l m±
 ⟩=|n(0) ⟩  are obviously λV M=μB B(gL Lz+g S S z)  ( for B⃗=(0 , 0 , B)   ) 

 eigenstates, the λ|n(1)⟩  first order corrections to the energy eigenstates vanish. 
 

Consider the electron in the Coulomb potential field of the atomic nucleus and in 
presence of a constant magnetic field B⃗=(0 ,0 ,B)  and of a perturbing   
electromagnetic wave field having a four-potential A=A(t , x⃗)=(Aμ)μ=0 ,3=(0 , A⃗)   

 with A⃗=( 1
2ωV )

1/2

(ak exp(i k⃗ x⃗)exp (−iω t)+ak
+ exp(−i k⃗ x⃗)exp(iω t)) ϵ⃗   

(see Chap. Quantization of a electromagnetic field) where 
V is the volume of the box where the system is confined ,
ω=‖⃗k‖ ( we consider ε=1 ,electric permittivity of vacuum , c=1 , speed of light 

 in vacuum, ℏ=1 ,  reduced Planck constant, by suitable choosing of measure units 
 

for length, time and electric charge),
ϵ⃗  is the polarization versor, having k⃗⋅⃗ϵ=0 .   
Then the Schroedinger-Pauli Hamiltonian for the ψA two-component spinor field is 
(see Chap. Two-component Dirac equation) 

H= 1
2m

( p⃗+e A⃗+e A⃗′)2− Z α
r

− 1
2 m

e 2 S⃗⋅(B⃗−∇× A⃗)   where  

A⃗′=(1
2

B x2 ,− 1
2

B x1 ,0)  . 
  

 Ignoring the (small) O ((‖A⃗‖+‖A⃗′‖)2)  terms we obtain 

H=H 0−
1

2m
e B⃗⋅( L⃗+gS S⃗)+F exp(−iω t)+F + exp(iω t)=H B+H ′   where  

H ′=F exp(−iω t)+F + exp (iω t)

F= e
m ( 1

2ωV )
1 /2

ak exp(i k⃗ x⃗)( ϵ⃗⋅⃗p+i( k⃗×ϵ⃗)⋅⃗S)

 

HB is the Hamiltonian of the electron in the Coulomb potential field of the atomic 
nucleus in presence of the constant magnetic field B⃗=(0,0 ,B)  and may include  
spin-orbit interaction and relativistic kinetic energy corrections.
 Given |f ⟩  and |i ⟩     H B  eigenstates with energy levels Ef  respective Ei  , the 
 transition probability rate from state |i ⟩  to state |f ⟩  by absorption of a ℏω  energy 

 

photon in presence of the perturbing electromagnetic wave field is
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d w f i

d t
=2π|⟨ f |F|i⟩|2δ(Ef−Ei−ω)   

 and the transition probability rate from state |i ⟩  to state |f ⟩  by emission of a ℏω  

 

energy photon in presence of the perturbing electromagnetic wave field is
d wf i

d t
=2π|⟨ f |F +|i⟩|2δ(Ei−Ef−ω)   ( we have taken as mentioned ℏ=1  ) .  

(see Chap. Fermi’s golden rule) 
For resonant absorption fo example we will have a transition probability rate 
estimated as
d wf i

d t
=2π e2

m2

1
2ωV

|⟨ f |⃗ϵ⋅⃗p+i( k⃗×ϵ⃗)⋅⃗S|i⟩|2⟨ak
+ ak ⟩ δ(Ef−Ei−ω)  where ⟨ak

+ ak ⟩=nk   

stands for the number of photons in the perturbing electromagnetic field (for 
spontaneous emission we take nk = 1).
Since, as we noticed above, the first order corrections to the eigenfunctions 
introduced by the constant uniform magnetic field vanish we can take in first order 
 approximation |f ⟩  and |i ⟩  as |ψn′l′m′ j′

 ⟩  respective |ψn l m j
 ⟩  in the case of a 

 weak B⃗  field and as |ψn ′l′m′ε′ ⟩  respective |ψ  n l mε ⟩  with ε ,ε′∈{± } in the case of a 

 strong B⃗  field. 

 

For the transition probability rate not to be equal to zero, if a photon is supposed to be 
emitted or absorbed we must have E f≠Ei  and so in the weak field regime we must  

 have (n ,l ,m, j)≠(n′ , l′ ,m′ , j′) .  If (n ,l)≠(n′ ,l′)  then ⟨ f |⃗S|i⟩=0  .  
If we consider the perturbing electromagnetic wave vector k⃗  parallel to B⃗  ( the  
stimulated emission photons have the same wave vectors as the incident beam, and so 
in stimulated emission and also in absorption the wave vector can be determined , 
while in spontaneous emission the perturbing electromagnetic wave field is an 
electromagnetic random fluctuation) ( k⃗×ϵ⃗)⋅⃗S  involves only S1  and S2  operators.  
In this case (wave vector parallel to magnetic field and weak magnetic field)we have:

|f ⟩=Rn′ l′(r)(α′Y l′

m′−1
2(θ ,φ)χ++β′Y l′

m′+ 1
2(θ ,φ)χ − )  

Sq|i ⟩=Rnl(r)(αq Y l

m−
1
2 (θ ,φ)χ−+βq Y l

m+
1
2(θ ,φ)χ+ )  for q=1 ,2  

 

 and so a transition will be allowed by the ( k⃗×ϵ⃗)⋅⃗S  term only if n=n′  , l=l′  and 
Δm j=m′−m=±1 .

 

 In the strong field regime, Ef≠Ei  implies (n′ , l′ , ml ′ ,ms′)≠(n ,l , ml , ms)  and we  

 have ⟨ f |⃗S|i⟩=0  if (n′ , l′ , ml′)≠(n ,l , ml).
 

 Also in the strong field regime, if k⃗  is parallel to B⃗  a transition will be allowed 
 by the (k⃗×ϵ⃗)⋅⃗S  only if (n′ ,l′ ,ml′)=(n ,l ,ml)  and Δms=ms′−ms=±1 .

 

 Sincefor the associated Legendre polynomials we have 
Pl

m(−cosθ)=(−1)l+m Pl
m (cosθ)  changing integration variables x⃗→−x⃗ ,equivalent 

(θ ,φ)→(θ+π ,φ)  we derive ⟨ f |⃗ϵ⋅⃗p|i⟩=0  if Δ(l+m j)=l′+m j′−l−m j≡0(mod 2)
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 in the weak field regime and Δ(l+ml)=l′+ml′−l−ml≡0(mod 2)  in the strong  
field regime.
If k⃗  is parallel to B⃗  since k⃗⋅⃗ϵ=0  it follows that ϵ⃗⋅⃗p  involves only p̂1=−i∂1  and
p̂2=−i∂2  operators and therefore, changing integration variables on ⟨ f |⃗ϵ⋅⃗p|i⟩  as 

(x1 , x2 , x3)→(−x 1,−x2 , x3)  , equivalent (θ ,φ)→(θ ,φ+π)  we can derive 
⟨ f |⃗ϵ⋅⃗p|i⟩=0  if Δm j=m j′−m j≡0(mod 2)  in the weak field regime and 
Δml=ml′−ml≡0(mod 2)  in the strong field regime. 

 

Hence transitions are forbidden if 
1) in the weak field regime
    a) for perturbing wave vector parallel to the magnetic field 
     (Δ(l+m j)≡0  or Δm j≡0   ( mod 2 ))  and (((Δn≠0)  or (Δ l≠0))  or Δm j≠±1)   
    b) for an arbitrary perturbing wave vector direction
     (Δ(l+m j)≡0  ( mod 2 ))  and (Δn≠0  or Δ l≠0);   
2) in the strong field regime
    a) for perturbing wave vector parallel to the magnetic field
     (Δ(l+ml)≡0  or Δml≡0  ( mod 2  )  or Δms≠0)  and (Δn≠0  or Δ l≠0  or 

 or Δml≠0  or Δms=0 )
 

    b) for an arbitrary perturbing wave vector direction
     (Δ(l+ml)≡0  ( mod 2  )  or Δms≠0)  and (Δn≠0  or Δ l≠0  or Δml≠0)  .  

The above selection rules for allowed transitions determine the form of absorption 
spectra of atomic energy levels and the stimulated emission resonant frequencies of a 
medium.
If some transitions are classified as forbidden this does not mean that these transitions 
cannot occur, only that they merely occur at a lower rate. In such a case the transition 
is termed electric dipole forbidden and the transitions between such levels must be 
approximated by higher order transitions appearing from the higher momentum 

operator powers, 
( p⃗+e A⃗)4

8m3  for example in considering relativistic kinetic energy  

correction to the Hamiltonian.

Virtual photons created through vacuum energy fluctuations can interact with the 
electron as it moves around the Hydrogen nucleus leading to an anomalous difference 
in energy between two orbitals in a Hydrogen like atom. The phenomenon is called 
Lamb shift.
The fluctuating electromagnetic field has a four-vector potential given by

A=(0 , A⃗)=(Aμ)μ=0 ,3  , 

A⃗ (t , x⃗)=∫ ( 1

(2π)3 2ωk
)

1/2

∑
a=1

2

(ak exp (−iωk t+i k⃗ x⃗)+ak
+ exp(iωk t−i k⃗ x⃗)) ϵ⃗k

a d3 k⃗   
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 where ωk=‖k⃗‖  ,  ϵ⃗k
a  are polarization vectors,   k⃗⋅⃗ϵk

a=0   ,  ϵ⃗k
a⋅⃗ϵk

b=δab  , a , b=1 ,2

k⃗∈ℝ3   ,  [ak ,ak′
+ ]=δ3( k⃗−k⃗′).

 

The fluctuating electromagnetic field perturbs the electric potential due to atomic 

 nucleus V ( x⃗)=− Zα
r

 causing fluctuations in the position of the electron, which  

explains the energy shift. The difference of potential energy is given by 

ΔV=V ( x⃗+δ x⃗)−V ( x⃗)=δ x⃗⋅∇V ( x⃗)+ 1
2
(δ x⃗⋅∇)2V ( x⃗)+...  

where δ x⃗  is the position fluctuation operator. 

 

 If  |0 ⟩  is the ground state in the photon field states Hilbert space S , since the   
fluctuations are supposed to be isotropic we have 

⟨0|Qδ x⃗|0⟩=⟨0|δ x⃗|0⟩        (24) 
⟨0|((Qδ x⃗)⋅∇)2|0⟩=⟨0|(δ x⃗⋅∇)2|0⟩        (25) 

for any orthogonal matrix operator Q=(Qk l)k , l=1 ,3  acting on S  
 with Q kl Qk n=δl n IS  for l , n=1 ,3

 

Taking in (24) Q any constant orthogonal matrix it follows ⟨0|δ x⃗|0⟩=0        (26)  .

Taking in (25) Q  such that Qk iδ xi=√(δ x⃗)2δk q   we obtain for any q=1 ,3  that 

⟨0|(δ x⃗⋅∇)2|0⟩=⟨0|δk qδlq(δ x⃗)2∇ k ∇l|0⟩=⟨0|(δ x⃗)2∇ q
2|0⟩        (27).

 

From (27) follows now that ⟨0|(δ x⃗⋅∇)2|0⟩=1
3
⟨0|(δ x⃗)2∇ 2|0⟩    and so,  

 using (26) , (27) we have ⟨ΔV ⟩=1
6
⟨0|(δ x⃗)2|0⟩ ⟨ψ|∇ 2(− Zα

r )|ψ⟩  , 

⟨ΔV ⟩=2
3
π⟨0|(δ x⃗)2|0⟩Z α|ψ(0)|2  (since ∇ 2 1

r
=−4πδ3( x⃗)  ) 

   for any electron atomic orbital state ψ .  

  (26’)

The electron displacement field induced by a single mode of fluctuating 
electromagnetic field of  wave vector k⃗  and pulsation ω=‖⃗k‖ satisfies the  
classical equation of motion

m
d2

d t 2 (δ x⃗)=e E⃗=e
∂ A⃗
∂ t

=

=e∫− i

(2π)3 /2 ( k
2 )

1 /2

∑
a=1

2

(ak exp (−i k t+i k⃗ x⃗)−ak
+ exp (ik t−i k⃗ x⃗)) ϵ⃗k

a d3 k⃗  

  

and so

δ x⃗= i
(2π)3 /2

e
m
∫ 1

k 2 ( k
2 )

1/2

∑
a=1

2

(exp (−i k t+i k⃗ x⃗)ak−exp(i k t−i k⃗ x⃗)ak
+ ) ϵ⃗k

a d3 k⃗+C   . 

 Because ⟨0|δ x⃗|0⟩=0   and  ak|0 ⟩=0  it follows C=0  and further due to  
  creation and anihilation operators commutation relation we derive 

 

⟨0|(δ x⃗)2|0⟩= 1

(2π)3

e2

m2∫
2

k 4

k
2

d3 k⃗= e2

2π2

1

m2∫
0

∞ 1
k

d k   .  (28)
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This result diverges when no limits about the integral. The electron is unable to 
respond to the fluctuating field if the fluctuations are smaller than the natural orbital
frequency which in the Bohr model corresponds to a pulsation 

ωn=
v
r
= Zα/n

n2/(Z mα)
= Z2α2m

n3  .   

Uncertainity in position of the electron defines a range domain that is a ball with 

 radius 
ℏ

2m c
 (the half reduced Compton wavelenght - see Chap. Relativistic   

dynamics) since the uncertainity in position must be greater than half of the reduced 
Compton wavelenght. Because we must consider fluctuating photons that actually 
interact with the electron as a well defined particle , the considered fluctuating 
photons must have a wavelenght greater than the reduced Compton wavelenght of the 
electron.

Hence in (28) we must integrate  with 
Z2α2 m

n3 <k<2πm   .  

 Therefore ⟨0|(δ x⃗)2|0⟩= 2
π
α
m2 log (2πn3

Z2α2 )  and considering  (4) , (26’) we have that 

the energy level shift due to electromagnetic vacuum energy fluctuations is 

⟨ΔV ⟩= 4
3π m

Z3α4

n3 log(2πn3

Z2α2 )δl 0 . 

We see that the Lamb shift affects only states ψn l m with l = 0 .

The Darwin term can also be interpreted as a result of the apparent fluctuations of the 
position of the electron produced by the interference between the energy states 
corresponding to the electron respective positron of the virtual electron-positron pairs 
created by quantum fluctuations as solutions to the Dirac relativistic wave equation.
Thus the Darwin term changes the potential energy of the electron as a smearing out 
of the electrostatic interaction between the electron and the nucleus due to these rapid 
quantum oscillations or zitterbewegung of the electron.
To show how zitterbewegung arises we consider the Dirac equation for electrons in 
free space:

H ψ( t , x⃗)=i∂0ψ(t , x⃗)        with H=m γ0+γ0 γk p̂k   ,  p̂k=−i∂k   , 
x⃗=(x j)j=1 ,3  and with summation over k  index in the H  expression. 

 

As we know (see Chap. Quantum statistical ensemble) for any observable that not 
depends explicitly on time , A , we have : 

d ⟨A ⟩t

d t
=i⟨[H , A ]⟩t  and this leads for the averaged position  x k  and 

 the averaged velocity αk=
d xk

d t
 of the electron to approximative equations 

αk (t)=i [H , x̂ k ]=γ0 γk  , 
d αk

d t
=

d2 xk

d t 2 =i [H ,αk ]=2 iγk m+2σk l pl=2 i(pk−γ0γ k H )  

αk=exp(i H t)αk (0)exp (−i H t)   ,  αk (0)=γ0γk   where we used the 
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 commutation relations [ p̂k , x̂l]=−i δk l   , σ
k l= i

2
[ γk ,γl ]  .  

Because pk and H are both time-independent the above equation can be integrated 
twice to find the explicit time-dependence of the position for the electron.
Thus αk (t)=(αk (0)−pk H−1)exp(−2 i H t)+ pk H−1   

xk (t)=xk (0)+ pk H−1 t+1
2

i H−1(αk (0)−pk H−1)(exp(−2 i H t)−1)   . 
 

The resulting expression consists of a initial position, a motion proportional to time 

and a oscillation term with an amplitude approximate by  √3
2

1
m

 where 
1
m
= ℏ

m c
 is  

the reduced Compton wavelenght (  we obviously used H≈m  , p≪m  and derived  

⟨ ξ⃗2⟩=⟨(12 i H−1(γ0 γk− pk H−1))(1
2

i H−1(γ0 γk−pk H−1)+ )⟩≈3
4

1

m2  ).  (29) 

Quantum fluctuations allow the creation of virtual electron-positron pairs with a 

lifetime estimated by the uncertainity principle Δ t≈ ℏ
Δ E

≈ ℏ
m c2=

1
m

 . The distance  

the particles can move during this time is ξ≈c Δ t= ℏ
mc

= 1
m

 the   reduced Compton 

wavelenght. The electrons of the atom interact with those pairs and this yields a 
fluctuating electron position x⃗+ξ⃗  and the effect on the potential V  can be  

 estimated as V ( x⃗+ξ⃗)=V ( x⃗)+ ξ⃗⋅∇ V ( x⃗)+1
2
(ξ⃗⋅∇)2V ( x⃗)+...    

Averaging over the fluctuations we get (as for the fluctuations that cause the Lamb 
shift exposed above) : 

⟨ ξ⃗ ⟩=0   ,  ⟨ξi ξ j ⟩=
1
3
⟨ ξ⃗2⟩ δi j   ,  V ( x⃗+ξ⃗)≈V ( x⃗)+1

6
⟨ ξ⃗2⟩∇ 2V ( x⃗) .

( The (ξi)i=1 ,3  can be wieved as  three independent random variables having the same 
probability distribution and a zero average value.)
Considering (29) this leads to a perturbation of the potential due to electron-positron 
fluctuations given by 

δV≈ 1
8 m2 ∇

2 V  and with V=− Zα
r

 we have ∇2 V=4 πZα δ3( x⃗)   

δV≈π
2

Zα
m2 δ

3( x⃗)  which is precisely the Darwin term . 
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                            Energy-momentum tensor operator 
                            Angular momentum tensor operator 

Consider a quantum field system described by a Lagrangian density
ℒ((Φa,∂Φa)a)     with Φa=Φa(x)  , x=(t , x⃗)=(xμ)μ=0 ,3   , 

(ημν)μ , ν  the Minkowski metric tensor in four-dimensional Minkowski space with 
 signature (+ , - , - , -) (speed of light is considered c=1) . 

 

We have infinitesimal translations and Lorentz rotations so that the coordinates and 
fields transform as 
xμ→x′μ=xμ+ημ νθν+O(θ2)  
Φa(x)→Φ′a(x′)=Φa(x)  

 for translations of infinetisimal parameters (θν)ν∈ℝ4  ; 

xμ→x′μ=xμ+εμ ν xν+O(ε2)  
Φa(x)→Φ′a(x′)=Φa(x)+∑

μ<ν
I aμν

b Φb(x)εμν+O(ε2)  

 for rotation real infinitesimal rotation parmeters εμν=−ενμ  , μ ,ν=0 ,3  
 with rotation independent constants I aμν

b =−I aνμ
b  . 

 

Considering the field arguments of the Lagrangian density function as field operator 
functions we define the canonical momenta operators :

πaμ=πaμ( x)= ∂ℒ
∂(∂μΦa(x))

 and define the energy-momentum density tensorial 

 operator Tμ ν=T μν(x)=πaμ(x)(∂νΦa(x))−ημν ℒ(x)
 

(Tμν)μ  is the Noether current (see Chap. Noether theorem) corresponding to 

 invariance under ν  translations and if the action S=∫ℒ d4 x  is invariant  
 under ν  translations we have ∂μ Tμν=0  and so the four-momentum operator 

Pν(x 0)= ∫
x0=const

T 0ν(x)d3 x⃗  is a conserved quantity: 
d Pν

d x0 =0

 

The total angular momentum density operator is defined as the Noether current 
corresponding to invariance under μν rotations and is given by 
Mμν

λ ( x)=Lμν
λ ( x)+Sμ ν

λ (x)    where 
Lμν

λ (x)=xμT  ν
λ (x)−x νT  μ

λ (x)  orbital angular momentum density operator, 

Sμν
λ (x)=πaλ(x)(Φb(x))I aμν

b   spin angular momentum density operator. 

 

 Under rotations invariance we have ∂λ Mμν
λ (x)=0  and defining  

 angular momentum operators: Lμ ν(x0)= ∫
x0=const

Lμν
0 (x)d3 x⃗  -orbital angular 

 momentum operator and Sμν (x0)= ∫
x 0=const

Sμν
0 (x)d3 x⃗   -spin angular momentum 

 operator,    Mμ ν(x0)=Lμ ν(x0)+Sμ ν(x0)  we have 
d Mμ ν

d x 0 =0  . 
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The total angular momentum operator is a conserved quantity.
The orbital respective spin angular momentum operators are in general not conserved 
quantities under rotations invariance.
We have 
∂λ Lμ ν

λ =Tμ ν−Tνμ         (1) 
∂λ Sμν

λ +∂λ Lμν
λ =0         (2) 

 

 Let tμ ν(x)=∫
0

x 0

(Tμ ν(x)−T νμ(x))d x0=−t νμ(x)           (3)  

0 Sμν (x0)= ∫
x 0=const

(Sμν
0 ( x)+tμν (x))d3 x⃗     

 
0 Lμν( x0)= ∫

x 0=const

(Lμν
0 (x)−tμν(x))d3 x⃗

 

From (1) , (2) , (3) we derive :
d0 Lμν

d x0 (x0)= ∫
x0=const

d3 x⃗ (∂0 Lμν
0 ( x)−∂0 tμν (x))=− ∫

x0=const

∂i Lμν
i (x)d3 x⃗           (4) 

d0 Sμν

d x0 = ∫
x 0=const

d3 x⃗(∂0 Sμ ν
0 (x)+∂0tμν(x))= ∫

x 0=const

d3 x⃗ (−∂i Sμν
i (x)−∂λ Lμν

λ ( x)+

           +Tμν(x)−T νμ(x))=− ∫
x0=const

∂i Sμν
i (x)d3 x⃗               (5) 

 

(greek indices for indexing from 0 to 3 , latin indices for indexing from 1 to 3) 
If we suppose that the field operators tend to zero sufficiently fast at spatial infinity 
we conclude from (4) and (5) (by flux-divergence theorem) that 

d0 Lμν

d x0 =0    ,   
d0 Sμν

d x0 =0    

0 Lμν  and 0 Sμ ν  are conserved quantities under rotation invariance and in 
 particular Sμν  and Lμν  are conserved quantities if tμν=0  or more if T  is a 

 

symmetric tensor . 
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                            Covalent crystal lattices of metals 

In a covalent crystal, the positive kernels of metal atoms are kept in the stable 
 positions of a latticial grid Γ={n1 a⃗1+n2 a⃗2+n3 a⃗3|ni=0 , N i  , i=1,3}   ( with 

a⃗1 , a⃗2 , a⃗3∈ℝ
3   ,  N1 , N2 ,N3∈ℕ  ) by the common field of interaction between the 

 

kernels and the electronic shells of the crystal composing atoms.
Wave functions of the electrons in the crystal satisfy a time independent Schroedinger 

 equation (− ℏ2

2 m0

∇ 2+V (x))ψ(x)=Eψ( x)     (1)  with x=( x1, x2 , x3)∈ℝ
3    

where V = V (x) contains all interactions of the electron with the other electrons and 
the kernel nodes of the lattice.
 Let Rn=n1 a⃗1+n2 a⃗2+n3 a⃗3  for n=(n1, n2, n3)∈ℤ

3  
The equation (1) must be invariant under Rn  translations and so V (x+Rn)=V (x)  
 and the wavve functions ψ  satisfy cyclic boundary conditions 
ψ(x+N i a⃗i)=ψ(x)  for i=1,3  (no summation over i  index )     (2) 

 

 Consider the translation operator T̂ n  defined by T̂nψ(x)=ψ(x+Rn)  . 
 Because ∫|ψ(x+Rn)|

2 d3 x=∫|ψ(x)|d3 x  it follows that the eigenvalues of T̂ n  , 

⟨T̂ n⟩  satisfy |⟨ T̂ n⟩|=1  and therefore we have k⃗∈ℝ3  such that 

⟨T̂ n⟩=exp(i k⃗⋅Rn)  for any n∈ℤ3  . Now the Born-Karman cyclic conditions (2) 

 lead to k⃗∈ℝ3  with k⃗⋅⃗ai=
2πmi

N i

 , mi∈ℤ  for i=1 ,3  and so 

k⃗=∑
i=1

3 mi

N i

b⃗i   where  b⃗i=
2π

a⃗1⋅(a⃗2×a⃗3)
(a⃗ j×a⃗k )ϵi j k   (no summation over j , k  indices) 

 

 Since V (x)=V (x+Rn)  , T̂ n  commutes with Ĥ=− ℏ2

2 m0

∇ 2+V (x)  and so any 

 system of functions (ψk⃗)k⃗  , k⃗=∑
i=1

3 mi

N i

b⃗i  with ψk⃗ (x)=exp (i k⃗⋅x)uk⃗ (x)    where uk⃗   

 satisfies uk⃗ (x+Rn)=uk⃗ (x)  for any x∈ℝ3  , n∈ℤ3  and 

∇2 uk⃗ (x)+2 i k⃗⋅∇ uk⃗ (x)+
2m0

ℏ2 (E (k⃗ )− ℏ2

2m0

k⃗2−V (x))uk⃗ ( x)=0            (3) 

 for the energy level E(k⃗ )  eigenvalue is a system of eigenfunctions for Ĥ  and T̂ n

 for any n∈ℤ3 .

 

 Obviously we have E (k⃗)=
⟨ψk⃗|Ĥ|ψk⃗ ⟩
⟨ψk⃗|ψk⃗ ⟩

 for the energy levels, depending on the 

 wave vector k⃗  which an electron can have in the crystal. 
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For the solutions of (3) we can take a liniar combination of atomic orbitals 
 approximations, taking V (x)=∑

n
V 0(x−Rn)   ,  ψk⃗ (x)=∑

n
exp(i k⃗⋅Rn)u0(x−Rn)  

 where u0  satisfies the single atom Schroedinger equation 

∇2 u0(x)+
2m0

ℏ2 (E0−V 0(x))u0(x)=0       (4) 

 We will have uk⃗ (x)=∑
n

exp (i k⃗⋅(Rn−x))u0(x−Rn)   

 We can take u0(x)∈ℝ  since V 0(x)∈ℝ  and because V 0  is considered to have its 

 support in {α1 a⃗1+α2 a⃗2+α3 a⃗3|α i∈(−
1
2

,
1
2
)  , i=1,3} we can normalize such that 

∫u0(x−Rn)u0(x−Rm)d
3 x=δn m  . 

 

For a structure with N = N1 N2 N3  lattice nodes we have:
∫ψk⃗

∗ψk⃗ d3 x=∑
m
∑

n
exp (i k⃗⋅(Rn−Rm))δnm=N  and so the normalized form of ψk⃗  is  

ψk⃗=N−1 /2∑
n

exp (i k⃗⋅Rn)u0(x−Rn)  .  

Considering (4) we obtain :
Ĥ ψk⃗ (x)=N−1 /2∑

n
exp(i k⃗⋅Rn) Ĥ u0(x−Rn)=

=E0ψk⃗ (x)+N−1 /2∑
n

exp(i k⃗⋅Rn)(V (x)−V 0(x−Rn))u0(x−Rn)      and therefore 

E( k⃗)=E0+
+N−1∑

m
∑

n
(∫u0(x−Rm)(V (x)−V 0(x−Rn))u0(x−Rn)d

3 x)exp(i k⃗⋅(Rn−Rm))   (5)

 

We consider a hight binding approximation in which we take in the sum from (5) 
 only the terms with m−n=(±δi l)l=1 ,3  for i∈{1,2 ,3}  or with m=n  . 

 Since obviously we must have E (k⃗)=E( k⃗)∗∈ℝ , we will have in the hight  

 binding approximation that E (k⃗ )=E0−α−2γ(cos (k⃗⋅⃗a1)+cos (k⃗⋅⃗a2)+cos( k⃗⋅⃗a3))  
 where E0  is a single atom electron energy level and 

α=−∫u0( x)(V ( x)−V 0(x))u0(x)d
3 x  , 

γ  =−∑
i=1

3

∫ 1
2
(u0( x−a⃗i)+u0(x+a⃗i))(V ( x)−V 0(x))u0(x)d

3 x  . 

 

 For a rectangular lattice with a⃗i⋅a⃗ j=δi j ai a j  for i , j=1,3  the energy levels 
relation from above becomes 
E( k⃗)=E0−α−2γ(cos(k 1 a1)+cos (k2 a2)+cos(k 3 a3))       (6) 

 where k⃗=(k i)i  , a⃗i=ai(δi l)l=1 ,3  , ki ai=2π~k i  , 
~
k i=

mi

N i

 , mi∈ℤ

 

 From (6) follows that if ki=
niπ
ai

 , n1≡n2≡n3   ( mod 2 ) i=1,3  in the energy 

 spectrum (E( k⃗))k⃗ ,α , γ ,E0
 appear jumps over forbidden zones. 
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 For example, for given E0 ,α , γ  there are two forbidden zones of E( k⃗)  with   
upper respective lower end at a distance 12 γ from each other , 
12γ  being the lenght of an allowed zone corresponding to the first Brillouin zone 
 of k⃗  defined by ki∈[−

π
ai

, π
ai

]  for i=1,3  and the given E0 ,α , γ .
 

The existence of forbidden zones can be confirmed by electromagnetic X-radiation 
diffraction on crystals.
In a simple rectangular crystal lattice, the coherent diffusion processes on the orbitals 
of O and O’ nodal atoms experienced by a beam of X-rays coming in the direction of 
versor e1 cause a diffraction pattern in the direction of versor e2  due the interference 
of diffracted X-rays coming from O respective O’ in direction e2 .

                               e1

                                 P
                    e1               O’  e2

                    O
                            P’     e2

                                  
According to figure the optical path difference is d=‖O P′‖−‖O′P‖=O⃗ O′⋅(e2−e1) 
 Thus for O⃗O′=n1 a⃗1+n2 a⃗2+n3 a⃗3  the phase difference between the two diffracted 

 rays is φ=2π
λ (n1 a⃗1⋅e+n2 a⃗2⋅e+n2 a⃗3⋅e)  where e=e2−e1   

 

 Taking 2θ  as the angle between e1  and e2  we will have e=2sinθ∑
i=1

3

αi vers a⃗i  

 with ∑
i=1

3

αi
2=1  and interference maxima can be obtained for 

2aiαi sinθ=hiλ  with hi∈ℤ  for i=1,3

 

 Hence interference maxima will appear at angles θ  satisfying 

2sinθ=λ n√ h1
2

a1
2+

h2
2

a2
2+

h3
2

a3
2  where n ,h1 ,h2 ,h3∈ℕ      (7) 

 

However , interference patterns determined by (7) relations will fail to appear if 

Δ E=hc
λ   ( h  -Planck constant ) is equal to the difference between two allowed  

 energy levels of the (E( k⃗))k⃗ , E0 ,α ,γ  spectrum, since in that case the wave can be 

 absorbed in a E( k⃗)  level to E( k⃗′)  level transition process. 
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 Kroning-Penney model 

To consider an one-dimensional model for a crystal lattice we assume that the metal 
atomic kernels create a periodic potential field of forces such that the time 
independent Schroedinger equations for the electrons in the crystal , are those of a 
succession of potential gaps and barriers :
d2ψ
d x2 +

2 m0

ℏ2 Eψ=0     for x∈[n(a+b) ,(n+1)a+nb ]  

d2ψ
d x2 +

2 m0

ℏ2 (E−V 0)ψ=0      for x∈[(n+1)a+n b ,(n+1)(a+b)]   

  with V 0>E  where E  is the energy level and n∈ℤ  ; 
V 0 , a, b  are positive constants, a+b=d  is the constant of the one-dimensional 

 

lattice. 
Solutions of the time independent Schroedinger equations are 
ψ=ψn(x)=An sin (k1 xn)+Bn cos(k 1 x n)     for xn∈[0 , a]  
ψ=ψn(x)=An sinh (k 2(xn−d))+Bn cosh(k 2(xn−d))    for xn∈[a ,a+b ]  

  where x n=x−n d  , k 1
2=

2m0 E

ℏ2  , k 2
2=

2m0

ℏ2 (V 0−E)   . 
 

 the function ψ  must be continuous differentiable at 
xn=a  and x n=a+b  for any n∈ℤ

 For xn=d   ( x=(n+1)d  ) we will have Bn=Bn+1   ,  An=
k 1

k 2

An+1  ; 

 for xn=a   ( x n−d=−b  ) we will have 
An sin (k1 a)+Bncos (k 1a)=−Ansinh (k2 b)+Bncosh(k2 b)   , 

An cos(k1 a)−Bn sin (k 1a)=
k2

k1

(An cosh(k 2 b)−Bn sinh (k 2b))

 

We will assume that the parameter 

P=
k 2

2 ab

2
 ( a measure for the area of a potential 

 barrier) is constant for V 0→∞   ,  b→0  and therefore we can approximate 
sinh (k 2b)≈k2 b   ,  cosh(k 2 b)≈1  , a≈d  and we have: 
An sin (k1 d)+Bn cos (k1 d)+Bn cos (k1 d)=Bn+1   

An cos(k1 d)−Bn sin(k1 d)=An+1−
2 P
k 1 d

Bn+1  . 

 

(Bn+1

An+1
)=M (Bn

An
)  where M=( cos(k1 d) sin(k1 d)

2 P
k1 d

cos(k1 d)−sin(k1 d) 2 P
k1 d

sin (k1 d)+cos(k1 d))   
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 We have det M=1  , M∈M 2×2(ℝ)  and therefore we find X∈M 2×2(ℂ)  , 

Λ=(λ 1 0
0 λ2

)  or (Λ=(λ 1
0 λ)  with λ=±1  , 

P
k 1 d

sin(k1 d)+cos (k 1d)=±1)  

 such that M=X−1Λ X   ,  (Bn+1

An+1
)=X−1Λn X (B0

A0
)

 

 Since ψ  must be bounded it follows that X (Bn+1

An+1
)=Λn X (B0

A0
)  must be 

 bounded for n∈ℤ  and so |λ1|=|λ2|=1  which can occur only if 
P

k1 d
sin (k1 d)+cos(k 1 d)=cos (k d)∈[−1 ,1]   ,  

λ1 ,2=cos (k d)±i sin(k d)  , E=E(k)= ℏ2

2m0

k 1
2  . 

 (7)

 For P=0  we have k=k1  and the electrons behave like free electrons  
 (no potntial barriers) . For P=∞  we must have sin (k1 d)=0  and the energy is 

 quantized by k 1=
nπ
d

 , n∈ℕ  . 

 

 For 0<P<∞  we observe that are allowed only energy levels that satisfy 
P

k1 d
sin (k1 d)+cos(k 1 d)∈[−1 ,1].  The forbidden energy zones appear for 

k=±nπ
d

 , n∈ℕ  at boundary. 

 

 From (7) we derive that we have α ,β ,γ ,δ  constants depending on P ,k1 , d  
 such that ψ=ψn(x)=exp (ik n d)(α sin (k1 xn)+βcos(k1 xn))+
+exp(−i k nd)(γ sin (k 1 x n)+δcos (k 1 xn))   for  x=xn+nd  , x n∈[0 , a]  , n∈ℕ  . 

 

For a chain of N potential barriers we require Born-Karman cyclic condition

ψ(x+L)=ψ(x)  where L=N d  and therefore we must have k=2πm
N d

 , m∈ℤ  . 

 The maximum lenght of an interval for k  with E (k)  in the same allowed energy 

 zone is 
2π
d

  ( k∈[− π
d

, π
d
]  -the first Brillouin zone ) 

  

 Because k=2πm
N d

 , m∈ℤ  in a N  potential barriers chain we have N  energy  

 modes in each allowed energy zone. 
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                         Phonons in three-dimensional crystals 

Consider a cubic three-dimensional crystal lattice Γ=([0 ,2 M−1]a∩ℤ a)3  for 
a>0 , M∈ℕ  . The atoms in the nodes of the lattice have mass m  .  
We suppose that the atoms can oscillate around the equilibrium positions at the nodes 
 having displacements rn=(rnα)α=1 ,3  , rn=rn(t)  with respect to node n∈Γ  ,  

( t -time coordinate) . The kinetic energy is K=m
2
∑

n
ṙn

2   and in a harmonic   

approximation, the potential energy of the crystal is 

U=1
2
∑

n, m∈Γ
V αβ(n−m)rnαrmβ   with summation over α ,β  indices, V αβ  depending 

 only on the differences n−m ,  considering the invariance of the crystal system 
 under a(δαβ)β=1 ,3  translations for α=1 ,3 .  We have also V αβ(n−m)=V βα(m−n) .

 

The resultant force of all other atoms acting on an atom in the crystal at node m is 

(Fmβ)β=−( ∂U
∂rmβ)β=(−∑n V αβ(n−m)rnα)β  .  

If the crystal moves as a whole we have rn=v⃗ dt  for any n∈Γ  and Fmβ=0  for  

 any m∈Γ  , β=1 ,3  and since v⃗∈ℝ3  can take arbitrary values we derive 
∑

n
V αβ(n−m)=0   for any  α ,β , m           (1) . 

 

Introducing cyclic boundary conditions for the extended crystal lattice we must have
rn+a (i)L=rn  where L=2 M  , a( i)=a(δi j)j=1 ,3  for any n . 

 We can take rnα=
1

√m N
∑⃗

k

eα (k⃗ )A k⃗ exp(i k⃗⋅n)  where N=(2 M )3  and the  

 over k⃗  is taken for k⃗=(k i)i=1 ,3∈R  , R=(2π
a L

[−M , M )∩2π
a L
ℤ)

3

 with A k⃗=A k⃗ (t)∈ℂ  , eα (k⃗ )=eα (−k⃗ )∈ℝ  , A k⃗=A−k⃗
∗   ,  α=1,3  . 

 

We can easy prove that : 
1
N
∑

n
exp(i(k⃗−k⃗ ′)⋅n)=δ k⃗ k⃗′    ,   

1
N
∑⃗

k

exp(i(n−n′)⋅⃗k)=δnn′  , 

eα( k⃗) A k⃗=√ m
N
∑

n
rnαexp (−i k⃗⋅n)

 

 Let A k⃗=A k⃗ 1+i A k⃗ 2  and we have therefore generalized coordinates given by 

q=((A k⃗ 1 , A k⃗ 2)eα( k⃗))k⃗∈R ,α=1 ,3   and  K=1
2 ∑⃗k

eα( k⃗)eα (k) Ȧ k⃗ Ȧ−k⃗          (2) ,  

U=1
2 ∑⃗k

Dαβ( k⃗ )eα ( k⃗)eβ( k⃗)A k⃗ A− k⃗             (3) 

 where Dαβ(k⃗ )=Dβα ( k⃗)
∗=Dαβ(−k⃗)∗=Dαβ(−k⃗)= 1

m∑n
V αβ(n)exp(i k⃗⋅n)
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 The Lagrangian is L=K−U  and having A k⃗ A− k⃗=A k⃗ 1
2 +A k⃗ 2

2  

∂
∂( Ȧ k⃗ eα( k⃗))

=1
2

∂
∂( Ȧ k⃗ 1 eα( k⃗))

−1
2

i ∂
∂( Ȧk⃗ 2 eα (k⃗ ))

   

∂
∂(A k⃗ eα( k⃗))

=1
2

∂
∂(A k⃗ 1 eα( k⃗))

−1
2

i ∂
∂(Ak⃗ 2 eα (k⃗ ))

 , 

 the Euler-Lagrange equations 
d
d t (∂L

∂ q̇ )−∂L
∂q
=0  lead to 

eα( k⃗ ) Ä k⃗ i+Dαβ(k⃗ )eβ(k⃗ )A k⃗ i=0  for i=1 ,2                 (4) 

 

 We assume that ℜD (k⃗)  commutes with ℑD (k⃗ )  for any k⃗  which happens if 
V (n)  commutes with V (n′)  for any n , n′ .

 

We have harmonical oscillation in direction  (eα( k⃗))α  terms and we take  
Ȧk⃗=−iω( k⃗)A k⃗     ,    Äk⃗=−ω

2( k⃗) Ak⃗  and so from (4) we have 

ω2( k⃗)eα( k⃗)−Dαβ
(c) (k⃗ )eβ(k⃗ )=0  for c=1 ,2  , (D(1), D(2))=(ℜD ,ℑD)             (5) 

 Since Dαβ( k⃗ )=Dβα (k⃗ )
∗=Dαβ(−k⃗ )∗  and [D(1) ,i D(2)]=0  we conclude that D  is 

hermitian and we can can take a real orthonormate system (es( k⃗))s=1 ,3  , and three 

real eigenvalues of D (k⃗ ):ωs
2( k⃗)  , s=1,3 .

 

We assume that the potential energy (3) is positive definite and so we have three 
branches of oscillations in orthogonal directions es , s = 1,2,3 
D( k⃗)e s( k⃗)=ωs

2(k⃗ )es(k⃗ )  for k⃗∈ℝ3  , ωs( k⃗)>0  . 

 Because of (1) we will have  Dαβ(k⃗)→0  for k⃗→0⃗  and so ωs(k⃗ )→0  for k→0  , 

 (with ‖k⃗‖=k   ) .

 

The summation of the three branches lead to a total displacement 

rnα=
1

√m N
∑
n , s

eα
s ( k⃗) A s k⃗ (t)exp(i k⃗⋅n)   with  Ä s k⃗=−ωs

2( k⃗) A s k⃗   ,  

K= 1
2∑⃗k , s

Ȧ s k⃗ Ȧ s− k⃗    ,   U=1
2 ∑⃗k ,s

ωs
2(k⃗ )A s k⃗ A s− k⃗

 and generalized coordinates (A s k⃗ 1, As k⃗ 2 )⃗k∈R, s=1.3   ,  As k⃗=A s k⃗ 1+i A s k⃗ 2  . 

 (6) 

 We have Ps k⃗=
∂(K−U )
∂ Ȧ s k⃗

= Ȧs− k⃗   

∑
s

eα
s (k⃗) A s k⃗=√ m

N
∑

n
rnα exp(−i k⃗ n)          (7) 

 

 From es⋅e s′=δs s′  it follows ∑
s

eα
s ( k⃗)eα′

s (k⃗ )=δαα′  and so from (7) we obtain 

As k⃗=√ m
N∑n eα

s (k⃗ )rnα exp(−i k⃗⋅n)      ( with summation over α=1,3  )         (7') .
 

 Taking pnα=m ṙnα  we derive  
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Ps k⃗=
1

√m N
∑

n
eα

s ( k⃗)pnαexp (i k⃗⋅n)  .  

 Considering the corresponding quantum operators r̂nα , p̂nα , Â s k⃗ , P̂s k⃗  we will have 

 the commutation relations [r̂nα , p̂n′β ]=i ℏ δαβδnn′  and so 

[ Âs k⃗ , P̂s′ k⃗′]=∑
n, n′

1
N

eα
s ( k⃗)eβ

s′(k⃗ ′)i ℏ δαβδnn′exp(i( k⃗′⋅n′−k⃗ n))=i ℏδs s′δ k⃗ k⃗′     (8) .

 

The Hamiltonian is H = K + U and so the Hamiltonian operator is 

Ĥ=1
2
∑⃗
k , s

(P̂s k⃗ P̂s−k⃗+ωs
2(k⃗ ) Â s k⃗ Âs− k⃗)           (9)  

 We define creation and anihilation operators bs k⃗

+  and respective bs k⃗  by relations 

Âs k⃗=√ ℏ
2ωs(k⃗)

(bs k⃗+bs−k⃗
+ )     ,    P̂s k⃗=i√ ℏωs(k⃗ )

2
(bs k⃗

+ −bs−k⃗ )            (10) 
 

Relation (8) is satisfied if 
[bs k⃗ , bs′ k⃗′

+ ]=i ℏ δs s′δ k⃗ k⃗ ′     ,    [bs k⃗ , bs′ k⃗′]=0     for k⃗ , k⃗ ′∈R  ; s , s′∈{1 ,2 ,3}     (11) .  

With the commutation relations (11) , from (9) and (10) follows now 

Ĥ=∑⃗
k ,s

ℏωs(k⃗ )(bs k⃗
+ bs k⃗+

1
2
)=∑⃗

k ,s

ℏωs( k⃗)( b̂s k⃗
+ b̂s k⃗+

1
2
)   

 and from (6) follows r̂n=√ ℏ
2m N ∑⃗k ,s

e s( k⃗ )

√ωs( k⃗)
(b

s k⃗
exp (i k⃗⋅n)+b

s k⃗

+ exp(−i k⃗⋅n))  

bs k⃗=bs k⃗ (t)=b̂s k⃗ exp(−iωs( k⃗) t)  with b̂s k⃗   -anihilation operator , b̂s k⃗
+  -creation 

 operator of a phonon of wave vector k⃗  and polarization s  acting on a Hilbert 

 

space of oscillations of the crystall lattice which has a ground state (corresponding to
no oscillation ) denoted |0 ⟩  and single phonon states b̂s k⃗

+ |0 ⟩   having also 

b̂s k⃗|0 ⟩=0  , [ b̂s k⃗ ,b̂s′ k⃗ ′
+ ]=i ℏ δs s′δ k⃗ k⃗′  , [ b̂s k⃗ , b̂s′ k⃗′]=0  for any s∈{1,2 ,3}  , k⃗∈ℝ3  . 

 

In the same way as for the electromagnetic field quantization we can consider the 
crystal lattice oscillations as a system of a number of phonons having different wave 
vectors and polarizations defined by a state 

∏⃗
k , s

b̂s k⃗
+ |0 ⟩  . Thus , with the commutation relations (11) we derive a number of  

 particles operator N̂ s k⃗=b̂s k⃗
+ b̂s k⃗  in the same way as for the quantized  

electromagnetic field , as the particles number of phonons oscillating in direction
e s(k⃗ )  and propagating with wave vector k⃗  and pulsation ωs( k⃗)  .  
Since rn transforms like a vector under a spatial coordinates rotation the phonons can 
be considerated spin 1 particles having three polarization directions s = 1,2,3 with a 
field operator function defined (in a continuum limit for the n domain of latticial
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nodes) by the displacements field u⃗( t ,n)=rn( t)   as φ⃗(t , x)=√m N
V

rn(t)=

= √ℏV

(2π)3
∫∑

s

1

√2ωs( k⃗)
es( k⃗) (b̂s k⃗ exp (−iωs(k⃗ )t+i k⃗⋅x)+

+ b̂s k⃗
+ exp(iωs( k⃗) t−i k⃗⋅x))d3 k⃗

 

where n is identified in the continuum limit with the spatial x variable and V  is the 
volume of the crystal, N is the number of nodes. 

Consider the example when the covalent metallic crystal medium is assimilable to a 
liniar elastic homogeneous material and so we have the liniar elastic potential energy 

 given by U=1
2
∑

n
a3 C i jk l ui , j

(n)uk , l
(n)         where ui , j

(n)=
rn+a ( j)  i−rn i

a
   and 

Ci j k l=C i jl k=C k li j  with i , j , k ,l=1 ,3  (and summation over i , j , k , l  
 in the expression for  U  ) .

 

It follows that :

U=1
2

a (∑n ∑j≠ l
C i j kl rn+a( j) i rn+a ( l) k+∑

n
(C i j k lδ j l+∑

p ,q
C i j k lδ j pδl q)rn i rn k−

−2∑
n
∑

q
C i j kl δ j q rn i rn+a( l) k)

 

V αβ(0)=a(Cαγβεδγε+∑
p ,q

Cαγβεδγ pδε q)   

V αβ(−a(ε))=−a∑
q

Cαγβεδγq   

V αβ(a(γ))=−a∑
q

Cαγβεδεq   

V αβ(a(γ)−a(ε))=a Cαγβε   if γ≠ε

 

If the material is liniar elastic isotrope we have 
Cαγβε=λ δαγδβε+μ(δαβδγ ε+δαεδγβ)    with λ ,μ∈ℝ  the Lame coefficients.  
Hence if the crystal medium is assimilable to a liniar elastic isotrope homogeneous 
material we obtain :

Dαβ(k⃗ )=
1
m
∑

n
V αβ(n)exp (i k⃗⋅n)= a

m (λ+μ+6μδαβ−λ (exp (−i kβa)+exp (i kαa)−

−exp(i(kα−kβ)a))−μ(exp (−i kα a)+exp(i kβa)−exp(i(kβ−kα)a))+
−∑

ε
μ δαβ(exp(−i k εa)+exp(i kεa)))

 

 We observe that for k⃗=0⃗  we have Dαβ(k⃗ )=0  .  
 Further for k2 a2≪1  we can approximate 

Dαβ(k⃗)=
a
m
((λ+μ)kαkβa

2+μ δαβk
2 a2+O(k3 a3))
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 Having m
a3=ρ  -the density of the material we conclude that for small  

 wave numbers ( k2 a2≪1   ) we obtain Dαβ(k⃗ )=
λ+μ
ρ kα kβ+

μ
ρ δαβ k⃗2

Dαβ(k⃗)kβ=
λ+2μ
ρ k 2 kα       and if kβuβ=0  we have  Dαβ(k⃗ )uβ=

μ
ρ k2 uα  . 

 

Therefore in the liniar elastic isotrope case , for small wave numbers k we have three 

oscillation modes: a longitudinal mode with ω∥(k⃗ )=√ λ+2μ
ρ ‖⃗k‖ and two  

 transversal modes ω⊥ (k⃗ )=√μρ‖⃗k‖ .  The corresponding phase velocities are 

ω∥
k
=√λ+2μ

ρ  and respective ω⊥

k
=√μρ  the longitudinal respective transversal 

 elastic waves propagation velocities. 
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                              Photonic gas. Black-body radiation
                            Phononic gas. Specific heat of crystals 

As we noticed in Chap. Classical statistical ensemble and Chap. Quantum statistical 
ensemble, in the case of a system consisting of identical particles having an energy 
levels spectrum (εs)s we have the occupation numbers at thermodynamical 
equilibrium given by 

N s=g sexp (μ−εs

k b T )     for classical statistical ensemble      (1)  

N s=
gs

exp ((εs−μ)/(k b T ))−1
     for bosonic quantum statistical ensemble      (2) 

N s=
gs

exp ((εs−μ)/(k b T ))+1
 for fermionic quantum statistical ensemble        (3) 

 where μ  -chemical potential of particles , T  equilibrium temperature ,
k b  -Boltzmann costant .

 

However , we can approximate in some cases the energy levels spectrum with a 
continuous spectrum and since , as we mentioned in Chap. Canonical quantization of 
a scalar field, the minimum accessible volume in phase space for a particle is (2πh)f  
(with f -number of freedom degrees for a particle), in the case of a continuous 
spectrum approximation we must replace the gs degeneracy coefficients with 

 infinitesimal values 
g
a
(∏

i=1

f

d qi d pi)  where a=(2πℏ)f  and g  can be for example  

the spin multiplicity (or polarization multiplicity for photons or phonons) of the 
considered particles and (qi , pi)i = 1 , f are the phase space coordinates for a single 
particle subsystem. 

The radiation emitted by a black-body (a cavity which reflects no incident radiation 
of its external walls) which is equal to the thermal radiation emitted from the body to 
stay in thermal equilibrium at absolute temperature T with the absorbed incident 
radiation can be considered as a photonic gas, a system of photons with a continuous 
spectrum of energy levels and chemical potential μ = 0 (since the number of photons 
is indefinite) and so we have a infinitesimal occupation number of the (ε , ε + d ε) 
energy levels interval given by 

d N=2
a

1
exp (ε /(k b T ))−1

4πV p2 d p  because g=2  for the two polarization states a 

photon can have and V  is the volume of the cavity, p=ε
c

 , ∏
i=1

3

d qi d pi=4πV p2d p

f=3  , a=(2πℏ)3  , c  speed of light . 
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Therefore the total thermal energy radiation amount is 
U=V∫ρ(ε , T )d ε

   with ρ(ε ,T )= 8π
c3(2πℏ)3

ε3

exp(ε/(kb T ))−1
  -spectral density. 

 

If we use classical considerations we will have (according to energy equipartition 
from Chap. Classical statistical ensemble) an average energy for a wave state 

k bT=
∫
0

∞

εexp (−ε/(k b T ))d ε

∫
0

∞

exp (−ε/(k b T ))d ε
      and a infinitesimal number of states 

d N=g
V

(2π)3
d3 k⃗=8π V

c3 ν
2d ν    with ν  -photon frequencies and so it follows 

 a spectral density like the Rayleigh-Jeans law ρ̄(ν , T )=8π
c3 ν

2 k bT  giving 

U=V∫
0

∞

ρ̄ (ν ,T )d ν  and we will have an ultraviolet catastrophe : spectral density 

 of energy goes to infinity as the frequency increases. 

 

However experimental data lead to the adopting of quantization of photon energies 
and the quantum approach for the photonic gas :

ε=ℏω   ,  d N=2
a

1
exp (ε /(k b T ))−1

1
c3 ε

2 d ε  , ρ(ε , T )= 8π
c3(2πℏ)3

ε3

exp(ε /(k bT ))−1
=

= 1

π2c3
ω3

exp (ℏω/(kb T ))−1
 spectral density of energy (Planck law) . 

 

 We have ∫
0

∞ ε3

exp(ε/(kb T ))−1
d ε=(k b T )4∫

0

∞ x3

exp(x)−1
d x

∫
0

∞ x3 d x
exp (x)−1

=∫
0

∞

∑
k=0

∞
x 3exp (−x)exp (−k x)d x=(∑

k=1

∞ 1
k 4 )∫

0

∞

u3 exp (−u)d u=∑
k=1

∞ 6
k 4 .

 

 The system of functions ( 1

√2π 
,( 1

√π 
cos(k x) , 1

√π 
sin (k x))

k∈ℕ∗)  is orthonormal 

 complete in L2((0,2π))  and so in L2((0 ,2π))  we have 

 

x= 1
2π∫0

2π

u d u+ 1
π∑

k=1

∞ (cos (k x) 1
k2 ∫

0

2k π

u cosud u+sin (k x) 1
k2 ∫

0

2k π

u sinu d u)=
=π−∑

k=1

∞ 2
k

sin (k x)
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x2= 1
2π∫0

2π

u2 d u+ 1
π∑

k=1 (cos(k x) 1
k 3 ∫

0

2k π

u2 cosud u+sin (k x) 1
k3 ∫

0

2k π

u2sin u d u)=
= 4

3
π2+∑

k=1

∞ ( 4
k 2 cos(k x)−4 π

k
sin (k x))=4

3
π2+2(x−π)π+∑

k=1

∞ 4
k2 cos(k x)

 

x2−2π x+ 2
3
π2=4√π  ∑

k=1

∞ 1
k 2

1

√π 
cos(k x)     and so 

∑
k=1

∞ 1

k4=
1

16 π∫0

2π

(x2−2π x+2
3
π2)

2

d x=π4

90

 

Thus the radiated total energy density is 

u(T )=U
V
= 8π5

15 c3(2πℏ)3
kb

4 T 4=σT4  , σ=
8π5 kb

4

15c3(2π ℏ)3
 (the Stefan-Boltzmann law) 

 Let Lθ ,φ  the thermal equilibrium amount of radiation energy radiated in direction 
(θ ,φ)  in an unit time interval through a unit area surface element normal to the 
 direction from a surface element d S  situated at the origin of the spherical 
 coordinates reference system (r ,θ ,φ)  , θ∈(0 ,π)  , φ∈(0 ,2π)
 on the boundary of the radiating body ( θ=0  direction being the  
 outwards normal direction to d S  ) and in a unit solid angle for (θ ,φ)  directions. 

 

 Then the radiated infinitesimal power from surface element d S  in direction 
(θ ,φ)  in the solid angle dΩ  is PdΩ= ∫

(d Ω)
Lθ ,φd S cosθdΩ   with  dΩ=sin θd θdφ . 

 

Considering the radiating body as a Lambert source we suppose that Lθ  , φ = L not 
depends on θ , φ .
The total radiated power from surface element d S is therefore given by :

P=d S(∫
0

2π

∫
0

π/2

Lcosθ sin θdθdφ)=π L d S  .  

The radiated photons have speed c and the radiated energy density in an energy level 
 interval (ε ,ε+d ε)  is ρ(ε ,T )d ε  and so from the interpretation of Lθ ,φ  follows 

Ld S= 1
4π∫0

∞

cρ(ε , T )d εd S  (since the radiated photons emerge from d S  in any 

 direction of a solid angle 4 π  with velocity c  ) .

 

Thus P=π L d S= c
4 (∫0

∞

ρ(ε , T )d ε)d S  and the total radiated power per unit area of 

 body boundary surface is 
P

d S
= π2

60c2ℏ3 k b
4 T 4

 

We observe also that for 

ε=ℏω≪k b T  we obtain ρ(ε , T )d ε= 8π
c3(2π ℏ)3

ℏ3ω3 kb T
ℏω ℏ dω= 1

π2 c3ω
2 k b T dω   

(the Rayleigh-Jeans law) . 
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In a crystal lattice with N nodes heat is generated by independent propagating 
oscillations of the atoms in the nodes which can be expressed in the form of a gas of 
phonons behaving like a system of bosons which has a Hamiltonian operator

Ĥ=∑⃗
k ,s

ℏωs( k⃗)(b̂k⃗ , s
+ b̂k⃗ , s+

1
2
)     with b̂k⃗ , s

+ ,b̂k⃗ , s   -creation respective anihilation  

operators acting on the Hilbert space of oscillation states of the crystal lattice nodes.
N̂ k⃗ , s=b̂k⃗ , s

+ b̂k⃗ , s   is the particles number operator of phononic oscillations in 

 direction es( k⃗)  propagating with wave vector k⃗  and pulsation ωs(k⃗ ).
 At thermal equilibrium with temperature T  the particles number is 

N k⃗ , s=
gs

exp(ℏωs(k⃗)/kb T )−1
 and we have two oscillation modes in normal to 

 propagation direction k⃗  which have a phase velocity cT (transversal elastic waves)

 and one oscillation mode in parallel to propagation direction k⃗  which have a  
phase velocity cP  (longitudinal elastic waves), considering only long wavelenght 

  

 acoustic phonons: s=1 ,3  , ω1(k⃗)=ω2(k⃗ )=cT‖⃗k‖  ,  ω3( k⃗)=cP‖k⃗‖ , 

k⃗⋅e j ( k⃗)=0  for j=1,2      , k⃗∥e3( k⃗)    . 

 For a cubic lattice of edgelenght L  we have k⃗∈(2π
L
ℤ)

3

.   

 (see Chap. Phonons in three-dimensional crystals) 

 

Taking the continuous spectrum approximation we have the total energy of the 
phonons in the crystal given by 

U=∑⃗
k ,s

gs( ℏωs( k⃗)

exp(ℏωs( k⃗)/k b T )−1
+
ℏωs(k⃗ )

2 )=
= 3V
(2πℏ)3

∫
0

ωmax

4π( ℏω
exp(ℏω/k bT )−1

+ℏω
2 )p2 d p  where p=ℏω

u
 with 3

u3=
2
cT

3 +
1
cP

3  

 and ωmax  can be determined as the maximal pulsation from the condition that the 

 total number of oscillators is 3 N , that is 3 N= 3 V
(2πℏ) ∫0

ωmax

4 π ℏ
3

u3 ω
2dω    leading to 

ωmax=u(6 N π2

V )
1/3

 . We define the Debye temperature θ  by k bθ=ℏωmax  and it 

 follows U=
3 kb

4 T 4 V

ℏ3 u32π2 ∫
0

θ/T x3 d x
exp( x)−1

+ 9
8

N kbθ    

 

 For θ
T
≪1  we can approximate 

x3

exp(x)−1
≈x2  and so 

U≈ 9
8

N k bθ+3 N k b T≈3 N k bT .
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 For θ
T
≫1  we have ∫

0

θ/T x3 d x
exp (x)−1

≈∫
0

∞ x3 d x
exp(x)−1

=π4

15
   and so 

U≈
π2 kb

4T 4 V

10 ℏ3 u3 +9
8

N k bθ
 

 The specific heat is CV=(∂U
∂T )

V

 and therefore 

CV=3 N k b   for θ
T
≪1   and CV=

2π2 k b
4 T3 V

5ℏ3 u3     for θ
T
≫1  and in the general case 

 we have U=3 N kb T D( θ
T
)+9

8
N k bθ   

CV=3 N k b(D( θ
T
)− θ

T
D′( θ

T
))  where 

D( θ
T
)= 3

(θ/T )3
∫
0

θ/T
x3 d x

exp( x)−1
   .  
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                                   Quantum electrodynamics scattering

  Electron-proton scattering

         P                               PN    

                          q   

                                       pN

                p

                       fig.1

Let p , pN  respective the incoming electron and nucleon four-momenta and 
P , PN the corresponding outgoing four-momenta.
Applying the Feynman rules (see Chap. Feynman amplitudes amd lattice gauge 
theory) for the fig. 1 diagram we obtain the Feynman amplitude

AF (P ,PN)=(2π)
4(−i e)(i e) i

(P−p)2+i ε
(−ημν)(u(P) γ

μu(p))(u(PN)γ
νu(pN))  

δ4(P+PN− p−pN)=(2π)
4 M (P , PN)δ

4(P+PN−p−pN)  . 
 

To obtain the cross section we have to square | M (P,PN) |.
(We have suppressed the particles spin indexes and consider averaging over the 
incoming particles spin polarizations and summation over the outgoing particles spin 
polarizations (the incoming particles are unpolarized and the outgoing spin 
polarizations are not measured)) .
Thus averaging and summing | M (P,PN) |2  and considering that

∑
s

uα (p, s)uβ(p , s)=( p+m
2 m )

αβ
 we have:  

|M (P ,PN)|
2= e2

4((P−p)2)2
tr((P+m)γμ(p+m) γλ

(2m)2 ) tr((PN+M )γμ(pN+M )γλ
(2 M )2 )   

 where p=γμ pμ  and  m  respective M  are the electron and proton mass.  
Since the trace of an odd number product of gamma matrices vanishes and
tr(γμ γν)=4ημν   with (ημν)μ ,ν  the Minkowski metric coefficients , 

tr(γμ γν γλ γσ)=4(ημ νηλσ−ημληνσ+ημσην λ)  we obtain 
 (1) 

1
2

tr ((P+m) γμ(p+m) γλ)=2(Pμ pλ−ημλ(P p)+Pλ pμ+m2ημ λ)  and with 

P+PN=p+ pN  after some calculus we derive: 

 

                          /                           

 

        /        

       /          /                                                               

                                    /          /               /            /     
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|M (P ,PN)|
2= e4

4 m2 M 2

2(P pN)(PN p)+2(P PN)(p pN)+(P− p)2(M2+m2)

((P−p)2)2
 .  

Then according to calculations we made in Chap. Canonical quantization of a scalar 
field , the differential cross section for the scattering in the center of mass frame is:

d σ  = 1
|v⃗1−v⃗2|

1
(2π)2

m2 M2

pN
0 p0 E2 ((E

2−(m+M )2)(E2−(M−m)2))1 /2|M (P , PN)|
2dΩ  

 where p⃗=m
v⃗ 1

√1− v⃗1
2
=− p⃗N=−M

v⃗2

√1−v⃗2
2

 , p0=√ p⃗2+m2   ,  pN 0=√ p⃗N
2 +M2

P⃗=−P⃗N=
1

2 E
((E2−(m+M )2)(E2−(M−m)2))1 /2(cosθ ,sinθcosφ , sinθ sinφ)  

P0=√ P⃗2+m2   ,  PN
0=√ P⃗2+M 2  , E= p0+ pN

0

(θ ,φ)∈(0 ,π)×(0 ,2π)  are the solid angle dΩ  variables. 

  

Electron-electron scattering 

In a scattering process of two electrons incoming four-momenta p1 , p2 and P1 , P2

outgoing four-momenta we have to consider that we cannot distinguish between the 
two outgoing electrons. The electron carrying momentum P1 could have “come from” 
the incoming electron carrying momentum p1 or the incoming electron carrying 
momentum p2 . Now there are two Feynman diagrams we have to consider:

                                               P2   

                                                                                           P1                   P2

         P1

                            q                                                                        q   
                                               p2        

             p1                                                                                                                           p1                                                p2     

                       fig.2                                                                     fig.3              

The Feynman amplitude for the fig.2 diagram is

AF (P1 , P2)=(2π)
4 (−i)(ie)2

(P1−p1)
2 (u(P1) γ

μu(p1))(u(P2) γμu(p2))δ
4(P1+P2−p1−p2)=

=(2π)4 M (P1 , P2)δ
4(P1+P2−p1−p2)

 

In computing M (P1 ,P2) , as we did for the electron-proton scattering , we  average 
over the incoming spin polarizations and sum over the outgoing spin polarizations .
Also, we study the electron-electron scattering in the reltivistic limit in which the 
electron mass m may be neglected compared to the momenta so we can nevertheless 
set m to 0 wherever possible.
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By Fermi statistics the amplitude for the fig.3 diagram where the P1 , P2 electrons are 
interchanged is then – AF (P2 , P1) .
Thus the Feynman amplitude for the scattering process to order O (e2) is 

AF (P1, P2)−AF (P2 ,P1)=(2π)
4 M δ4(P1+P2− p1− p2)  with 

M=M (P1 , P2)−M (P2, P1)  . 
 Squaring the |M| to compute cross sections we obtain 
|M|2=|M (P1 , P2)|

2+|M (P2 ,P1)|
2−2ℜ(M ∗ (P1 ,P2)M (P2 , P1))  . 

 

Using the computations from electron-proton scattering, neglecting m  when 
compared to the momenta , we will have :

|M (P1 , P2)|
2+|M (P2 , P1)|

2= e4

2m4 ((P1 p2)(P2 p1)+(P1 P2)(p1 p2)

((P1−p1)
2)2

+

+
(P2 p2)(P1 p1)+(P1 P2)(p1 p2)

((P2−p1)
2)2 )

 

2ℜ(M ∗ (P1 , P2)M (P2 , P1))=
e4

64 m4

1

(P1− p1)
2(P2−p1)

2 (tr (p1 γ
μP1 γ

ν p2γμ P2γν)+  

+tr (P1 γ
μ p1 γ

ν P2γμ p2γν))  .  
Using the (1) identities and the identities 
γμ p γμ=−2 p  , γμ pq γμ=4 p q  , γμ p q r γμ=−2r q p  (2) after calculus we derive: 
tr(p1γ

μ P1γ
ν p2 γμP2 γν)=−32(p1 p2)(P1 P2)  .  

Therefore we obtain :

|M|2= e4

2m4 ((P1 p2)(P2 p1)+(P1 P2)(p1 p2)

((P1−p1)
2)2

+
(P2 p2)(P1 p1)+(P1 P2)(p1 p2)

((P2−p1)
2)2

+

+
2(p1 p2)(P1 P2)

(P1−p1)
2(P2−p1)

2 )
 

In the relativistic limit, in the center of mass frame we have:
p1=E(1 ,0 ,0 ,1)   ,  p2=E(1,0 ,0 ,−1)  , E v⃗1= p⃗1  , E v⃗2= p⃗2  , 

P1=E (1 , sinθ , 0 , cosθ)   ,  P2=E (1 ,−sin θ ,0 ,−cosθ)
 

According to calculations we made in Chap. Canonical quantization of a scalar field 
and Chap. Feynman amplitudes and lattice gauge theory we obtain a differential cross 
section given by 

d σ  =1
2

16 m4

(2π)2
1

4 E2

1
8(2 E)2

(2 E)2|M|2dΩ= m4

(2π)2 E2 2|M|2 dΩ  .  

After some calculus we find out that :

2|M|2= e4

4 m4 f (θ)    with   f (θ)=32( 1

cos4(θ/2)
+ 1

sin4(θ/2)
+1)    and so 

dσ  
dΩ

=α
2

E2 f (θ)     (*) where  α= e2

4 π
 is the fine structure constant, 

 

 

      /     /     /     /                          

   
    /          /      / /        / /      / //         / / /     
 

    /     /     /    /                                

 

                                                                   /     /     /     /   
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The (*) relation can be used for experimental determination of the fine structure 
constant. 

  Photon-electron scattering (Compton scattering) 

for the scattering of a photon carrying four-momentum k on an electron carrying four-
momentum p with k’ outgoing photon four-momentum and p’ outgoing elctron four-
momentum we have to consider to order e2 two Feynman diagrams shown in fig.4 , 
fig.5 , since the electron can either absorb the k photon first or emit the k’ photon 
first. (The electron comes along, absorbs and then emits a photon or emits and the 
absorbs a photon and continues its way.) 

                                                                               ε , k               ε’, k’

            ε , k                    ε’,k’
            
                                                                                         p – k’ 
         p              p + k                p’                           p                             p’

                      fig.4                                                             fig.5                 

ε  and ε’ are the polarization four-vectors of the k respective k’ photon. We choose the 
transverse gauge in which in  one frame with vers k⃗=(1 ,0 ,0)  we have  
ε∈{(0,0 ,1 ,0) ,(0 ,0 ,0 ,1)} and the same is valid for ε′  and k′  .  (see Chap. 
Quantization of an electromagnetic field and Chap. Feynman amplitudes and lattice 
gauge theory).
In a rest frame of the incoming electron we have p = (m, 0 , 0, 0) and ε p = 0 and so 
in any frame we will have εk=ε p=ε′ p=0=ε′k′=0   ,  ε2=ε′2=−1      (3)  
The Feynman amplitude corresponding to the fig.4 diagram is 

A (ε′ , k′ ,ε , k)=(2π)4(i e)2 u(p′)ε′ i
p+k−m

εu(p)δ4(p+k−p′−k′)=   

=(2π)4 M (ε , k′ ,ε ,k )δ4(p+k−p′−k′)  .  
The Feynman amplitude corresponding to the fig.5 diagram is 
A (ε ,−k ,ε′ ,−k′)=(2π)4 M (ε ,−k ,ε′ ,−k′)δ4(p+k−p′−k′)  .  
The total Feynman amplitude is 
A=A(ε′ , k′ ,ε , k)+A(ε ,−k ,ε′ ,−k′)=(2π)4 M δ4(p+k−p′−k′)  .  
 We have p u(p)=m u(p)   and since  ε p=εk=0       we obtain 
(p+k+m)εu(p)=ε(−p−k+m)u(p)=−ε k u(p)

 

The electrons and the photons are obviously on mass shell having p2 = m2  , k2 = 0 
and so we will have 

 

                                                     /   /   /      /         

                /  
   /   /       /           /     /   /                    / /         
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M (ε′ ,k ′ ,ε , k )=i e2 u(p′) ε′ε k
2 p k

u(p)    ,  

M (ε ,−k ,ε′ ,−k′)=i e2u(p′) εε′k′
2 p k′

u(p)   .   

The squared total absolute Feynman amplitude , after we average over incoming spin 
polarizations and sum over outgoing spin polarizations of the electrons will be given 
by 

|M|2= 1

(8m2) ( e
4 tr ((p′+m)ε′εk (p+m)k εε′)

(2 p k)2
+

e4 tr((p′+m)εε′ k′(p+m)k′ε′ε)
(2 p k′)

+  

+ e4

(2 p k)(2 p k′)
( tr((p′+m)ε′ε k(p+m)k′ε′ε)+ tr((p′+m)εε′k ′(p+m)k εε′)))  .  

In evaluating the first trace above we keep in mind that the trace of an odd number 
product of gamma matrices vanishes , so the m term vanishes and also the m2 term 
vanishes since it contains k2 = 0 . Considering relations (1) and (3) and the identity
a b+b a=2a b  we can compute the remaining term and obtain  
tr(p′ε′εk p k εε′)=8k p(2(k ε′)2+ pk ′)  .   
Let T=tr((p′+m)ε′εk (p+m)k′ε′ε)  .  
 We take as allowed p′=p+k−p  and obtain T=P+Q1+Q2  where  
P=tr (pε′εk p k′ε′ε)+m2 tr (ε′εk k′ε′ε)  
Q1=tr(k ε′ε k p k′ε′ε)

 

Q2=−tr (k′ε′ε k p k′ε′ε)  .  
For the first term in P we let p pass the ε’  and ε (since p ε’  = p ε = 0 ) to find out the 
combination p k p = 2 k p – m2 k . 
The m2 term gives a contribution that cancels the second term in P leaving us with
P=8(p k)(p k′)(2(ε′ε)2−1)  , 
Q1=−8(k ε′)2(p k′)  , 
Q2=8(k′ε)2(p k)  . 

 

Putting it all together we obtain 

|M|2= e4

4 m2 ( p k′
p k

+ p k
pk ′

+4(ε′ε)2−2)  . 
 Writing p k′=mω′   ,  p k=mω   where  ω ,ω′  are the pulsations of the photons in 
 the incoming electron rest frame we have 

|M|2= e4

4 m2 ( ωω′+ω′ω +4 (ε′ε)2−2)  . 

 

According to Chap. Feynman amplitudes and lattice gauge theory and Chap. 
Canonical quantization of a scalar field the differential cross section in the incoming 
electron rest frame is given by :

                              / / /      

                                  //  /        

                       /       / / /  /     / //           /       //  /   /     /  / /     

 

                        /      /  //  /      / /  /       /       // /   /      / //     
 

/ /  / /                                 

    /  / // / / //                                
 

              /      /  //  /     /  /  /   

         //  // //  /  /         / // /  / / 
           /  /  / / / /  /  /                     
 

             /   /  / / / /  /   /                    

                                         /              /         / 
                   /  / /                   /                          
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d σ  = m
(2π)2

1
2ω

d 3 k⃗′
2ω′

d3 p⃗′
Ep′

|M|2δ4(p′+k′−p−k)    with  Ep ′=√ p⃗′2+m2  , 

ω′=‖k⃗ ′‖  ,  p=(m ,0 ,0 ,0)  . 

 

As in Chap. Canonical quantization of a scalar field we can write

f (E p′ , p⃗′) d3 p⃗′
Ep′

=2θ(p′0)δ(p′2−m2) f (p′)d4 p′  with θ  the Heaviside function.  

 We have p′2−m2=(p+k−k′)2−m2=2 p(k−k ′)−2k k′=
=2m(ω−ω′)−2ωω′(1−cosθ)  where θ  is the scattering angle of the photon. 
 Thus ω′= ω

1+2ω
m

sin2 θ
2

   giving the frequency shift of the Compton effect. 
 

 Using the evident relation ∫ f (ω′)δ(aω′−b)dω′=1
a

f (b
a
)  it follows: 

d σ = 1
2ω

m
(2π)2

ω′2
ω′

2

2m+4ωsin2 θ
2

|M|2 dΩ

dσ
dΩ

= α2

4 m2 (ω′ω )
2

(ω′ω + ωω′+4(ε′ε)2−2)   the Klein-Nishina formula with 

ω′= ω

1+ 2ω
m

sin2 θ
2

   ,  α= e2

4 π
  ,  dΩ=sin θdθdφ   ,  (θ ,φ)∈(0 ,π)×(0 ,2π)  , 

θ  the photon scattering angle. 

  

Compton scattering provides a physical argument that special relativity and quantum 
mechanics mandate antimatter. Consider the fig. 4 scattering diagram as 

                                            y                  time
                     x
                   

The electron is hit by the photon at the point x in space-time, propagates to the point 
y in space-time and emits a photon. We assumed implicitely that y  – x⁰ 0 > 0 . 
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But according to special relativity another observer moving by (along the 1-  
direction say) would register the time difference 

y′0−x′0=( y 0−x0)coshφ−( y 1−x1)sinhφ  which could be negative for large  

 enough boost parameter φ  , provided that y1−x1> y0−x0  that is if the separation 
 

between the two space-time points x  and y were spacelike . Then this observer would 
see the field disturbance propagating from y to x . Since we see negative charge 
propagating from x to y the other observer must see positive electric charge 
propagating from y to x. Without special relativity we simple write down the 
Schroedinger equation for the electron. Special relativity allows different observers to 
see different time ordering and hence opposite charges flowing toward the future . 

   Scattering of two spinless charged particles

A spinless charged particle field has according to Chap. Canonical quantization of a 
scalar field a Lagrangian density
ℒ(φ ,∂φ)=(∂φ)+ (∂φ)−m2φ+ φ   with φ=φ(t , x⃗)∈ℂ  the complex scalar field  
 and m  the rest mass of the particle. 

 

In presence of a electromagnetic field, the interaction Lagrangian density will be 
 ( replacing ∂μ  with ∂μ+i q Aμ(x)=Dμ        (4) with q  the charge of the particle 
 and (Aμ)μ  the quantum electrodynamics four-potential of the electromagnetic 

 field or the gauge field and ignoring the O(q2 A2)  terms (see Chap. Lagrangian 
 of electromagnetic field ) ): 

 

ℒ(φ ,∂φ , A ,∂ A)=− 1
4

Fμ νFμν+(∂φ)+ (∂φ)−m2φ + φ−q Jμ Aμ       (5) 

where Fμ ν=∂μ Aν−∂ν Aμ  and Jμ=i(φ+ (∂μφ)−(∂μφ)+ φ)  is the conserved current.

 

According to the Hamiltonian of a charged particle in a eletromagnetic field we 
would have a Schroedinger equation 

i∂0ψ=
1

2 m
( p⃗+q A⃗)2+q A0  which leads to the (4) option, since 

^⃗p=−i∇    ,   i D0ψ=
1

2m
(−i Dk)(−i Dk)ψ   . 

 

We can see that in applying the Feynman rules for the interaction vertices considering 
the (5) Lagrangian density, the coupling corresponding to a quantum electrodynamics 
−q Jμ(x) Aμ(x)  interaction term is i q(k+K )μ  where k  and K  are the  
four-momenta of the incoming particle / outgoing antiparticle respective outgoing 
particle / incoming antiparticle.
For a quantum electrodynamics scattering of spinless particles with charges q1 
respective q2 and incoming four-momenta p respective k , outgoing four-momenta p’ 
respective k’ the Feynman diagram in q1q2 order is the fig.6 diagram and according to 
Feynman rules we will have a Feynman amplitude
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A=(2π)4 M δ4(p+k− p′−k′)   with  

M=(i q1)(iq2)(−i)(p+ p′)μ(ημ ν−(1−ξ) (p−p′)μ(p−p′)ν
(p−p′)2 ) 1

(p−p′)2
(k+k′)ν  . 

  

Since the particles are considered on mass shell we have (p + p’) (p - p’ )  = m1
2 – m1

2 
= 0 (with m1  , m2 the rest masses of the particles) and so we can drop the Rξ -gauge 
dependent term from the photon propagator obtaining :

M=i q1q2

(p+ p′)(k+k′)
(p− p′)2

  .    

                                                k’
            p’                                                         q = p – p’ 
                              q
                   p                      k

                        fig.6

In the center of mass frame we have

p⃗+k⃗= p⃗′+k⃗ ′=0⃗   ,  ‖p⃗‖=‖p⃗′‖=r= 1
2 E

((E2−(m1+m2)
2)(E2−(m1−m2)

2))1 /2  , 

p0=p′0=√r2+m1
2   ,  k 0=k′0=√r2+m2

2   ,  E=p0+k 0

 

and the differential cross section of the scattering process is, according to Chap. 
Canonical quantization of a scalar field :

d σ  = 1
|v1−v2|

1
4 p0 k0

1
(2π)2

1
8 E2 ((E

2−(m1+m2)
2)(E2−(m1−m2)

2))1 /2|M|2 dΩ  

 where dΩ=sinθd θdφ  is the (θ ,φ)∈(0 , π)×(0,2π)  variables differential 
 solid scattering angle, with θ  the angle between the p⃗′  and p⃗  directions . 

  

In the non-relativistic approximation we have

r≪m1 ,2  , p0=p′0≈m1+
r2

2 m1

 , k 0=k′0≈m2+
r 2

2m2

  ,  v1=
r

m1

  ,  v 2=−
r

m2

 

(p−p′)2≈2 m1
2−2(m1+

r2

2 m1
)

2

+2 r2 cosθ≈−4 r2 sin2 θ
2

 , 

(p+ p′)(k+k′)=(p+ p′)(2k+ p−p′)=2 k (p+ p′)≈4 m1 m2  and so in the  

 

Page 8 of 11 362 of total 515  Gh.V.B. Introd. to...QFT 



non-relativistic case we obtain :

dσ
dΩ

=1
r

m1m2

m1+m2

1
4 m1 m2

1
(2π)2

1
8(m1+m2)

2 2r(m1+m2)
16 m1

2 m2
2

16 r4 sin4 θ
2

(q1 q2)
2  , 

dσ
dΩ

=(αr 2

m1m2

2(m1+m2))
2

1

sin4 θ
2

  with α=
q1 q2

4π
 and for m1≪m2  , r=m1 v  

 and for m1≪m2   ,  r=m1 v   we recognize the Rutherford formula 

for Coulomb scattering : dσ
dΩ

=( α
2 m1 v 2)

2 1

sin4 θ
2

  

 

(see I. Ința , S. Dumitru Complenente de fizică , Editura tehnică , București)
In the relativistic approximation of m1 ,2≪r  we will have:  

p0=p′0=k 0=k′0≈r  , E=2 r  , v 1=−v2≈1  , 

(p−p′)2≈−4 r 2sin2 θ
2

 , 

(p+ p′)(k+k ′)=2k (p+p′)≈4 r2 cos2 θ
2

 , 

dσ
dΩ

=1
2

1

4 r2

1
(2π)2

1

32r 2 4 r 2

16 r4 (1+cos2 θ
2 )

2

16 r 4 sin4 θ
2

(q1 q2)
2  , 

dσ
dΩ

=( α4 E )
2

( 2

sin2 θ
2

−1)
2

 . 

 

At small scattering angles the differential cross section in the relativistic 
approximation is near to the Rutherford Coulomb scattering formula differential cross 
section. 

            Scattering of electromagnetic waves on electrically
                        neutral spinless particle

In Rayleigh scattering (see Chap. Electric dipole … Dipole radiation) light scatters on 
air molecules which can be considered spinless neutral particles.
In an effective field theory we can describe the air molecules by a scalar field Φ with 
a lagrangian density 

ℒ=1
2
((∂Φ)2−m2Φ2)    .  

Since Φ is neutral the lowest dimension gauge invariant interaction term that can be 

 added to ℒ  is 1
2 M 2Φ

2 Fμν Fμ ν  with M  some mass scale.  
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 The two powers of derivative in Fμν Fμ ν   ( with  Fμ ν=∂μ Aν−∂ν Aμ   ,  
(Aμ)μ   the electromagnetic four-potential field ) lead to the proportionality 

M∝ω2  for the scattering of photons on Φ  particles amplitude. Thus the scattering 
 cross section varies like σ  (ω)∝ω4  where ω  is the pulsation of the  

 

electromagnetic wave.
As in Chap. Electric dipole … Dipole radiation ,  we have the proportionality with the 
fourth power of frequency : red light scatters less than blue light on air molecules and 
hence the sky is blue.
Indeed we have a Feynman diagram

                          p’             k’  , ε’        

                                       k , ε  
                         p                

The coupling corresponding to the considered interaction term is
i

M2 (η
μδ(k k ′)−k′μ k δ)    

and the Feynman amplitude according to feynman rules is 

A=(2π)4 i
M2 ((εε′)(k k′)−(εk′)(ε′ k))  where ε  respective ε′  are the 

 incoming and outgoing photon polarization four-vectors. 
 We write A=(2π)4M δ4(p+k− p′−k′)  and considering for the photon a 
 hypothetical mass μ  we have for the photons three polarization vectors ε(k , s)  
for incoming photon respective ε′(k′ , s)for outgoing photon
 with s=1 ,3  , ε k=ε′ k′=0  , 

∑
s=1

3

ελ(k , s)εν (k , s)=(−ηλ ν+
kλ kν
μ2 )  , ∑

s=1

3

ε′λ(k′ , s)ε′ν (k′ , s)=(−ηλ ν+
k′λk ′ν
μ2 )

 

(see Chap. Feynman amplitudes and lattice gaug theory). 
Taking μ→0  averaging over incoming photon polarizations and summing over  
outgoing photon polarizations aftersome calculus the terms with μ2 at the 
denominator cancel out and we get

|M|2=
(k k ′)2

M 4 =4
(ωω′)2

M 4 sin4 (θ/2)  where (kλ)λ=(ω , k⃗)  ,(k′λ)λ=(ω′ , k⃗′)  , ‖⃗k‖=ω  , 

‖⃗k′‖=ω′  and  θ  is the angle between k⃗  and k⃗ ′  . 
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Computing as for photon-electron scattering in the spinless particle rest frame we 
 obtain ω′= ω

1+2ω
m

sin2(θ
2
)

  and a differential cross section given by 

dσ  = 1

(2π)2
1

2m
1

2ω
1

2ω′
4(ωω′)2

M 4 sin4( θ
2
)d3 k⃗′δ4(p+k−p′−k′)d

3 p⃗′
2ωp′

=

= 1

(2π)2
1

2m
ωω′3

M 4 sin4 (θ
2
)δ(ω′(2m+4ω sin2(θ

2
))−2mω)dω′dΩ        and so 

dσ  
dΩ

= 1
(4 π)2

1

m2
ω4

M 4 ( sin (θ/2)
1+2 ω

m
sin (θ/2))

4

= 1
(4π)2

1

m2

1

M4 ω′
4 sin4(θ/2)  . 

(see Chap. Quantization of a scalar field … cross section and Feynman amplitudes 
and lattice gauge theory). 
The proportionality with the fourth power of frequency is therefore confirmed.
(in the visible spectrum we have ω≪m   ,  ω≈ω′  ).
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                         Anomalous magnetic moment of the electron

In Chap. Two component Dirac equation we derived for the electron in presence of a 
electromagnetic four-potential (Aμ)μ=(A0 , A⃗)(t , x⃗)  , x=(xα)α=(t , x⃗)  , A0=A3=0 , 

A1=
1
2

B x2   ,  A2=−
1
2

B x1   ,  B⃗=−∇× A⃗=(0,0 ,B)  -the magnetic induction field, 

 a Hamiltonian operator Ĥ=− 1
2m

∇ 2− e
2m

B⃗⋅(gL
^⃗L+gS S⃗)   where  

L⃗=x⃗× p⃗   , S⃗=1
2
ℏ σ⃗   , ^⃗p -the momentum operator, σ⃗=(σi)i=1 ,3  -the Pauli matrices,

 the gyromagnetic ratios gS=2   ,  gL=1  , the electron charge is e=−|e| and 
m  is the rest mass of the electron. 

 

Considering the quantum field theory for the electron with Lagrangian density
ℒ(ψ ,∂ψ)=ψ(iγμ∂μ−m)ψ−e Jμ Aμ      (1)  

with ψ=(ψμ( t , x⃗))μ  a Dirac spinor field, Jμ=ψγμψ  (see Chap. Dirac Lagrangian)
 we expect that gL , gS  need corrections if we take in consideration quantum  

 

fluctuations of the electron field.
 With ψ̂=ψ̂(t , x⃗)  the quantum field operator function acting on a quantum field  
states Hilbert space having the vacuum state |0 ⟩  we have the Hamiltonian operator  

Ĥ=∫d3 x⃗ ( ∂ℒ
∂(∂0ψ)

∂0ψ−ℒ )=∫d3 x⃗(ψ̂(m−i γk ∂k) ψ̂+e Ĵμ Aμ)           (2)  

which can be considered as a field expectation value operator 
Ĥ=∫d3 x⃗ ψ̂ + (m γ0−i γ0 γk ∂k+e γ0γμ Aμ) ψ̂    ,  
where as usual we denote with greek letters indexes from 0 to 3 and with latin letters 

indexes from 1 to 3 , γ0=(I 0
0 I )   ,  γk=( 0 σ k

−σk 0 )  are the gamma matrices and  

m γ0−i γ0 γk ∂k+eγ0γμ Aμ  is an operator acting on the Hilbert space of the 

ψ=(ψμ(. , x⃗))μ  functions  with scalar product ⟨ψ ,φ⟩=∫ψ + φd3 x⃗  . 
 

 The matrix element of Ĥ  under a non-relativistic momentum transfer  
 corresponding to q=p′−p  , q=(qν)ν  from a four-momentum p  and spin 
polarization s  field state |p , s ⟩  to a four-momentum p′  and spin polarization s′  
 field state |p′ , s′⟩  where we obviously take p2=p′2=m2         since the 
the electron states are on mass shell   is:

 

⟨p′ , s′|Ĥ|p, s⟩=∫ ⟨p′ , s′|ψ̂ + √I (m2−∇ 2) ψ̂|p , s⟩d3 x⃗+

+e∫ ⟨p′ , s′|Ĵμ Aμ|p , s⟩d3 x⃗≈∫⟨ p′ , s′|ψ̂ + (m γ0−∇
2

2 m) ψ̂|p , s⟩+

+e∫ ⟨p′ , s′|Ĵμ Aμ|p , s⟩d3 x⃗  . 
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 ( we can take m γ0−i γ0 γk ∂k=√I (m2−∇ 2)≈mγ0−∇
2

2 m
 because 

m γ0−i γ0 γk ∂k  is hermitian and we can consider the analytical √    function of the 

 operator (mγ0−iγ0γk ∂k)
2=I (m2−∇ 2)  as its finite dimensional approximation 

 for the non-relativistic case p⃗2≪m2  ). 

 

As we exposed in Chap. Dirac equation. Quantization of a Dirac field, we have:

ψ̂α(t , x⃗)=∫ d3 p⃗

√(2π)3 Ep /m
∑

s
(b(p , s)uα(p , s)exp (−i p x)+

+d + (p , s)vα(p , s)exp (i p x))      with Ep=√ p⃗2+m2   ,  |p , s ⟩=b + (p , s)|0 ⟩√ (2π)3V
b + (p , s) , d + (p , s), b(p , s) , d (p, s)  creation respective anihilation operators 

 (2’) 

satisfying the usual anticommutation relations .
 Taking U=U (a ,Λ)  the unitary representation of the Poincare group 
{ℝ4∋x→Λ x+a∈ℝ4|Λ∈SO + (3 ,1), a∈ℝ4}   acting on the field states such that 
U ψ̂α(x)U

+=ψ̂α (Λ x+a)   ,  U|0 ⟩=|0 ⟩  , as we derived in 
 Chap. Spin statistics theorem we must have U (a , I )=exp (i p̂ a)  where p̂  is 
 the four-momentum operator acting on the field states, having p̂|p , s ⟩=p|p , s ⟩ . 

 

Thus we will have:
⟨ p′ , s′|Ĵμ(x)|p , s⟩=⟨ p′ , s′|U (x , I) Ĵμ(0)U + ( x , I )|p , s⟩=
=⟨p′ , s′|Ĵμ(0)|p , s⟩ exp(i(p′− p) x)                 (3) . 

 

We consider the momentum transfer process in time interval (0,T) and field support  
 volume V  with a |p , s ⟩  incoming electron and a |p′ , s′ ⟩  outgoing electron 
(on mass shell) , involving a virtual photon of four momentum q= p′− p  of an 
 electromagnetic field whose four-potential (Aμ)μ  appears in the (1) Lagrangian  
 density expression as a space-time dependent coupling −i e γμ Aμ( x) .

 

The amplitude of all together possible Feynman diagrams for the process is then
(see Chap. Feynman amplitudes and lattice gauge theory) :
~A=V−1(Ep′/m)

1 /2(E p/m)
1/2 ūα (p′ , s′)uβ(p , s)exp(i p′0 T )(−ie)∫d4 x d3 z⃗ d3 y⃗

exp(−i p⃗′ z⃗)exp (i p⃗ y⃗)⟨0|ψ̂α (T , z⃗ ) Ĵμ( x) Aμ(x)ψ̂β(0 , y⃗)|0⟩=
=∫−ie ⟨ p′ , s′|Ĵμ(x) Aμ(x)|p, s⟩d4 x=
=−2π i eδ(E p′−Ep)⟨p′ , s′|Ĵ

μ(0)|p , s⟩∫ Aμ( x⃗)exp(−i( p⃗′− p⃗) x⃗)d3 x⃗       (4). 

 

(For the last equality we considered as initial that the four-potential not depends on 
time.) 
Notice that in the (4) evaluations, the  field operator ψ̂  is considered in the (1)  
Lagrangian density theory and no more satisfies (2’) as in the non-selfinteracting free 
theory.
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 To calculate ∫⟨ p′ , s′|Ĵμ (0)|p , s⟩ Aμ( x⃗)exp(−i( p⃗′− p⃗) x⃗)d3 x⃗  to order O (α)  with 

α= e2

4 π
 we have to evaluate the process amplitude ~A  in the (1) Lagrangian density 

 field theory considering the amplitudes corresponding to the Feynman diagrams in 

 

fig. (a) , fig. (b) , fig. (c) , fig. (d) , fig. (e).
                                                                                     p’

                       p’                                               p’+k

                                                                      q  p+k         k
            q             p
                                                                                        p
              fig. (a)                                                  fig. (b)

                                                                                                   fig. (d)
                     fig. (c)

                                                                fig. (e)

 From current conservation ∂μ Jμ=0   and (3) follows 
qν ⟨p′ , s′|J

ν(0)|p , s⟩=0           (5)          for q=p′−p     . 
 

(⟨ p′ , s′|Jν(0)|p , s⟩)ν   being a Lorentz vector satisfying (5) , we will see that at 

 first order in α= e2

4 π
 we have (5') : 
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⟨ p′ , s′|Ĵμ(0)|p , s⟩=u(p′ , s′)(γμ F1(q
2)+i σ

 μ ν

2m
qνF2(q

2))u(p , s)V−1( Ep

m )−
1
2 ( Ep′

m )−
1
2  

 where F1 ,F2  are scalar functions and σ μν= i
2
[γμ , γν]  . 

 

According to Chap. Feynman amplitudes and lattice gauge theory the amplitude for 
any of the considered Feynman diagrams is given by:
~A=V−1(Ep/m)

−1 /2(Ep′/m)
−1 /2 AF  where AF  is the Feynman amplitude computed  

following the Feynman rules and has usually the form 
AF=(2π)

4M δ4 (p′− p−q).  However, since the photon appears as a space  
dependent coupling of the Dirac field to itself in the interaction vertex term
−eψγμψAμ  we must replace the (2π)4δ4(p′−p−q)  four-momentum balance 

factor for the photon with a incident external line interaction factor exp(i(p′−p) x)
 taking also for this vertex the coupling −i e γμ Aμ(x)  integrating over x .

 

Except for fig. (b) , all the considered Feynman amplitudes are clearly proportional to
u(p′ , s′) γμu(p , s)  and thus contribute to F1(q

2)  .  
The fig. (b) , fig. (c) , fig. (d) , fig. (e) diagrams amplitudes are of order O (e3) . Since 
the fig. (a) diagram amplitude is of order O (e) , the F1(q

2)  factor is of order O(e0)   
and is defined to order O (e2) by the Feynman diagram fig. (a) . 
The amplitude for the fig. (a) diagram is according to Feynman rules:

~A1=V−1( Ep

m )−
1
2 ( Ep′

m )−
1
2 2πδ(Ep ′−Ep)(−ie)∫ exp(−i( p⃗′− p⃗) x⃗)Aμ( x⃗)  

u(p′ , s′) γμu(p , s)d3 x⃗  . 

 (6)

Comparing now (4) with (5’) we must take 
F1(q

2)=1  such that e F1(q
2)  is the experimentally observed electric charge.  

(Except for the fig. (b) diagram all considered diagrams can be reduced to the only 
diagram fig . (a) by electron mass renormalization and electron charge 
renormalization acording to Chap. ... Quantum electrodynamics and Chap. ...Electric 
charge renormalization . Thus with the renormalization of the photon and electron 
propagators the fig. (a) , fig. (c) , fig. (d) , fig. (e) diagrams become equivalent to a 
single fig. (a) diagram with mass and charge renormalized.)
According to Feynman rules, the fig. (b) diagram amplitude is 

~A2=2πδ(Ep′−Ep)(−i e)V−1(E p

m )−
1
2 (E p′

m )−
1
2∫ exp(−i( p⃗′− p⃗) x⃗)Aμ( x⃗)

u(p′ , s′)Γμu(p , s)d3 x⃗  . 

 (6’) 

 where Γμ=∫ d4 k
(2π)4

(−i e2)
k2+iε

γν 1
p′+k−m

γμ 1
p+k−m

γν  .  

 (with p=γμ pμ  )  

We can see that if we will have any kind of momentum transfer with the given 
electromagnetic field, we must have Ep = Ep’  and considering (4) , (6) , (6’) , (5’)

 

                                /   /        /  /                 

       /                                       

Page 4 of 7 370 of total 515  Gh.V.B. Introd. to...QFT 



  (since we can take in O(α2)  approximation, with mass and charge renormalized 
 to their experimental measured values, ~A=~A1+

~A2  ) , we will have: 
 

⟨ p′ , s′|Ĵμ(0)|p , s⟩=V−1( Ep

m )−
1
2 ( Ep′

m )−
1
2 u(p′ , s′)(γμ+Γμ)u(p, s)=

=V−1( Ep

m )−
1
2 ( Ep′

m )−
1
2 u(p′ , s′)(γμ+ iσ μν

2m
qν F2(q

2))u(p, s).

  (6’’)

 Using the identities u(p′) p′=mu(p′)   ,  pu(p)=m u(p)   
 and u(p′)(p′ γμ+γμ p)u(p)=u(p′)((p′+ p)μ+iσ  μνqν)u(p)  

 

we derive the Gordon decomposition :

u(p′)γμu(p)=u(p′)((p′+ p)μ

2 m
+ iσ  μ ν

2 m
qν)u(p)         (7)  

 Therefore taking  Rμ=
(p′+ p)μ

2m
F1(q

2)+ iσ  μ ν

2 m
qν(F1(q

2)+F2(q
2))  , 

 with ψ̂  from the free Dirac theory we have to order O (α2)  approximation that 

⟨p′ , s′|Ĵμ(0)|p , s⟩=u(p′ , s′)Rμu(p, s)V−1( Ep

m )−
1
2 ( Ep ′

m )−
1
2=

=⟨p′ , s′|ψ̂(0)Rμ ψ̂(0)|p , s⟩  . 

 

 Because ∫⟨ p′ , s′|ψ̂(0)qμ ψ̂(0)|p , s⟩exp(i q x)Aμ(x)d
4 x=

=i∫⟨p′ , s′|ψ̂(0) ψ̂(0)|p , s⟩exp (i q x)∂μ Aμ(x)d
4 x=0   ( since  ∂μ Aμ=0  )  

 we derive ∫⟨ p′ , s′|ψ̂(0) (p′+ p)μ

2m
F1(q

2)ψ̂(0)|p , s⟩ exp(i q x) Aμ(x)d
4 x=

=∫ ⟨p′ , s′|ψ̂(x)2 pμ

2m
ψ̂(x)|p , s⟩ Aμ(x)d

4 x=

= 1
2 m
∫ ⟨p′ , s′|ψ̂( x)2 i Aμ∂

μ ψ̂(x)|p , s⟩d4 x  . 

 

 For the considered electromagnetic field we have 

2 i Aμ∂
μ=−B i(x2∂1−x1∂2)=−B⃗⋅^⃗L    . 

 

We have also : 

∫ ⟨p′ , s′|ψ̂(0) iσ
 μν

2m
qν ψ̂(0)|p , s⟩ exp(i q x) Aμ(x)d

4 x=

=−∫ ⟨p′ , s′|ψ̂(0) σ
 μ ν

2m
ψ̂(0)|p , s⟩ exp(i q x) Aμ ,ν (x)d

4 x=

=−∫ ⟨p′ , s′|ψ̂( x) σ
 1 2 B
2m

ψ̂(x)|p , s⟩d4 x  . 

 

Hence acting on the larger, dominant  component of ψ=(ψA
ψB)  which is  ψA  in  

the Dirac basis (see Chap. Two component Dirac equation) we have for the field 
expectation  value operator Ĥ  the relation  

                                   /                   /     
                /           /                                                   
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⟨ p′ , s′|Ĥ|p , s⟩=∫ ⟨p′ , s′|ψ̂A
+ (x)(m−∇ 2

2m
− e

2m
B⃗⋅^⃗L F1(q

2)−

− e
2 m

2 B⃗⋅⃗S (F1(q
2)+F2(q

2))) ψ̂A (x)|p , s⟩d3 x⃗  . 

 

Thus we have a correction for the spin angular momentum gyromagnetic ratio by a 
 factor of 1+F2(q

2)    : gS=2(1+F2(q
2))  or since we consider small momentum 

 deviations, with Ep=E p′  we will take the approximation gS≈2(1+F2(0))  and  
  

we must therefore estimate for obtaining the correction of the gyromagnetic ratio, the 
coefficient F2 (q2) when we take q2 = 0 .
 Considering the Gordon decomposition (7) , from (6'') we derive:  

u(p′ , s′)(γμ+Γμ)u(p, s)=u(p′ , s′)(γμ(1+F2(q
2))− 1

2 m
(p′+p)μ F2(q

2))u(p , s)  (8) 

We have 

Γμ=∫ d4 k
(2π)4

(−ie2)
k 2+iε

γν(p′+k+m)γμ(p+k+m)γν
((p′+k )2−m2+iε)((p+k)2−m2+i ε)

=∫ d4 k
(2π)4

(−i e2)Nμ

D
 .  

 Using the identity 1
x y z

=2∫
Δ

dα dβ 1
(z+α(x−z)+β( y− z))3

     where 

Δ={(α ,β)∈ℝ2|0≤β≤1−α  and α≥0}  it follows 
1
D
=2∫

Δ
d αdβ 1

(l2−(α+β)2m2+i ε)3
=2∫

Δ
dαdβ 1

D
  where we used 

p2= p′2=m2   ,  (p′−p)2=q2=0  and take l=k+α p′+β p   . 

 

We defined Nμ=γν(l+P′+m)γμ(l+P+m)γν    (9)
 with P′=(1−α)p′−β p    ,   P=(1−β) p−α p′  and so we have 

Γμ=2∫
Δ

dα dβ∫ (−i e2)
(2π)4

Nμ

(l2−(α+β)2m2+i ε)3
d4 l  . 

 

Considering (8) we notice that to extract F2 (0) , we can throw away any term 
proportional to γμ we encounter while processing the (9) expression.
The terms of Nμ are :
 -the m2  term ∝γμ  and we throw it away; 
 -the term linear in l  which integrates to 0  by symmetry; 

 

 -the term quadratic in l given by γνl γμ lγν=γ
ν γσ γμ γτγν lσ l τ          (10)   

 

 Taking M σ τ=∫ lσ lτ
(l2−(α+β)2 m2+iε)3

d4 l  and for Λ∈SO + (3 ,1)  changing the  

 integration variable lσ→Λσδ lδ  we obtain ΛMΛT=M  and so if 
η=(ησ τ)σ ,τ  is the Minkowski metric coefficients matrix then ΛM ηΛ−1=M η   

 and since Λ  is arbitrary in SO+ (3 ,1)  it follows M=λη  with λ∈ℂ  and we can  

 replace lσ lτ  from (10) by 1
4
ησ τ l

2  leading to a term proportional to γμ  . 

                                   /    /           /   /      

 

                   /  /        /  /                            

 

                                  /  /                      
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 Hence we can thow away the term quadratic in l ;
 -a term independent of l given by 
 γν P′ γμP γν=−2((1−β)p−α p′) γμ((1−α)p′−β p)    .  
  Because u(p′)p′=mu(p′)   and  pu(p)=m u(p)  we can replace the term by 
−2((1−β)p′−αm) γμ((1−α)p−βm)

  

This expression has m2 , m and m0  terms.
 The m2  term can obviously be thrown away.
Since D is symmetric in (α , β) the m term can be symmetrized in (α , β) and gives

2 m(p′+ p)μ(α(1−α)+β(1−β))  considering also that 
u(p′)(p γμ+γμ p′)u(p)=u(p′)(2 pμ+2 p′μ)u(p)−2m u(p′) γμu(p)  . 

 

After some calculus we can verify that
u(p′)p γμ p′u(p)=2 mu(p′)(p′+ p)μu(p)−3m2 u(p′) γμu(p)    
 and so the m0  term gives −4 m(1−α)(1−β)(p′+ p)μ  ;  
 -another term independent of l given by 
 m(γν P′ γμγν+γ

ν γμ P γν)=4 m((1−2α) p′μ+(1−2β) pμ)   
  Since D is symmetric in (α , β) this term can be symmetrized and gives
    4 m(1−α−β)(p′+ p)μ   .           
Putting it all together we obtain 

− 1
2m

(p′+ p)μF2(0)=

=2∫
Δ

dα dβ∫ (−i e2)
(2π)4

2 m(α+β−(α+β)2)(p′+ p)μ∫ d4 l

(l2−(α+β)2 m2+iε)3
 . 

 

 Let I (μ)=∫ d4 l

(l2−μ2+iε)3
=∫(∫ d l0

(l0
2− l⃗ 2−μ2+iε)3 )d3 l⃗  . 

 The poles of F (l0)=
1

(l0
2− l⃗ 2−μ2+iε)3

   are z ±=±(√ l⃗ 2+μ2−iε)  with ε>0  , ε→0  

 

Thus ∫F (l0)d l0=2π i Rez(F , z− )= ∫
−i∞

i∞

F(z)d z=i∫
−∞

∞

F (i z)d z=−i∫
d l0

(l0
2+ l⃗ 2+μ2)3

.  

Therefore 

I (μ)=−i∫ d4 k

(‖k‖4
2+μ2)3

=−2 iπ2

Γ(2)
∫
0

∞ k 3

(k2+μ2)3
d k=−iπ2∫

0

∞ k2

(k2+μ2)
d k 2=i π

2

2μ2   

F2(0)=−2∫
Δ

d αdβ (−i e2)
(2π)4

4 m2(α+β−(α+β)2) (−iπ2)
2(α+β)2 m2=

e2

8π2  , 

F2(0)=
α

2π
≈0.00118  and we have the corrected by quantum fluctuations  

 gyromagnetic ratio gS=2.00236  giving the anomalous magnetic moment of the 

 

electron μ⃗S=−
gSμB

ℏ S⃗    , μB=
|e|
2m

ℏ  being the Bohr magneton while the regular 

 magnetic moment corresponds to gS=2  . 

 

 

    /    /               /    /            /     /         
                    /                    / 
             /                     /                 

 

       /       /                                             
 

       /   /                           
 

       /              /                                     
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                                       Magnetic monopole

For an electromgnetic field with four-potential (Aμ)μ we can define the differential 

 form A=Aμ d xμ    and so F=d A=1
2

Fμν d xμ d xν=

=Ei d x 0 d xi−B1d x2 d x3−B2 d x3 d x1−B3 d x1 d x2   . 

 Taking (Aμ)μ=(0 , A⃗)  , a magnetic monopole at x⃗=0⃗  with x⃗=(xi)i=1,3  means that 

 through any spherical surface S  with center at 0⃗  we have 
∫
S

B⃗⋅nd S=g     (1) with n  -the outer normal to S  and d S  the surface area 

 element on S  ( The total flux surrounding 0⃗  through the surface S  is equal to g  
 which is the magnetic charge of the monopole). 

 

 Obviously (1) is equivalent to ∫
S

F=−g  if A⃗= A⃗ ( x⃗)  and we must have 

B⃗= g
4 πr 2

r⃗
r

 , F=− g
4π

d(cosθ)dφ

 where x⃗= r⃗=(r cosθ , r sin θcos φ , r sin θsin φ)

 

 Hence we can take A=− g
4 π

cosθd φ        (2) and by gauge invariance we can 

 take any  A+1
e

d Λ  where Λ=Λ( x)  gives the gauge transformation 

Aμ→ Aμ+
1
e
∂μΛ  or A→ A+ 1

i e
exp(−iΛ(x))d exp(iΛ(x))

 

However , φ is not defined at θ = 0 and θ = π which makes A globally indefinite.

 We can define A  local at θ=0  by AN=− g
4π

(cosθ−1)dφ  having AN=0  at θ=0. 

 In the same way we define A  local at θ=π  as AS=− g
4π

(cosθ+1)d φ  .  

AN and AS must describe the same electromagnetic field and so they must be related 

by a gauge transformation  AN=AS+
1
ie

exp(−iΛ(x))d exp (iΛ(x))  .  

 Thus 1
ie

exp(−iΛ(x))d exp(iΛ(x))=2 g
4π

dφ        which leads to 

exp(iΛ)=exp(i(2 e
g

4 π )φ)  . Since φ=0 and φ=2π  describe the same point, in  

 order for exp(iΛ)  to make sense we must have exp(i(2e g
4π

)2π)=1  and so we  

 must have g=2π
e

n  with n∈ℤ .
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Therefore the magnetic charge on a magnetic monopole is quantized in units of 2π
e

 

 ( e  unit electric charge ). 

 

If magnetic charges exist , we make the Maxwell equations invariant under a 
 transformation E⃗+i B⃗→exp(iθ)(E⃗+i B⃗)  by defining the corresponding  
 transformations of electric charge density ρe  , magnetic charge density ρm  , 

 electric current density j⃗e  and magnetic current density j⃗m . The Maxwell  
 equations are 
∇⋅E⃗=ρe   

∇⋅B⃗=ρm   

∇×B⃗= j⃗e+
∂ E⃗
∂ t

  

∇×E⃗=− j⃗m−
∂ B⃗
∂ t

 . 

 

We will have therefore an electromagnetic duality by transformations
E⃗→B⃗  , B⃗→−E⃗  , ρe→ρm  , j⃗e→ j⃗m  , ρm→−ρe  , j⃗m→− j⃗e  .  

According to the Meissner effect a single monopole cannot live inside a 
superconductor since the superconductor material expels any magnetic field.
Considering a magnetic antimonopole at distance R from the magnetic monopole 
inside a superconductor, the magnetic flux coming out of the monopole can go into 
the antimonopole forming a tube connecting the monopole and the antimonopole and 
obliging the superconductor to give up being a superconductor in the region of the 
flux tube (Since outside of the tube of radius r the magnetic flux is expelled we have 
that the flux inside the tube is 2 g (with g the magnetic charge of the monopole,  - g 
the magnetic charge of the antimonopole ) and so in the flux tube we will have 

roughly have a constant magnetic field B= 2 g
π r 2  parallel to the monopole to    

antimonopole line ). Thus cosidering φ the field or order parameter of the 
superconductor (the field associated with the condensing Cooper pair bosons (see 
Chap. Superconductivity)) it is no longer energetically favorable for the field φ to be 
constant everywhere , instead it vanishes in the region of the flux tube. The energy 

cost of this arrangement is then given by an energy density ℱ =1
2

B⃗2  with B⃗  the  

magnetic field in the flux tube and therefore grows with the volume V of the flux tube 
which is proportional to R. Hence it costs more and more energy to pull a monopole 
and a antimonopole apart, and inside a superconductor we will have a confinement of 
monopoles. Invoking electromagnetic duality, inside a magnetic superconductor, 
electric charges would be permanently confined.
Also imaging a color magnetic superconductor, we will have permanent confinement 
of quarks. It seems to be like the ground state of the quantum chromodynamics 
Lagrangian density system (see Chap. Feynman diagrams and lattice gauge theory 
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and  Chap. Quantum chromodynamics. S U(5) unification ) is a color magnetic 
superconductor since as proved, the energy of a quark-antiquark system also grows 
with the separation distance , at lower energies, leading to confinement of quarks.
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                      Phonon-electron interaction. Superconductivity
                        Meissner effect . Conductivity. Drude model 

Consider a covalent crystal lattice where positive kernels of metal atoms are kept in 
 stable positions of a lattice grid Γ={n1 a⃗1+n2a⃗2+n3 a⃗3|ni=1 , N i  , i=1,3}  with 

a⃗i∈ℝ
3 ,N i∈ℕ  , N=N1 N2 N 3  , i=1 ,3  , by the common field of interaction 

 

between the kernels and their electronic shells. Then according to Chap. Covalent 
crystal lattices of metals, using the linear combination of atomic orbitals with tight 
binding approximation , the wave functions of the electrons in the crystal are given 
~ψk⃗ (t , x)=exp (−i E (k⃗) t)ψk⃗ (x)  with t∈ℝ , x∈ℝ3  and satisfy the time independent 

 Schroedinger equation (− 1
2m

∇ 2+V ( x))ψk⃗ (x)=E (k⃗ )ψk⃗ (x)       (1) 

 where V (x)=∑
n

V 0( x−Rn)  ( we take  ℏ=1  reduced Planck constant ,  

c=1  speed of light in vacuum constant) 

ψk⃗ (x)=∑
n

exp(i k⃗⋅Rn)u0(x−Rn)    ,   k⃗=∑
i=1

3 mi

N i

b⃗i=∑
i=1

3 ~k i b⃗i   ,  mi∈ℤ  , i=1 ,3

b⃗i=
2π

a⃗1⋅(a⃗2×a⃗3)
(a⃗ j×a⃗k)ϵi jk  (no summation over j , k  ) , k⃗⋅a⃗i=

2πmi

N i

 , 

ψk⃗ (x)=exp(i k⃗⋅x)uk⃗ (x)  , uk⃗ ( x+Rn)=uk⃗ (x)  -the Bloch functions , 

Rn=n1 a⃗1+n2 a⃗2+n3 a⃗3  , n=(n1 ,n2 ,n3)∈ℤ
3  , 

uk⃗ (x)=∑
n

exp (i k⃗⋅(Rn−x))u0(x−Rn)  , u0=u0(x)∈ℝ  satisfies the single atom  

 time independent Schroedinger equation ∇ 2 u0(x)+2m(E0−V 0(x))u0(x)=0  

 and the normalization ∫u0( x−Rn)u0(x−Rm)d
3 x=δnm  for n ,m∈ℤ3

 

 We have E( k⃗)≈E0−α−2γ(cos (2π~k 1)+cos(2π~k 2)+cos(2π~k 3))   (where for a 

 rectangular lattice grid with a⃗i⋅a⃗ j=ai a j δi j  we have k i ai=2π~k i  , k⃗=(k i)i  ) 
 for small wave numbers ~k i  , where 

α=−∫u0( x)(V ( x)−V 0(x))u0(x)d
3 x  

γ  =−∑
i=1

3

∫
u0(x−a⃗i)+u0(x+a⃗i)

2
(V (x)−V 0(x))u0(x)d

3 x

 

 For large N i  we can consider k⃗  as a continuous variable and so E0 ,α ,γ   

 determine a continuous zone of the spectrum values (E( k⃗))k⃗ .
 

E( k⃗)  has at k⃗=0  an extreme value and for small ‖k⃗‖ we have 

E( k⃗)≈E(0)+ 1
2

∂2 E
∂ kμ∂kν

(0)kμ kν=E(0)+ 1
2mνμ

∗ kμ kν=E(0)+ϵ(k⃗ )  . 
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In the case of a rectangular lattice grid we obtain:

mμ ν
∗ =0  if μ≠ν  and mν ν

∗ =mν
∗= 1

2γaν
2  for ν=1 ,3  .  

Hence if in the crystal we have an additional external field which changes slowly in 
time defining a Hamiltonian operator 

Ĥ1=− 1
2 m

∇2+V (x)+U (x)    the study of long wave excitations ( ‖k⃗‖ small ) 

 of the electrons can be reduced to the study of the effective Hamiltonian 

Ĥ eff=−
1

2 mν
∗

∂2

∂ x ν
2+U (x)+E (0)

 

 Thus mν
∗  has the role of an effective mass of the electron in direction ν  (see also  

Chap. Fermi’s golden rule ).

 In a cubic lattice crystal mν
∗=m∗  for any ν  , mν

∗= 1
2γ a2   ,  a=aν   ,  ν=1,3  , 

 (isotropic effective mass) . 

 

 As mentioned, if N1 , N2 ,N3  are large we can consider k⃗  a continuous variable 

and (ϵ( k⃗))k⃗  a quasicontinuous spectrum. Thus d3 k⃗=
(2π)3

Ω0
d3~⃗k  , Ω0=a⃗1⋅( a⃗2×a⃗3)  

is the cell volume and a volume d3~⃗k  in ~k -space contains N d 3~⃗k   ~k -states. 
 The corresponding volume d3 k⃗  in k -space contains therefore 
NΩ0

(2π)3 d3 k⃗= V

(2π)3 d3 k⃗  k -states . Considering spin degeneracy g=2  , the number 

 of states having energy ϵ(k⃗ )∈(ϵ ,ϵ+d ϵ)  is d N e=
g V

(2π)3
∫

E ( k⃗)∈(ϵ ,ϵ+dϵ)

d3 k⃗

 

 We have ∫
ϵ( k⃗)∈(ϵ ,ϵ+dϵ)

d3 k⃗= ∫
ϵ

ϵ+d ϵ

∫ d S

‖∇ k⃗ E( k⃗)‖
d ϵ   where  d S  is the surface 

{⃗k|ϵ( k⃗)=ϵ} element . For a isotropic effective mass we have for small ‖k⃗‖ that 

‖∇
k⃗
E( k⃗)‖=‖⃗k‖

|m∗|
  ,  ∫d S=4 π k2  with k=‖k⃗‖   and so 

d N e

d ϵ
= g V

(2π)3
|m∗|4π‖⃗k‖. 

 

The electrons in the conduction band have positive effective mass . 
( E( k⃗)  has a minimum in the conduction band and so γ  >0  , m∗>0  ( see Chap. 
 Fermi's golden rule)). Measuring the energy levels from the bottom of the 

 

corresponding continuous spectrum zone we will have a energetic density of 

electrons in the conduction band given by ρ(ϵ)=
d N e

d ϵ = g V

4 π2 (2 m∗)3 /2√ϵ  

According to Chap. Quantum statistical ensemble, since electrons obey to Fermi 
statistics, the probability  that a state |εs ⟩  of energy ϵ(k)=εs  is occupied by an   
electron in the conduction band at thermodynamical equilibrium temperature T is: 
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p(ϵ(k ))=
exp ((μ−ϵ(k ))/(kb T ))

1+exp ((μ−ϵ(k ))/(kb T ))
 and the averaged occupation number of the  

 state |εs ⟩  is f (ϵ(k))= 1
1+exp((ϵ(k)−μ)/kb T )

 where kb  is the Boltzmann constant 

 and μ  is the Fermi energy level or chemical potential,(the amount of energy 
 which the particle must carry when entering or leaving the system while the 
entropy and other extensive parameters remain constant) measured from 

 

the E (0)  of the corresponding energy levels continuous spectrum zone. 
 For T→0  any state with lower energy than the Fermi level is occupied and the 
 states with energy above the Fermi level μ=ϵF  are free of electrons. 

 

Then the total number of electrons in the conduction band is 

N e=∫
0

∞

f (ϵ)ρ(ϵ)d ϵ= gV
π2√2

(m∗ k bT )3 /2 F ( μ
k bT

)  

    where  F ( μ
k bT

)=∫
0

∞ √x

1+exp(x− μ
k bT

)
d x

 

 For total degeneracy (T→0)  we have f (ϵ)=0  if ϵ>μ  and so we take 

F( μ
k b T

)= ∫
0

μ
k bT

√x d x=2
3 (

ϵF

k b T )
3 /2

 Therefore N e=
g√2

3π2 V (m∗ ϵF)
3 /2   ,  ϵF=

1
2 m∗ (6π2 N

gV )
2 /3

       (2) . 

(We can assume Ne = N if we suppose one free (conduction) electron per atom in the 
crystal lattice) 
 In the continuous approximation for the k⃗   variable , in the simplified case of 
 cubic crystal lattice medium assimilable with an isotropic liniar elastic material, 
 we will have a phonon field operator function 

φ⃗(t , x)= 1

√(2π)3
∫∑

s

es( k⃗)

√2ωs(k )
(b̂s k⃗ exp(−iωs(k) t+i k⃗⋅x)+

+b̂s k⃗
+ exp(iωs(k) t−i k⃗⋅x))d3 x

 

 where [ b̂s k⃗ , b̂s′ k⃗′
+ ]=δ3(k⃗−k⃗′)δs s′  , [b̂s k⃗ , b̂s′ k⃗′]=0   ,  b̂s k⃗

|0 ⟩=0   ,  s=1,3  , 

ω1(k)=√λ+2μ
ρ k   ,  ω2(k)=ω3(k)=√μρ k   ,  k=‖⃗k‖ , 

ρ  -density of the isotropic liniar elastic material 
λ ,μ  -Lame coefficients of the isotropic liniar elastic material 

√λ+2μ
ρ =cP   and  √μρ=cT  are obviously the longitudinal and respective  

 transversal elastic waves propagation velocities. 

 

e1( k⃗)×k⃗=0   ,  e2( k⃗)⋅⃗k=e3( k⃗)⋅⃗k=0   ,  ei(k⃗ )⋅e j( k⃗)=δi j  , ei(k⃗ )∈ℝ3  , i , j=1 ,3  .  
The Hamiltonian operator corresponding to the phonon field is 
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Ĥ=∑⃗
k ,s

ωs(k)(
~̂b s k⃗

+ ~̂b s k⃗+
1
2
)  where ~̂b s k⃗=√ (2π)3

V
b̂s k⃗  and we have also 

φ⃗(t , x)= 1

√V
∑
s , k⃗

es(k⃗ )

√2ωs(k)
(~̂b s k⃗ exp (−i(ωs(k) t−k⃗⋅x))+~̂b s k⃗

+ exp(i(ωs(k) t−k⃗⋅x)))  , 

[~̂b s k⃗ ,~̂b s′ k⃗′
+ ]=δ k⃗ k⃗′δs s′   ,  k⃗  taking the discrete values k⃗=∑

i=1

3 mi

N i

b⃗i   ,  mi∈ℤ   

 in the first Brillouin zone k i∈[−
π
a

, π
a
]  , i=1,3  . 

√ V
m0 N

φ⃗(t ,Rn)=
1

√ρ 
φ⃗(t ,Rn)=rn(t)  where V  is the volume of the crystal, m0  is 

 the mass of a nodal atom kernel , represents the oscillations in time of the node at 
x=Rn=n1 a⃗1+n2 a⃗2+n3 a⃗3  which in the continuous approximation can be  
 assimilated to the dispalcements field values u⃗(t , x)=rn(t)  of the isotropic 
liniar elastic body. 

 

(see Chap. Phonons in three-dimensional crystals) 
After some calculus e derive that a Hamiltonian operator for the phonon field defined 

 by Ĥ=∫ (12 (∂t φ⃗)
2+ 1

2
(cP

2 (∇⋅⃗φ)2+cT
2 (∇×φ⃗)2))d3 x  leads to 

Ĥ=∫∑
s
ωs(k) b̂s k⃗

+ b̂s k⃗ d3 k⃗+δ3( 0⃗)∫ 1
2
ωs( k⃗)d

3 k⃗=∑⃗
k ,s

ωs(k)(
~̂b s k⃗

+ ~̂b s k⃗+
1
2
)   

 (reminding that δ3( k⃗′−k⃗)= V
(2π)3 δ k⃗ k⃗ ′  ) . 

 

The Lagrangian density of the phonon field, leading to this Hamiltonian operator is 

 defined by ℒ(φ⃗ ,∂ φ⃗)=1
2
(∂t φ⃗)

2−1
2
(cP

2 (∇⋅⃗φ)2+cT
2 (∇×φ⃗)2)            (3)   

 because we can verify that Ĥ=∫( ∂ ℒ̂
∂(∂t φ⃗)

⋅(∂t φ⃗)−ℒ̂ )d3 x .

 

 We have ∫ℒ(φ⃗ ,∂φ⃗)d t d3 x=∫− 1
2
φi A i jφ j d t d3 x        with 

Ai j=(δi j∂t
2−cP

2 ∂i∂ j−δi j cT
2 ∂k ∂k+cT

2 ∂ i∂ j)=δi j(∂t
2−cT

2 ∂k ∂k )−(cP
2−cT

2 )∂i∂ j   . 

 

 The propagator of the phonon field  Di j=Di j(t , x)  satisfies 

Ai j D j k (t , x)=δ4 ((t , x))δik  ,  i , j , k=1 ,3  and obviously summation convention  . 
 

 For the Fourier transformation of Di j  : Di j(ω , k⃗ )=∫exp (−iω t+i k⃗⋅x)d t d3 x   

 we have (−δi j (ω
2−cT

2 k⃗ 2)+(cP
2−cT

2 )k i k j)D j l(ω , k⃗)=δi l          leading to 
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D jl (ω , k⃗ )=δ j l A+B k j k l  with 

−δi l A(ω2−cT
2 k⃗ 2)+k i k l(−(ω2−cT

2 k⃗ 2)B+(cP
2−cT

2 )A+(cP
2−cT

2 ) k⃗ 2 B)=δil   , 

A=− 1

ω2−cT
2 k⃗ 2    ,   B=−

cP
2−cT

2

(ω2−cP
2 k⃗ 2)(ω2−cT

2 k⃗ 2)

 

D jl (ω , k⃗ )=− 1

ω2−cT
2 k⃗ 2+i ε (δ j l+

cP
2−cT

2

ω2−cP
2 k⃗2+iε

k j kl)   

D jl (t , x)= 1
(2π)4∫ exp(iω t−i k⃗⋅x)D j l(ω , k⃗)dω d3 k⃗   

 

Notice that the (3) Lagrangian density breaks the Lorentz invariance. The reference 
frame in which the crystal lattice is at rest is the preferential frame in which the 
Lagrangian density (3) describes a phonon system.
The Lagrangian density (3) is invariant under a O(3) transformation of both 
coordinates and vectorial phonon field that is a rotation of the entire crystal.

In an (infinitesimal) elastic deformation of the crystal the local density of atoms 
changes. If the density around a point increases, the positive charge density of atomic 
kernels in the crystal increases at that point, and there appears a potential pit to which 
the electrons are attracted in the process of the body regaining its initial form after 
elastic deformation. Thus the energy of the electrons in the deformed crystal region 
with increased mass density is higher than the energy of the electrons in the 
undeformed crystal. Increased local density corresponds to negative relative variation 
of the volume element. The infinitesimal relative variation of the volume element is
∇⋅⃗u   where  u⃗=u⃗(x)  is the infinitesimal local displacements field.  
 Hence, under a small elastic deformation of an isotropic covalent crystal we  
 assume an additional deformation potential W d(x)=−σ∇⋅⃗u(x)  with σ  >0  in 
 the (1) time independent Schroedinger equation for electrons: 

(− ∇ 2

2m
+V (x)+W d(x))ψ(x)=E(k , u⃗(x))ψ(x)   ,  E (k , u⃗(x))=E (k)−σ  ∇⋅⃗u(x)  

 with σ   weak depending on k  . 

 

 For energy levels E (k)  close to the Fermi energy ϵF  at equilibrium temperatures 

T→0  we have E(k)= 1
2m∗ (6π2 N

g V )
2/3

=ϵF  (according to (2)) and the variation of  

 energy under a local deformation will be −σ δV
V

=−σ∇⋅⃗u (x)=δϵF=−
2
3
ϵF

δV
V

 

 

 and so at T →0  we have σ  =2
3
ϵF=

1
3 m∗ (6π2 N

gV )
2/3

  (3’)

Considering the Hamiltonian field operator  for the electron, Ĥ  as a field   
expectation value operator,  if Ĥ0  is the Hamiltonian for the free electron, then  
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we have for the electrons in the crystal in presence of a phonon excitation (elestic 
deformation) that :

Ĥ=∫(ψ̂+ Ĥ0 ψ̂+ψ̂
+ V (x)ψ̂+ψ̂+ W d( x) ψ̂)d3 x  

   where ψ̂=ψ̂(t , x)  is the electron field operator function. 
 

Taking ψ as the Dirac spinor for the electron we have 
Ĥ0=mγ0−iγ0γk ∂k    with (γα)α  the gamma matrices, latin letters for indexing 
 from 1 to 3 , greek letters for indexing from 0 to 3 and summation convention. 

 

 Therefore Ĥ=∫(ψ̂(m−iγk ∂k )ψ̂+ γ̂
0 V (x)ψ̂−σ ψ̂ γ0(∇⋅^⃗φ) ψ̂)d3 x      where 

φ⃗=φ⃗( t , x)=√ρ u⃗(t , x)  is the phonon field corresponding to the small  
 displacements field and σ  = σ

√ρ 
.

 

The interaction between electrons and phonons in the crystal lattice can then be 
expressed by the total Lagrangian density:

ℒ(ψ ,∂ψ , φ⃗ ,∂ φ⃗)=ψ(iγα∂α−m)ψ+1
2
(∂0 φ⃗)

2−1
2

cP
2 (∇⋅⃗φ)2−1

2
cT

2 (∇×φ⃗)2−

−ψγ0 ψV (x)+σ ψγ0ψ(∇⋅⃗φ)             (4) . 

 

The coupling according to Feynman rules corresponding to the electron-phonon 
interaction term is −σ  k j  with k j  the incoming phonon momentum component. 
As we can see, the (4) Lagrangian density breaks Lorentz invariance, the frame where 
the crystal lattice is at rest being the preferential frame. 

 The Hamiltonian operator Ĥ=∑
s , k⃗

(~̂b s k⃗
+ ~̂b s k⃗+

1
2
)ωs(k)  for the phonon system is   

obtained supposing harmonical oscillations of the crystal nodes, only quadratic terms 
in the energy of deformation (see Chap. Phonons in three-dimensional crystals ), the 
so called harmonic approximation. Otherwise we will have additional phonon self-
interaction terms in the Lagrangian density and we have to consider phonon-phonon 
interactions (we would have non-linear terms in the Euler-Lagrange elastic wave 
equation). 
As we can see from the last term in the (4) Lagrangian density, electrons can interact 
each with other by exchanging a phonon like in the below Feynman diagram:

                      p’ , ψ                          q’ , ψ

                                   φ 
                                 k 

                     p ,  ψ                                q , ψ
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k = p – p’ = q’ – q 

The Feynman amplitude of this interaction is 
A=(2π)4 M δ4(p+q−p′−q′)  with p,q , p′ , q′  incoming respective outgoing 

 four-momenta of the participating electrons, 

M=σ  2(u(p′) γ0u(p))(u(q′) γ0u(q))(−k j)(−i)( δ j l

ω2−cT
2 k⃗ 2+i ε

+

+
(cP

2−cT
2 )k j kl

(ω2−cP
2 k⃗ 2+iε)(ω2−cT

2 k⃗ 2+iε))k j=iσ2(u(p′)γ0 u(p))(u(q′) γ0 u(q)) k⃗ 2

ω2−cP
2 k⃗ 2

  with k=p−p′=q′−q

 

(see Chap. Dirac spinor , Quantum electrodynamics, Feynman amplitudes and lattice 
gauge theory)
We can see that as expected the transversal elastic oscillation with propagation 
velocity cT is not involved in the final amplitude expression.
Considering the phononic interaction of two electronic lumps

J 1
0(t , x)=δ3(x−x0)  and J 2

0(t , x)=δ3(x− y 0)  we have an electronic density 

J 0(t , x)=ψ(t , x)γ0ψ(t , x)=J 1
0(t , x)+J 2

0(t , x)  acting as a phononic field source 
 in the phonon field Lagrangian density 

ℒ(φ⃗ ,∂φ⃗)=1
2
(∂ t φ⃗)

2−1
2
(cP

2 (∇⋅⃗φ)2+cT
2 (∇×φ⃗)2)+σ J 0∇⋅⃗φ   

 The action is 

∫ℒ(φ⃗ ,∂ φ⃗)d t d3 x=∫(1
2
(∂t φ⃗)

2−1
2
(cP

2 (∇⋅⃗φ)2+cT
2 (∇×φ⃗)2)−σ  (∂i J

0)φi)d t d3 x

 

The energy due the presence of the two sources acting on each other through the 
phonon field is E = E ( x0 – y0 ) and if T is the interaction time, satisfies 
exp(−i E T )=⟨0|exp(−i Ĥ T )|0⟩=Z (J )=∫D φ⃗exp (i∫ℒ(φ⃗ ,∂φ⃗)dt d3 x)=

=Z (J=0)exp (− i
2
∫−σ  ∂ j J

0(x)D jl(x− y)(−σ  ∂l J
0( y))d4 x d4 y)     with  

x , y∈ℝ4  , x=( x0 ,(x j) j)=(x0 , x)   ,  y=( y0 ,( y j) j)=( y0 , y)
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Let W=∫∂ j J
0(x)D jl(x− y)∂l J

0( y)d4 x d4 y             and we obtain 

W=−∫ J 0(x)D j l , j l(x− y) J 0( y)d4 x d4 y=∫ J 0(x)J 0( y)∫ 1
(2π)4 exp(iω(x0− y0))

exp(−i k⃗⋅( x− y)) k⃗ 2

ω2−cP
2 k⃗ 2+i ε

d ωd3 k⃗ d x0 d y0 d3 x d3 y=

=(∫ 1
(2π)3

d y 0)(U 0+2∫ exp(−i k⃗⋅(x 0−y 0))
k⃗ 2

−cP
2 k⃗ 2+i ε

d3 k⃗)
 where U0  not depends on x0 , y 0  .  

 

 Therefore W=T
U0

(2π)3−T
2

cP
2 ∫

exp(−i k⃗⋅(x 0−y 0))
(2π)3 d3 k⃗      (5)  

As we noticed from Chap. Phonons in three dimensional crystals, the three oscillation 
 modes ω1(k)=cP‖⃗k‖ (longitudinal elastic waves) and ω2 ,3(k)=cT‖⃗k‖ 
  ( transversal elastic waves ) corresponding to the acoustic phonons described by 
 the (4) Lagrangian density are valid only for small wave numbers with k⃗ 2a2≪1  . 

 

 Also in a cubic crystal with side lenght L  , volume V=L3  , k⃗  takes values 

(2π
L

mi)
i=1 ,3

 with mi∈ℤ  . Therefore the integral in (5) must be understood as 

∏
i=1

3 (∑
l=−q

q

exp (−i 2π
L

l(x0
i− y0

i )) 1
L )=U     and after some calculus we obtain 

U= 1

L3∏
i=1

3 sin ((2 q+1) κri)
sin (κ ri)

    where κ=π
L

 , r i=x0
i− y0

i  , q∈ℕ   ,  K=2κq  is 

 defining the range of k⃗  such that |k i|≤K  , K a≪1
 taking r⃗=(ri)i  , r=‖⃗r‖ we derive 

U= 1

L3 ((2q+1)3−2
3
(2q+1)3 q(q+1)(κr)2+O ((K r)4))

 

 We must have −i E T=− i
2
σ2W  and so , with (5), to adding a independent 

 of r  constant, we can take for the energy the expression 

E=E( r⃗ )=2
3

σ2

L3 cP
2 ((2q+1)3 q(q+1)(κr)2+O((K r)4))

 

 The interaction force through phonon exchanging, acting on the x 0  electron is  

wiil be given by F⃗ ( r⃗ )=−∇ r⃗ E( r⃗ )  and we conclude that if the distance between 
 electrons is of the same magnitude as the lattice constant a  , since K a≪1  the 

 interaction force is an attractive force F⃗≈ 4
3

σ 2

L3 cP
2 (2 q+1)3 q(q+1)κ2 r⃗ .

 

Thus at growing distance between electrons it costs more and more energy to separate 
them, because above a specific value of the separation distance the phononic 
interaction force exceeds the electrostatic photonic interaction repulsive force which 
it’s shrinking with the inverse square distance.
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Hence at low temperatures, electrons are confined in so called Cooper pairs with 
opposite spin angular momenta (according to Pauli exclusion principle) , which 
behave like spin 0 bosons.
 At low temperatures (T→0)  the averaged occupation number for states |εs ⟩  with 
 energy level εs ,  in the Bose-Einstein statistics satisfied by bosons at equilibrium  

 temperature T  is ⟨ns⟩=
1

exp ((εs−μ)/(k b T ))−1
 where μ  is the chemical potential 

 of the bosons , and tends to 0 for T →0 ,εs>μ  and we must have εs≥μ .

 

This indicates that at low temperatures (below the Bose-Einstein condensation 
temperature) all bosons are in the same state which according to considerations in 
Chap. Quantum statistical ensemble must be the lowest energy state, the fundamental 
state (the fundamental lowest energy level is supposed to have no degeneracy). Thus 
the occupation of the fundamental state becomes macroscopic and the bosons form a 
Bose-Einstein condensate.
In the Bose-Einstein condensate of Cooper pair bosonic particles at low temperatures, 
all bosons behave in the same way, being in the same state and so under application 
of an electric field for example, they all move in the same direction, with zero 
entropy (at low temperatures , as we noticed in Chap. Quantum statistical ensemble , 
the entropy of the quantum statistical ensemble tends to zero) and superconductivity 
arises (zero rezistivity of the material). 
Consider the field φ associated with the condensing Cooper pair bosons. According to 
above considerations we have to suppose that φ becomes non-zero below a 
temperature Tc . The field φ carries two units of electric charge and is therefore 
complex and so for interaction with an electromagnetic field we have a Lagrangian 

 density ℒ(φ ,∂φ , A ,∂ A)=− 1
4

Fμ ν Fμν+(Dμφ)+ (Dμφ)−aφ+ φ−b
2
(φ + φ)2  

 where Dμ=∂μ+2 ie Aμ   ,  Aμ=Aμ(t , x)   ,  φ=φ(t , x)   ,  Fμν=∂μ Aν−∂ν Aμ

 

 At equilibrium we have φ=φ(x)  and we admit an external magnetic field 
B⃗=−∇× A⃗  with A=(Aμ)μ=(0 , A⃗)  , A=A (x)  . 
 At T→0  the entropy is zero and so the system free energy density is the same as 

 the energy density ℱ = ∂ℒ
∂(∂0 A)

(∂0 A)+ ∂ℒ
∂(∂0φ

+ )
(∂0φ

+ )+ ∂ℒ
∂(∂0φ)

(∂0φ)−ℒ=

= 1
4

F i j F i j+(Diφ)
+ (Diφ)+a|φ |2+ b

2
|φ  |4

 

 We suppose that for temperatures T≈T c  we have a=a1(T−T c)  , a1>0  while  b  
 remains positive so that the free energy is minimized by φ=0  above  T c  and by 

|φ |=√− a
b
=v  below T c .  As we learned in Chap. Effective potential, v  is the 

 vacuum expectation value of the field operator φ̂ .

 

Below Tc at equilibrium the free energy is therefore 
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ℱ =1
4

Fi j F i j+(2e v)2 A⃗2− a2

2b
=1

2
B⃗2+(2 e v)2 A⃗2− a2

2 b
  

The material goes superconducting below Tc and so for constant magnetic field, since 
‖A⃗‖ grows as the distance, the total energy grows faster than the volume V   
 (because of the (2 e v)2 A⃗2  term in the energy density) after the material goes  

 

superconducting and φ has a non-zero expectation value. Thus in a superconducting 
material we have to pay an unacceptable amount of extra energy to maintain the 
constant magnetic field and so it is more favorable to expel the magnetic field. This is 
the Meissner effect: magnetic fields are expelled from superconducting materials.
The magnetic field leaks into the superconductor a bit over a length scale l 
determined by the competition between the energy in the magnetic field 
Fi j

2 ∼(∂ A)2∼ A⃗2/ l2  and the Meissner term (2e v)2 A⃗2  . Thus we have the London 
 penetration lenght of the magnetic field into the superconductor 

lL∼(1 /(e v))=1
l √ b

−a
 . 

 

For a metalic conductor at regular equilibrium temperature T , the Fermi energy level
μ=ϵF  is inside the conduction band spectrum and from the relation 

N e=
g V

π2√2
(m∗ k b T )3 /2 F (

μ
kb T

)  we established above we can extract 

μ=M (N ,T ,V )  and for the energy levels ϵ  close to the Fermi level μ=ϵF  

 we have f (ϵ)≈1
2

 and therefore those energy levels are half occupied being in fact 

  energy levels of conduction electrons. For conduction electrons having an energy 
 close to Fermi level in the quasicontinuous conduction band spectrum we have 

ϵ=E (k⃗ )≈μ  and in the same way as for T →0  we have δμ=−σ δV
V

 . 

 

 The average energy of conduction electrons is 

ε  = 1
N e
∫
0

∞

f (ϵ)ρ(ϵ)ϵd ϵ=kb T

∫
0

∞ x3 /2 d x

1+exp (x−
μ

kb T
)

∫
0

∞ x1 /2 d x

1+exp (x− μ
kb T

)

    and we have ε=ε(N ,T ,V )  (6) 
 

Page 10 of 16 388 of total 515  Gh.V.B. Introd. to...QFT 



 But now we have μ=M (N ,T ,V )  and so ∂M
∂V

δV =−σ δV
V

 , 

σ  =−V
∂M
∂V

(N ,T ,V )  , σ  =kb T

F(
μ

kb T
)

F′( μ
k bT

)
       with 

F( μ
kb T

)=∫
0

∞ √x

1+exp(x− μ
k bT

)
d x  , F′( μ

k bT
)=∫

0

∞ exp (x− μ
kb T

)√x

(1+exp (x− μ
kb T

))
2

d x  . 

 Thus we have a dependence σ =σ(N ,T ,μ)=~σ(N ,T ,V )  , σ̄  = σ
√ρ 

  (6') . 

 The phonon-electron coupling constant σ̄  dependence on thermodynamical 

 

parameters T , V and on crystal lattice constants ( ρ is here the crystal mass density ). 
The electric charge transport, as we have seen in Chap. Electromagnetic four-
potential … can be described by a charge current density field or charge flux
J⃗ (t , x)=ρ(t , x) v⃗(t , x)  where ρ  is the electric charge density and v⃗  is the velocities  
field of the continuous distributed charges.
However in a metalic electric conductor the transported charge is quantized as 
conduction electrons individual charges e . Those conduction electrons have different 
velocities, due the random thermal velocity. The average velocity of the conduction 
electrons, when no electric field field is present , ⟨ v⃗ ⟩=0⃗  since thermal velocities    
are completely random. When an external electric field is applied, free electrons gain 
velocity in the direction opposite to the electric field between succesive collisions 
thus acquiring a velocity component in that direction in addition to its random 
thermal velocity. As a result, there is a definite small drift velocity of electrons which 
is superimposed on he random motion of free electrons. Hence the actual charge flux 
 is J⃗=ρ⟨ v⃗ ⟩  where ⟨ v⃗ ⟩=u⃗  is the average velocity of free electrons in the presence   
the (constant) electric field and also the drift velocity.
The effects of collisions between different conduction electrons being also 
completely random compensate themselves and have no effect on the average 
velocity. Instead , free electrons are accelerated by the constant electric field and lose 
energy in inelastic collisions with the atomic kernels, nodes of the crystal lattice or 
equivalent, lose energy by emitting phonons, which are oscillations of the lattice 
nodes. Thus, equivalent to the effect of this decay of free electrons into lower energy 
electrons and phonons we introduce a mean friction force F⃗ f=−f ⟨ v⃗ ⟩  (with f  a  
constant positive coefficient) so that in presence of a constant electric field 

E⃗  we have an averaged motion equation m∗ d
d t

⟨ v⃗ ⟩=e E⃗−f ⟨ v⃗ ⟩    where because we   

have to consider also interactions with the local crystal lattice field we take m* the 
effective mass of conduction electrons. 
The equation has the solution 
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u⃗=(u⃗0−
e E⃗
f )exp(− f

m∗ t)+ e E
f

 .        (7) 

 For t→∞  we obtain u⃗=e E⃗
f
= e

m∗ τ E⃗  and so we will have a electric current  

 density J⃗=σ c E⃗  with σc=
N e

V
e2

m∗ τ   -the conductivity of the metal,    (8) 

  noticing that τ=m∗

f
 is according to (7) the mean time of electrons travelling a 

 

distance under the action of electric field and the introduced mean friction force in 

the reference frame R that moves with the constant limit drift velocity u⃗= e
m∗ τ E⃗    

with respect to the crystal lattice.
 J⃗  determined by (8) is obviuosly the mean charge flux and if the conductor is a  
wire with normal to the electric field section area S then a charge J S passes thruogh 
the normal section in an unit of time . Thus the current intensity is I = J S . 
The amount of work done by the field transporting a a positive charge unit along the 
wire is U = E l , where l is the length of the wire . Hence the difference in potential 
between the ends of the wire, known as voltage is 

U= J
σc

 l= l
σc S

I  and so the electric resistance of the wire will be R= l
σ c S

 having U=R I   the well known Ohm's law .

 

Therefore relation (8) for the charge flux expreesses Ohm’s law in terms of 
conductivity. 
We have seen that the free electrons in the conductor are accelerated under the action 
of the constant electric field and slowed down under the action of the introduced 
averaged friction force which equivalates the lose of energy by emission of phonons 
in inelastic collisions with the nodes of the crystal lattice. Hence electrons are 
decaying into lower energy electrons and phonons and for this process we have a 

decay rate Γ which leads to a mean lifetime of such electrons   equal to ~τ= 1
Γ  .  

 From the interpretation of τ  we have that τ  is the mean time between collisions  
with crystal nodes and can also considered the mean lifetime of accelerated in the 
moving reference frame R electrons until they lose energy emitting a phonon . 
Because all accelerated electrons become electrons that suffer a decay we conclude 
 that we must have τ =~τ  .  
To compute Γ we consider the electron-phonon interaction Lagrangian density (4) (in 
which we have taken time and distance units such that h = 1 , c = 1) . 
According to Feynman rules (see Chap. Feynman amplitudes and lattice gauge 
theory)  the order O(σ̄)  Feynman amplitude of a electron decay with phonon   
 emission is A=(2π)4M δ4(k−k 1−k 2)  where k  is the incoming electron 
 four-momentum,  k1  is the outgoing electron four-momentum, 
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k 2=(ω , k⃗2)  is the emitted phonon pulsation and wave vector and 

M=σ̄ u(k 1 , s1)γ
0u(k , s) k⃗2⋅e

s2( k⃗ 2)  where s1 , s  ae the electrons spin polarization 

 indices and s2  is the phonon polarization index, es2(k⃗ 2)  is the phonon polarization 

 

versor. It follows that we have to consider only longitudinal polarization direction and 
 so ω=c p‖k⃗2‖.  Since the incoming electrons can have equally both polarizations 
 and outgoing electrons polarizations are not measured, summing over s1 ,
 averaging over s  we obtain 

 

|M|2=1
2
σ̄ 2 tr( k 1+m

2 m
γ0 k+m

2m
γ0) k⃗ 2

2    

 with k=γα kα    , m  -the electron mass, k 2−m2=k 1
2−m2=0  .  

We have 

tr ( k1+m
2m

γ0 k+m
2 m

γ0)=1+
k1

0 k 0+ k⃗1⋅⃗k

m2  .  

According to Chap. Decay rate and cross section and Chap. Feynman amplitudes and 
lattice gauge theory we have a differential decay rate 

d Γ= m
Ek

m d3 d k⃗ 1

(2π)3 Ek 1

d3 k⃗ 2

(2π)3 2ω
(2π)4|M|2δ4(k−k 1−k 2)   with Ek=k0=√ k⃗ 2+m2  , 

Ek 1=k 1
0=√k⃗ 1

2+m2  , k 2
0=ω=cP‖k⃗2‖.

 

As we know from Chap. Canonical quantization of a scalar field we have 

f (Ek 1 , k⃗1)
d3 k⃗1

2 Ek1

=θ(k1
0)δ(k1

2−m2) f (k1)d
4 k 1  with θ  -the Heaviside function , so: 

Γ= m2 σ̄2

(2π)2∫
1
2

k⃗2
2

k 0 (1+ k 02−k 0 cP‖k⃗ 2‖+k⃗ 2−k⃗⋅k⃗2

m2 ) δ((cP
2−1) k⃗ 2

2−2k 0 cP‖k⃗ 2‖+2 k⃗⋅k⃗2)

2cP‖k⃗2‖

θ(k 0−cP‖k⃗ 2‖)d
3 k⃗2=

m2σ̄2

8πcP
∫
0

2(‖k⃗‖−k 0 cP)/(1−cP
2 )

r 2(2k 02−2 k0 cP r−(r 2/2)(1−cP
2 ))

2m2‖⃗k‖k 0 d r

 

 This relation holds only for w=‖⃗k‖
k 0 >cP  otherwise following Γ=0 . 

The value w is the speed of the incoming in the decay process electron and can be 
taken as the thermal absolute mean velocity √⟨ v⃗2⟩  which considering the  
conduction electrons  at equilibrium temperature T ,  we have

ε=m∗ w2

2
 and so we can take w=√2ε/m∗  with ε  determined by relation (6).  (9)

 Obviously the T →0  expressions are aproximatively valid if we consider 

T≪T0=
ϵF

k b

 with ϵF  from the (3') relation . T0  is called Fermi temperature 

 (degeneracy temperature) and computations show that solid metals at 
 temperatures below the melting point can be considered in the T≪T 0  case. 

 

                 /         /     

        /         

     /         /    
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In this case the (6’) relation reduces approximatively to (3’)  and the (6) relation

 becomes approximatively ε  =kb T
∫
0

μ/(k bT )

x3 /2dx

∫
0

μ/(k b T)

x1 /2d x

=3
5
ϵF  with εF       from (3').  

 Thus for w>cP  restoring ℏ  and c  constants we obtain 

f
m∗=

1

τ =Γ= c
ℏ

σ̄2 k 03

30π cP w

(w−cP)
3

(c2−cP
2 )4 (10c2−cP

2−6 w2−3cP w)  with k0= m c3

√c2−w2
.
 (10)

Relations (10) , (9) , (6) , (6’) (8) determine the conductivity of the metal as a 
function of N , V , m* , T, ρ. (we notice the  proportionality to the density ρ).

 For more accurate approximations, if T ≪T0  we can expand after powers of 
k b T

μ   .

 Thus taking for n>0  the function Kn(
μ

k bT
)=( kb T

μ  )
n+1

∫
0

∞ xn d x

1+exp(x− μ
k bT

)
  

 we have F ( μ
k b T

)=( μ
kb T )

n+1

K 1/2(
μ

kb T
)      ,     ε  =μ

K3 /2(
μ

k b T
)

K1 /2(
μ

k b T
)

and for T→0  we have Kn(
μ

kb T
)=∑

k=0

∞

∫
0

μ
k b T

(−1)k k bT

μ  (1− kb T

μ  x)
n

exp (−k x)d x≈

≈ 1
n+1

+∑
k=1

∞
n(−1)k +1( kb T

μ  )
2

∫
0

∞ 1

k 2 x exp (−x)d x

 

 We have ∑
k=1

∞
(−1)k +1 1

k 2=ζ(2)− 1
4
ζ(2)−1

4
ζ(2)=1

2
ζ(2)= π2

12
 

 with ζ(2)=∑
k=1

1

k 2  the Riemann zeta function. 
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 It follows that K n(
μ

kb T
)≈ 1

n+1 (1+π
2n(n+1)

12 ( k bT

μ  )
2

)   
N≈2

3
g V m∗3 /2

π2√2
μ3/2(1+ π2

16 ( kb T

μ  )
2)

 and taking μ0=lim
T→0

μ  , the value of ϵF  given by (3') we can derive 

μ≈μ0(1− π2

24 (
k bT
μ0 )

2)  , ε≈ 3
5
μ (1+π2

4 (k b
T
μ )2)≈3

5
μ0(1+5π2

24 ( k b T
μ0 )

2)  . 

 

σ  ≈2
3
μ (1−π2

12 ( k bT

μ  )
2

)≈2
3
μ0(1−π2

8 ( k b T

μ0
 )

2

)  .  

Solids can conduct heat through the motion of electrons, atoms, ions. To estimate the 
thermal conductivity of metals, we calculate the contribution of conduction electrons, 
since metals have a large density of free electrons which have a thermal motion with 
the average speed w as we already established acoording to (9) and (6). Heat in a 
metalic body crystal lattice is generated by the independent oscillations of atoms in 
the nodes which can be expressed as a gas of phonons (see Chap. Phononic gas) . The 
transmission of heat occurs as a net flux of thermal energy (see Chap. 
 Thermodynamics) q⃗=−κ∇T   (where κ  is the thermal conductivity coefficient 
 and T=T (x)∈ℝ +

∗  with x∈D⊂ℝ3  is the temperatures field on the domain D  of 
 

the metal considered as a union of subdomains around each x which can be supposed 
in thermodynamical equilibrium at temperature T (x) ) through collisions of free 
electrons with the atomic nodes of the crystal lattice in which the electron absorbs or 
emits a phonon. The mean time between collisions is, as we established, the mean 

 lifetime τ  = 1
Γ   with Γ  the above computed electron decay rate.  

 The net flux at location x  in direction i ,ei=(δi j)j=1 ,3  is the difference between  
what passes from left to right and from right to left.

 Therefore taking u= 1

√3
 the mean speed in direction i  (since thermal motion is 

 completely random) we have qi=
1
2

ne u(~ε (T (x−u τ ei))−~ε (T (x+u τ ei)))   (11)  

 where ne=
N e

V
 is the concentration of conduction electrons and 

n~ε (T )=U (T )
V

 with n=N
V

 is the energy density of longitudinal phonons (since 

 

as we proved only longitudinal phonons interact with electrons).
Also , as we noticed, for a monovalent metalic material we can take N = Ne , n = ne . 
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According to Chap. Phononic gas we have 

U=
k b

4 T 4V

2ℏ3 cP
3 π2 ∫

0

θ/T
x3 d x

exp(x)−1
+ 3

8
N k bθ  with θ  -Debye temperature, k bθ=ℏωmax   

 N= V

6π2 cP
3 ωmax

3  , ωmax=cP  
3√ 6 N π2

V
 

 For θ
T
≪1  we have U≈ 3

8
N k bθ+N k b T≈N k b T  

 and for θ
T
≫1  we have U≈

π2 kb
4T 4 V

30 cP
3 ℏ3 + 3

8
N kbθ

 

In (11) the factor ½ accounts for the fact that electrons are likely to be moving in 
either direction. Only half contribute to the flux at a node location x . 

 Therefore qi=nu2τ d ε
d T (− ∂T

∂ xi
)   ,  q⃗=− 1

3
w2 τ 1

V (∂U
∂T )

V

(∇T )  and so, since 

 τ
V
= m∗

N e2 σc  we derive κσ c
= 1

3
m∗ w2

N e2 CV=
2
3

ε
N e2 CV   

 with  CV=(∂U
∂T )

V

 -the specific heat of the metal (for longitudinal phonons only) 

CV=N k b  for θ
T
≪1    ,   CV=

2
15

π2 kb
4T 3

cP
3 ℏ3  for θ

T
≫1   .  

 

Obviously the the total specific heat of the metal is related to the considered above 

 specific heat by a factor of cP
3 ( 2

cT
3 +

1

cP
3 )  ( see Chap. Phononic gas ).   
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                              Hall effect. Quantum Hall effect 
                   Fractional Hall effect. Topological insulators 

Consider a flat rectangular conductor plate of length L in direction x , width w in 
direction y , and thickness b in direction z .
 A constant magnetic field (0,0 ,B z)=B⃗  is applied in direction z  and a Hall  
 voltage V H  is applied on the lenght sides from right to left in direction y  in the 
 positive oriented frame (O , x , y , z) .

 

VH is the work done by the system in transporting an unit of charge through the plate 

 in y  direction. Thus we have an electric field E⃗=(0 , E y ,0)   ,  E y=−
V H

w
 .  

The Lorentz force acting on conduction electrons which can move freely in the 
 the (O x y)  plane is F⃗=e E⃗+e( v⃗×B⃗)   where  v⃗   is the velocity of electrons and 
e  is the electron charge. 

 

 Solving the m ˙⃗v=F⃗  equation of motion with v⃗  restricted to the (O x y)  plane we 

 find out that           m v̈ x=e v̇ y B z=
e
m
(e E y−e v x Bz)Bz

                              m v̈ y=−e v̇ x Bz=−
e2

m
v y B z

2

                             
d2

d t 2 (e E y−e v x Bz)=−( e Bz

m )
2

(e E y−e v x B z)   

 and so with  ω=
e B z

m
     we have v y=C sin (ω t)     ,    v x=−C cos (ω t)+

E y

Bz

 

Therefore a drift velocity appears in direction x :

w x=
E y

Bz

=−
V H

w B z

   

If n is the volumic concentration of conduction electrons in the plate we obtain a 
current intensity in direction x in the plate given by :

I x=n e w x w b=−
n e bV H

Bz

 and a Hall resistance RH=
V H

I x

=−
B z

ne b
 . 

 Also the occuring current density in direction x  is jx=n e w x=
n e
Bz

E y  and so we  

 have a Hall transversal conductivity σ x y=
ne
Bz

 with jx=σ x y E y

 

In the classical Hall effect a current I flows through a flat conductor plate on which a 
perpendicular to its surface external magnetic field is applied. The flowing charge 
carriers in the presence of the external magnetic field are sideway drifting under the 
action of the Lorentz force and so on the edges of the plate, perpendicular to the 
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current, a Hall voltage VH appears so that we have a relation RH = VH / I as we 
established above.
At sufficiently low temperatures and sufficiently strong magnetic fields, the inverse 
Hall resistance 1/RH takes quantized values due to effects appearing in the quantum 
Hall system of electrons moving in a plane in presence of an external magnetic field.
 If the field B⃗=(0,0 ,B)  is sufficiently strong, its effect dominates over the   
spin-orbit coupling and so all electrons in the quantum Hall system will have spin up 
(since the magnetic moment of the electrons aligns itself with the magnetic field) and 
so the can be treated as spinless charged particles.
 Considering the gauge with A=(Aμ)μ=(0 , A⃗)=(0,0 ,−B x , 0)  and  m  the effective 

 mass of the conduction electrons in the plate (defined by 
1
m
=∂

2 E

∂k 2    , E=E (k)  -the 

 energy levels corresponding to one single atom unperturbed solution from 

 

the crystal lattice ) (see Chap. Phonon-electron interaction) , dropping the the z 
dependence (since the electrons move in the (O x y) plane) we find out that in the 
 presence of the magnetic field B⃗=−∇× A⃗  the wave functions of the electrons 
ψ=ψ(t , x⃗)=exp (−i E t )ψ( x⃗)  with x⃗=(x , y)  satisfy the time independent  

 Schroedinger equation ( 1
2m

p x
2+ 1

2 m
(p y−e B x)2)ψ=Eψ               (1) with 

p=(p x , p y)=−i(∂x ,∂y)  (considering as usual c=1  , ℏ=1 ) 

 

 Searching for solutions ψ=ξ(x)exp (ik y y)  we obtain 

− 1
2m

ξ″(x)+ 1
2m

(−e B x+k y)
2ξ(x)=Eξ(x)           (2) 

 

 Taking ζ=x−
k y

e B
  ,  u(ζ)=ξ(x)  we will have 

u″(ζ)+2 m(E−
(e B)2

2m
ζ2)u(ζ)=0

 

As in Chap. Quantum harmonic oscillator we obtain for u = u (ζ) the solutions 

un(ζ)=u0 exp(− 1
2
χ2)Hn(χ)     where χ= ζ

ζ0
  ,  ζ0

2= 1
mω

  ,  ω=e B
m

     and 

Hn  are the Hermite polynomials 

Hn(χ)=(−1)n exp(χ2) dn

d χn exp(−χ2)=∑
k=0

⌊n /2⌋

n!
(−1)k

k!(n−2k)!
(2χ)n−2k   

 which are a complete system in Lexp(−χ2)
2 (ℝ)  having 

∫
−∞

∞

Hn(χ)H m(χ)exp(−χ2)d χ=√π  2n n!δnm   

E=En=(n+
1
2
)ω   ,  n∈ℕ  quantizes the Landau levels of energy.  

 

(we suppose here e B > 0 )
If Lx is the dimension of the plate in direction x and Ly is the dimension of the plate in 
direction y , since we assume Born-Karman cyclic boundary conditions
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ψ (x , y + Ly) = ψ (x, y)   we will have k y=
2π
L y

κ  with κ∈ℤ  .  

The motion equation corresponding to the Hamiltonian (1) is 

m ẍ= ṗx=−
2

2m
(−k y+e B x)  and for having periodic motion of the harmonic 

 oscillation, −k y+e B x  must have a vanishing point for x  in the [a ,a+Lx ]   
 

domain of the x coordinates of the plate points (the rest point of the oscillator must 
 be in [a ,a+Lx ]  ) and so k y∈[e B a , e B a+e B Lx ]   . 

 Therefore κ∈[ e B a L y

2π
,
e B a L y

2π
+

e B Lx Ly

2π ]  and any Landau level has a  

 degeneracy of 
|e B S|

2π
 where S=Lx L y  is the area of the conductor plate. 

  ( we have L x=L  , L y=w  , S=Lw  ) 

 

 The magnetic elementar charge is 2π
e

 ( see Chap. Magnetic monopole) and so 

|e B S|
2π =N ϕ  is also the number of flux quanta passing through the conductor plate. 

 

We define a filling factor ν=
N e

Nϕ
 where N e  is the number of conduction electrons  

in the plate. When the Fermi level is between the ν -th and the ν +1 -th Landau level, 
the first ν Landau levels are totally filled and the levels above the ν -th Landau level 
are empty ( at low absolute temperature ) (see Chap. Phonon-electron interaction) .
So the filling factor is given by ν -th level of the Fermi level as a Landau level.
The current density in direction x is then 

jx=ne w x=
e N e

S b
E y

B
= e2

2πb
N e

N ϕ
E y=ν

e2

2π E y  and so (restoring the Planck constant) 

 we obtain σ x y=ν
e2

b h
  , I x= jx w b=−σ x y V H b  , 

1
RH

=−ν e2

h

 

We notice that for ν = Ne / Nφ equal to an integer the Hall fluid of electrons is 
incompressible. Any attempt to compress it lessens the degeneracy of the Landau 
levels (the effective area S decreases and so the degeneracy e B S / 2 π decreases) and 
forces some of the electrons to the next level , costing lots of energy.
An electric field Ey imposed on the Hall fluid in the y  direction produces a current 

 density jx=σx y E y  in x  direction with σ x y=ν
e2

bh
  (here j x  is the  

 three-dimensional current density. However, the plate has a small thickness and  
 we can consider the two-dimensional current density J x= j x b  and so 

J x=~σ x y E y  with quantized ~σ x y=ν
e2

h
 . 
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By experiments we discover that the Hall fluid is also incompressible for a fractional 
filling factor ν = Ne / Nφ (more precisely for ν -1 being an integer odd number). This is 
because of the interaction between electrons moving in the presence of the magnetic 
field. Saying the first Landau level is one third filled for example ν = 1/3 with 
non-interacting spinless electrons does not define an unique many-body state: there is 
an enormous degeneracy since each of the electrons can go into any of the 
e B S
2π

 states available, subject only to Pauli exclusion. But as soon as we consider  

repulsive interaction between the electrons a presumably unique ground state is 
picked out within the wast space of degenerate states for certain values of ν . 
Suppose that ν -1 flux quanta are somehow bound to each electron ( Nφ / Ne = ν -1 ) .
So we arise to a theory of fractional quasiparticles ( ν = 1/κ and an electron state can 
be considered as a tensorial product of  κ qua siparticles states ) in which the 
worldlines of quasiparticles braid around each other in (2+1) space-time (we are still 
in the case of the plane conductor plate). 
 Consider two undistinguishable quasiparticles at positions x1

i , x2
i  at some initial  

 time and end up at positions x1
f , x2

f  a time T  later. In the path integral  

 representation ⟨ x1
f , x2

f|exp (−i Ĥ T )|x1
i , x2

i ⟩  we have to sum over all paths.  

 

In space-time the worldlines of the two particles braid around each other (we are 
implicitly assuming that the particles cannot go through each other , which is the case 
if there is a hard core repulsion between them). The path can be divided into 
topologically distinct classes, characterized by an integer n equal to the number of 
timesthe worldlines of the two particles braid around each other. Since the classes 
cannot be deformed into each other, the corresponding amplitudes cannot interfere 
quantum mechanically and with the amplitudes in each class we are allowed to 
associate an additional phase factor exp (iαn)  beyond the usual factor coming from  
the action . The dependence of αn on n is determined by how the quantum amplitudes 
are to be combined. 
 Suppose one particle goes around the other through an angle Δφ1 ,  a history to  
 which we assign an additional phase factor exp(i f (Δφ1))  with f  some as yet 

 

unknown function. Suppose this history is followed by another history in which our 
 particle goes around the other by an additional angle Δ φ2  . The phase factor 
exp(i f (Δφ1+Δφ2))  we assign to the combined history has to satisfy the  
 composition law exp (i f (Δφ1+Δφ2))=exp(i f (Δ φ1))exp(i f (Δφ2))  . Therefore,  

 

since it is supposed to be continuous, f must be a linear function of its argument.
Weconclude that in (2+1) dimensional space-time we can associate with the quantum 
amplitude in which one particle goes around the other anticlockwise through an angle
Δ φ  a phase factor exp(i(θ/π)Δφ)  with θ  an arbitrary real parameter.  Note that 
 when one one particle goes around the other clockwise through an angle Δφ ,  
 the quantum amplitude acquires a phase factor exp(−i(θ/π)Δφ) .

 

When we interchange two such anyons, we have to be careful to specify whether we 
do it “anticlockwise” or “clockwise ” producing factors exp(i θ) and exp(- i θ) 
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respectively. This indicates imediately that parity P (and considering CPT theorem , 
time reversal T) are violated.

The Lagrangian density describing non-interacting spinless electrons in presence of a 
 electromagnetic field having four-potential A=(Aμ)μ  is 

~ℒ 0=ψ
+ i(∂0+i e A0)ψ+

1
2m
∑
j=1

3

ψ+ (∂ j+i e A j)
2ψ   with  m  -effective mass of the 

 electrons ψ=ψ(t , x)  complex scalar electron field . 

 

 Indeed, rewriting the ψ+ (∂ j+i e A j)
2ψ  term as the path integral formalism  

 equivalent (by integration by parts) term −((∂ j−i e A j)ψ
+ )(∂ j+i e A j)ψ  the  

 motion equations dμ( ∂ ~ℒ 0

∂(∂μψ
+))−∂

~ℒ0

∂ψ+ =0  lead to Schroedinger equation 

i∂0ψ=( 1
2 m
∑
j=1

3

( p̂ j+e A j)
2+A0)ψ  with p̂ j=−i∂ j  which means that we obtain 

 

precisely the Hamiltonian operator of a charged spinless particle in electromagnetic 
 field (we notice that above we have taken the potential as A=A (x)  with the 
 gauge ∂ j A j=0  ) .

 

Restricting to a (2+1) dimensional space-time we obtain for the invariance of the 
 Lagrangian density under ψ→exp (iθ)ψ  with θ  as a real infinitesimal parameter 
(see Chap. Lagrangian field theory. Noether theorem) a conserved current given by 

(Jμ)μ=0 ,2=(ψ
+ ψ  , 

i
2m

((∂ jψ
+)ψ−ψ+ ∂ jψ)j=1 ,2)  and so, ignoring the O(A2)   

 terms we can write the Lagrangian density as 
~ℒ 0=ψ

+ i∂0ψ−
1

2m
∂ jψ

+ ∂ jψ−Jμ Aμ=ℒ 0−Jμ Aμ

 

 The current being conserved we have ∂μ Jμ=0  and so we can define a vector  

 potential (aμ)μ=0 ,2  such that Jμ=− 1
2π
ϵμ νλ∂ν aλ  with ϵμν λ=ϵ

μνλ  the signature of 

 the permutation (μ ν λ
0 1 2).  ( we consider B>0  ) 

 

 When we transform aμ→aμ+∂μΛ  with Λ=Λ(t , x⃗)  the current (Jμ)μ  remains  
 unchanged and so we can consider (aμ)μ  as a gauge potential. 

 

A gauge invariant theory of the interacting electrons as systems of quasiparticles in a 
electromagnetic field, interesting only physics at long distances and large time, that is 
small wave numbers and low frequencies so that second order derivatives in space-
time variables can be ignored, will be described by a Lagrangian density
ℒ= κ

4 π aμϵ
μν λ∂νaλ+ℒq+aμ jμ−e Jμ Aμ       (3)  

 where ℒ q  is the Lagrangian density for the free quasiparticles field, that is 
 

considered as the particles field coupling to the gauge potential ( aμ )μ  and has the 
conserved current ( jμ )μ . 
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As free particles the quasiparticles are fermions and 
ℒ q  can be a Dirac Lagrangian density in (2+1) dimensional space-time or a  
Lagrangian density for free spinless charged particles. 
(it has significance that the quasiparticles obey to Fermi statistics as free from the 
gauge potential ( aμ )μ particles and that an electron can be considered equivalent to a 
defined number κ  of quasiparticles:  κ q = e  where  q  is the charge of a 
quasiparticle) . 
In the same way as for the Fadeev-Popov method in Chap.Quantum electrodynamics, 
we can fix the gauge for ( aμ )μ taking an effective Lagrangian density

ℒ eff=ℒ− 1
2ξ
(∂μaμ)

2  and for the gauge ξ=0  corresponding to ∂μaμ=0  we find 

 a propagator for the (aμ)μ  field given by 

Dλ ε(k)=(−
2π
κ iϵλ ερkρ−ξηλε)

1
k 2+iε

=− 2π
κ i ϵλ ερ kρ   

Dλ ε(x−y)= 1
(2π)3

∫Dλ ε(k)exp(i k (x− y))d3 k

 

 Defining ~j μ= jμ+ e
2π
ϵμ λ ν∂λ Aν  after integration by parts in the  Jμ Aμ  term and  

 integrating out the gauge field (aμ)μ  in the path integral formalism for the (3)  
Lagrangian density (see Chap. Path integral formalism ) we obtain an equivalent 
 action for the quasiparticles field given by 

S=πκ∫
~j λ(x)(∫ 1

(2π)3
i ϵλερkρ

k 2 exp (i k(x− y))d3 k)~j ε( y)d3 x d3 y+∫ℒq d3 x     (4) 

 

Expanding the first integrand from (4) we have a j j term , a A j term and a A A term.

 The j j  term is equal to πκ∫ jμ(x)
ϵμνλ∂ν
∂2 jλ(x)d3 x       (4')  

 With the gauge ∂μ Aμ=0  the A j  term turns out to be ∫− e
κ jμ(x)Aμ(x)d

3 x    (4'')  

 and the A A  term becomes 
e2

4 πκ∫−Aμ(x)ϵ
μν λ∂ν Aλ( x)d

3 x        (4''')  

 From (4') we conclude that quasiparticles interact with each other via 
π
κ jμ

ϵμ νλ∂ν
∂2 jλ  , from (4'') we derive that quasiparticles must have electric 

 charge e
κ=q  and taking ℒ em(A ,∂ A)=− e2

4πκ
Aμϵ

μνλ∂ν Aλ  , considering that 

∫ℒ em d3 x=∫(∂ℒ em

∂ Aμ
−dν ( ∂ℒ em

∂(∂ν Aμ))) Aμ+O ((A ,∂ A)2)d3 x  we can consider 

 that the electromagnetic term (4''') defines an electromagnetic current (J em
μ )μ  with 

e J em
μ =−(∂ℒ em

∂ Aμ
−dν( ∂ℒ em

∂(∂ν Aμ)))= e2

2πκ ϵ
μνλ∂ν Aλ  . 

 

Since A = ( A0 (x) , A1 (x) , A2 (x) ) in the (2+1) dimensional approach we will have 
for μ = 0 that the density of electrons is 

Page 6 of 9 401 of total 515  Gh.V.B. Introd. to...QFT 



N e

S
=J em

0 =− e B
2πκ  and since the number of flux quanta ( for B>0  ) is 

Nϕ=−
e B S
2π

 we obtain a filling factor ν=
N e

Nϕ
= 1
κ   where B=∂2 A1−∂1 A2  . 

 

 For μ=2   we obtain e J em
1 =ν e2

h
E2  where E2=∂0 A1−∂1 A0  is the electric field 

 in y  direction:  When an electric field E y  is applied in y  direction an electric 

 current appears in x  direction having density J x=ν e2

h
E y  . 

 

This is the fractional Hall effect since as we will prove , the filling factor ν =1 / κ is 
fractional ( an inverse odd number ). 
From the Lagrangian density (3) we derive Euler-Lagrange equations of motion for
 the field (aμ)μ   :  κ

2π ϵ
μν λ∂νaλ=− jμ       (5) 

 The Lagrangian density for the quasiparticles being ℒq+ jμaμ  from the  
 Aharonov-Bohm effect results that when one quasiparticle moves around another  
on the Γ=∂D  ,  Γ  surrounding the quasiparticle in D ,the wave function acquires 

 a phase Δφ=∫
Γ

a⃗ d x⃗=∫
D

(∂1a2−∂2a1)d
2 x⃗=− 2π

κ ∫ j0 d2 x⃗  . 

 The surrounded particle is in D  and so, since j0  is the probability density of the 
 quasiparticles, we have ∫

D

j0 d2 x⃗=1.

 

Thus when a quasiparticle moves around another (in the (O x y) plane) with an angle
π anticlockwise the wave function of the particle acquires a phase – π / κ and so the 
quasiparticles are anyons with a fractional statistics angle π / κ .
As we mentioned, a conduction electron in the plane conductor plate is equivalent to 
a product of κ quasiparticles. Thus when we interchange two electrons we 
interchange κ times two quasiparticles and according to Fermi statistics of 
quasiparticles, the combined wave function of the two electrons will be multiplied 
after interchanging with (- 1)κ . Since electrons are also fermions it follows that
ν−1=κ  must be an odd integer number.  
The interaction of conduction electrons in the conductor plate is now due the 
interaction of arbitrary quasiparticles which will have the tendency to bond each 
other into another electrons. Since κ quasiparticles form an electron, bond systems 
of κ quasiparticles from diferent electrons are forming. Interchanging two such bond 
systems means moving one bond system around the another with π angle and at the 
same time rotating each bond system around its center with a π angle. 
So we move κ quasiparticles around κ quasiparticles with a π angle which brings a 
 total phase factor exp(iκ2 π

κ)=exp(iκπ)  and we rotate the coordinates in each 
 bond system of κ  quasparticles with π  angle which since the quasiparticles are 

 

fermions and therefore behave like half integer spin particles brings a phase factor to 
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 the tensorial product wave function of exp(i 2κ π
2
)=exp(iκπ)  . So the total phase 

 factor is exp(iκπ)exp (iκπ)=1  and we conclude that the bond systems of κ  
 quasiparticles behave like bosons, obeying to Einstein-Bose statistics. 

 

Considering for a semiconductor or insulator flat plate as a simple example an edge 
 potential V e=V e( x⃗)  , x⃗=(x , y)∈ℝ2  which has significant values only in the   
close neighbourhood of the boundary of the plate domain, the time independent 
Schroedinger equation solutions in presence of an external magnetic field ( 0 , 0 , B ), 

( 1
2m

p x
2+ 1

2m
(p y−e B x)+V e( x⃗))ψ=Eψ  with m   -the effective mass of the 

 electrons, 1
m
=∂

2 E

∂ k2    , E=E(k )  the energy levels of electrons corresponding to a 
 

single atom unperturbed solution in the crystal lattice, will determine a dependence 
on (x , y) of the Landau levels at the edges of the sample such that the Landau levels
En are increasing at the edges (see fig.) (we can understand that in the way that for 
extracting an electron from the material at the edges we need to do some additional 
work which translates as overcoming the potential wall Ve  (x , y)) . 
            E

                                n = 3                     Edgechannel

                                                                Fermi level EF   
                                  n = 2
                                    n = 1                    Landau levels n = 1,2,3...

                                                                                x

                            sample 

  Since for semiconductors and insulators The Fermi level lays between the valence 
band and the conduction band, as we can see from figure in the interior of the sample 
there are no conduction levels below the Fermi level and electrons cannot move 
freely in the interior of the sample. The average occupation number of a En level at 

equilibrium temperature T is ⟨n⟩= 1
1+exp ((En−EF)/(k bT ))

 and so at the Fermi  

level, the Landau levels are half occupied and therefore electrons can have transitions 
between different energy levels when they are at the intersection between the Landau 
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levels and the Fermi level where the Landau levels are elevated. Therefore in the so 
arising edgechannels electrons are free to move, not being bounded on a specific 
location bounding valence band energy level. So conduction is possible in the 
edgeregions of the sample, in the presence of a magnetic field that induces the 
Landau levels. 
The material is no more an insulator in the topological invariant regions that are 
determined by the intersections of the Fermi level and the profiles of the Landau 
levels, which are commonly at the edges of the material.
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                                              Casimir effect  

Consider two parallel plane plates in vacuum separated by a distance D and the 
electromagnetic field between the plates with (E⃗ , B⃗)=(E⃗ , B⃗)(t , x)∈ℝ6 , E⃗=(Ei)i=1 ,3 , 
B⃗=(Bi)i=1 ,3 , x=(xi)i=1 ,3  , (t , x)∈ℝ4  electric intensity and respective magnetic  
induction fields between plates. As often before we will consider (by suitable 
choosing of time , length, electric charge measuring unities) that the speed of light in 
vacuum constant c = 1, the reduced Planck constant h = 1 , the electric permittivity of 
vacuum constant ε0 = 1 . 
The electromagnetic  field undergoes quantum fluctuations and would contribute with 
its two polarization degrees of freedom to the energy density of vacuum, the amount 

ε  =∫ ℏωk⃗

d3 k⃗
(2π)3

 energy of vacuum between the plates per unit volume,  where 

because of the established distance between plates, only certain discrete values of the
 momentum k⃗  are allowed.  (see Chap. Quantization of an electromagnetic field) . 
While ε is not observable, the shift Δε by disturbing the vacuum should be observable 
since we can control how we disturb the vacuum. The variation of Δε with the 
distance D would lead to a force acting between the plates known as the Casimir 
force.
To calculate this force we vary D , but then we would have to worry about how the 
energy density outside the plates varies. To avoid this we introduce three plates. We 
hold the two outer plates fixed and move only the inner plate. The outer plates are at 
distance L1 from each to other and the inner plate is at distance D from the left outer 
plate. If f (D) is the vacuum energy between plates at distance D from each other, the 
total vacuum energy between plates is E (D) = f (D) + f (L1 – D) and the Casimir force 

 acting on the inner plate is − ∂E
∂D
=f ′(L1−D)−f ′(D). 

To evaluate f (D) we consider as usual the electromagnetic field between plates 
 confined in a box B={x∈ℝ3|x1 , x2∈(0 , L)  , x3∈(0 , D)}  . Also we consider that B  
 has a conducting boundary such that (see Chap. Electric dipole ... ) E⃗  satisfies the  
 boundary conditions Ei(t , x1 , x2 ,0)=Ei(t , x1 , x2 ,D)=0  for  i=1 ,2   ;  

Ei(t ,0 , x2 , x3)=Ei(t , L, x2 , x3)=0  for i=2,3   ;  

Ei(t , x1 ,0 , x3)=Ei(t , x1, L , x3)=0    for i=1,3   .  

 

The Maxwell equations are :

∇×E⃗=− ∂ B⃗
∂ t

    (1) ;  ∇⋅B⃗=0      (2) ; ∇⋅E⃗=0      (3) ; ∇×B⃗=∂ E⃗
∂ t

      (4) ; 

 leading to ∂
2 E⃗

∂ t 2 −∇
2 E⃗=0      (5) ; ∂

2 B⃗

∂ t2 −∇
2 B⃗=0      (6) .
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 For t , x 1 , x2∈ℝ  let F (z)=E1(t , x1 , x2 , z+ 1
2

D)  . From the boundary conditions 

 we have F (− D
2
)=F(D

2
)=0  

  and for g(z)=1
2
(F (z)+F(− z))  , h(z)=1

2
(F(z)−F (−z))  we have 

g(− D
2
)=g(D

2
)=h(− D

2
)=h(D

2
)=0  . 

 

We can Fourier expand :

h=∑
m=0

∞
am cos(2πm

D
z)+∑

m=0

∞
bm sin(2πm

D
z)     with 

bm=
2
D
∫
−D/2

D/2

h(z)sin (2πm
D

z)d z    ,   am=
2
D
∫h(z)cos(2πm

D
z)d z   

 and since h  is odd we obtain h=∑
m=0

∞
bm sin(2πm

D
z)  . 

 

 We extend g  to ~g : [−D , D ]→ℝ  by 

~g (− D
2
− z)=−g(− D

2
+z)  , ~g (D

2
+z)=−g(D

2
− z)   for z∈[0 , D

2
]  and notice that 

~g  is a even function on [−D , D]  . 

 

Fourier expanding : 

~g=∑
m=0

∞
cm cos( πm

D
z)+∑

m=0

∞
dm sin (πm

D
z)    with 

cm=
1
D
∫
−D

D
~g (z)cos (πm

D
z)d z   ,  dm=

1
D
∫
−D

D
~g (z)sin (πm

D
z)d z  since ~g  is even 

  we obtain  dm=0  and also we have 

c2m=
1
D
∫
−D

D
~g (z)cos(2πm

D
z)d z= 2

D
∫
0

D /2

g(z)cos(2πm
D

z)d z+

+ 2
D
∫
0

D/2
~g (z+D

2
)cos (2πm

D
+mπ)d z= 2

D
∫
0

D /2

g(z)cos(2πm
D

z) z−
− 2

D
∫
0

D /2

g(D
2
− z)cos(2πm

D
z+mπ)d z=0  . 

 

Therefore we will have 

g=∑
m=0

∞
c2m+1cos ((2m+1) π

D
z)   ,  

F=g+h=∑
m=0

∞
c2m+1 cos((2 m+1)π

D
z)+bm sin (2πm

D
z)  . 
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E1(t , x1 , x2, z)=F (z−D
2
)=∑

m=0

∞
(−1)m(c2m+1 sin((2 m+1)π

D
z)+bm sin (2 mπ

D
z))   

E1(t , x1 , x2, x3)=∑
m=0

∞
Am(t , x1, x2)sin (mπ x 3

D )    which multiplied with sin(mπ x3

D )  
 and integrated over x3  on (0 , D)  leads to 

Am (t , x1 , x 2)= 2
D
∫
0

D

E1(t , x1, x2 , x3)sin(mπ x3

D )d x 3

 and so Am(t , x 1,0)=Am(t , x1 , L) .

 

In the same way as above we obtain 

Am(t , x1, x2)=∑
n=0

∞
Am n(t , x1)sin (nπ x2

L )  and so 

E1(t , x1 , x2, x3)= ∑
n2 ,n3=0

∞
An2n3(t , x1)sin (n2π x2

L )sin (n3π x 3

D )   and we have analog 

 relations for E2  and  E3  . 

 

Considering the above results we will seek for solutions for the Maxwell system of 
equations on B with the given boundary conditions that have the form 

E1=C1( t)A1(x
1)sin (n2π x2

L )sin (n3π x3

D )   
E2=C2(t)A2( x

2)sin(n1π x1

L )sin (n3π x3

D )   
E3=C3(t)A3(x

3)sin (n1π x1

L )sin(n2π x 2

L )
 

Indexing ( t , x)=(xα)α=0 ,3  with the notation G,α=
∂G
∂ xα

, from the Maxwell equations  

 we obtain E1 ,0 0=B3 ,0 2−B2 ,03=E1 ,022+E1,0 33−E2 ,012−E3 ,0 13  , 

C1″(t) A1(x
1)sin (n2π x2

L )sin(n3π x3

D )=
=−(n2

2π2

L2 +
n3

2π2

D2 )C1(t) A1(x
1)sin (n2π x2

L )sin(n3π x3

D )−
−C1′(t)A2′(x

2)
n1π
L

cos(n1π x1

L )sin (n3π x3

D )−
−C3′(t)A3′(x

3)
n1π

L
cos (n1π x1

L )sin (n2π x2

L )

 

This relation is of the form
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(C1″(t)+(n2
2π2

L2 +
n3

2π2

D2 )C1(t)) A1(x
1)H (x2 , x 3)=cos (n1π x1

L )G (t , x2 , x3)   

 and therefore we must take A1(x
1)=C cos(n1 π x1

L )  with  C  a constant. 

 

Having the freedom of choosing Ci (t) we can take C = 1 . 
In the same way we derive similar relations for A2 , A3 and so we have

A1(x
1)=cos(n1π x1

L )    ,   A2(x
2)=cos(n2π x2

L )    ,   A3( x
3)=cos (n3π x3

D )    
 and from (5) we obtain now C i″(t)=−ω k⃗

2 C i(t )

 with ωk⃗=‖k⃗‖ , k⃗=(n1π
L

,
n2π
L

,
n3 π
D )

 

 Hence the solutions for E⃗  are of the form E⃗= ∑
n1 ,n2 ,n3∈ℕ

E⃗(k⃗)+~⃗E( k⃗)   (7) where 

E1
( k⃗)=A1

( k⃗)cos (k1 x1)sin (k 2 x2)sin (k 3 x 3)cos(ω k⃗ t )   

E2
( k⃗)=A2

( k⃗)sin (k 1 x1)cos (k 2 x2)sin (k 3 x 3)cos(ω k⃗ t )   

E3
( k⃗)=A3

( k⃗)sin (k 1 x1)sin (k 2 x 2)cos (k 3 x 3)cos(ω k⃗ t )   
~E1
( k⃗)=~A1

( k⃗)cos (k1 x1)sin (k 2 x2)sin (k 3 x 3)sin(ω k⃗ t)   
~E2
( k⃗)=~A2

( k⃗)sin (k 1 x1)cos (k 2 x2)sin (k 3 x 3)sin(ω k⃗ t)   
~E3
( k⃗)=~A3

( k⃗)sin (k 1 x1)sin (k 2 x 2)cos (k 3 x 3)sin(ω k⃗ t)  . 

 

 with k⃗⋅A⃗( k⃗)=0  , k⃗⋅~⃗A(k⃗)=0    (because ∇⋅E⃗=0 ) k⃗=(k i)i=(n1π
L

,
n2π
L

,
n3π
D )   

A⃗(k⃗)=(Ai
(k⃗))i     ,    

~⃗A(k⃗)=(~Ai
(k⃗))i  . 

 

 We notice that if ni=0  then E⃗(k⃗)  and 
~⃗
E( k⃗)  has only the i  -direction component 

 not vanishing and if ni≠0  we can decompose A⃗( k⃗)  and ~⃗A( k⃗)  in two normal to k⃗   
 components that are independent. 

 

 Thus (7) becomes E⃗=∑⃗
k
∑

p∈W
k⃗

(E⃗ k⃗
pexp (−i(ωk⃗ t−k⃗⋅x))+ E⃗ k⃗

p∗ exp(i(ωk⃗ t−k⃗⋅x)))   

 with k⃗=(n1π
L

,
n2π
L

,
n3π
D )  , n1 , n2 , n3∈ℤ   ,  ω

k⃗
=‖k⃗‖  ,  k⃗⋅E⃗

k⃗
p=0   ,  E⃗

k⃗
p∈ℂ3  , 

W k⃗={1} if n1n2 n3=0  and W k⃗={1,2}  if n1 n2 n3≠0.

 

Therefore (see Chap. Quantization of a electromagnetic field) the vacuum energy 
between the two plates, for the B domain with conducting boundary is 

f (D)= ∑
n1 ,n2 ,n3∈ℤ∗

ℏωk⃗+
1
2
∑

n1 ,n 2 ,n3∈ℤ
n1 n 2n 3=0

ℏω k⃗  .  

The sums are obviously divergent . We take a cutoff of the k -domain by excluding 
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 large k=‖k⃗‖ through a factor exp(−k /kc)  with kc≫1   . For large L  we turn the 
 sum over n1 ,n2  into an integral over k1 , k2  and so (restoring ℏ , c ) we obtain: 

f (D)=ℏ c L2

π2 (2 ∑n 3=1

∞

∫(k1
2+k 2

2+
n3

2 π2

D2 )
1/2

exp(−k
kc

)d k1 d k 2+

+ 1
2
∫(k 1

2+k 2
2)1/2 exp(−κ

k c

)d k1 d k2)    with k=(k1
2+k 2

2+
n3

2π2

D2 )
1/2

  ,  κ=(k 1
2+k2

2)1 /2   

f (D)=ℏ c L2

π2 (2∑
n=1

∞

∫
nπ /D

∞

2π k2 exp(−k /kc)d k+ 1
2
∫
0

∞

2π κ2 exp(−κ/k c)d κ)  

 

After some calculus we derive 

f (D)=
ℏ c L2k c

3

π (a2 d2

d a2 ( 4
1−exp(−a))−a

d
d a ( 8

1−exp(−a))+ 8exp (−a)
1−exp(−a)

+2)= 

=2ℏ cπ2 L2

D3

~f (a)    where a= π
k c D

  ,  

~f (a)=2exp (−a)(1+exp(−a))
a(1−exp(−a))3

+ 4 exp (−a)
a2(1−exp (−a))2

+ 1+3exp (−a)
a3(1−exp(−a))

 . 

 

 We can verify that lim
a→0

~f (a)a4=12  . 

 Let a
1−exp(−a)

=w(a)  . We have that w  is class C∞  in a neighbourhood of a=0  
 

 and we denote f q=lim
a→0

w(q)(a)  for q=0 ,5  having therefore 

f 0=1  , f 1=
1
2

( a
1−exp(−a)

(1−exp (−a)))
(q)

=δ1q  for q≥1    and so 

∑
s=0

q

(qs)((−1)s+1+δ0 s)w
(q−s)(a)=δ1q  , 

w(q )(a)= 1
1−exp(−a)(δ1 q+∑

s=1

q

(qs)(−1)sexp (−a)w(q−s)(a))

 

Applying l’Hospital rule to the last relation we obtain 

f q=
1

1+q
(−1)q+1(f 0+∑

s=1

q−1

(q+1
s )(−1)s f s)     for q>1      (8) .  

 We compute f q  for q=0,5  using recurence formula (8) and then, succesively 
 differentiating and having ( f q)q=0 ,5  we compute now 

lim
a→0
(w3(a))(q)  and lim

a→0
(w2(a))(q)  for q=0 ,5  and then with the relation
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lim
a→0
(~f (a)a4)(q)=

=lim
a→0
∑
s=0

q

(−1)s(qs)(2(w3(a))(q−s)(1+2s)+4(w2(a))(q−s)+(δ0 s+3)w(q−s)(a))  we can 

 compute the coefficients cq=lim
a→0
(~f (a)a4)(q )  for q=0,5

 

Thus we obtain 

f 0=1 , f 1=
1
2

, f 2=
1
6

, f 3=0 , f 4=−
1
30

, f 5=0 ,  

c0=12 , c1=−1 , c2=0 , c3=0 , c4=−
2

15
, c5=−28  , 

f (D)=2ℏ c π2 L2

D3 a3 (12 kc D
π −1− π3

180k c
3 D3−

7 π4

30 k c
4 D4 +O(a4))=

=24 ℏ c L2

π2 kc
4 D−2ℏ c L2

π k c
3−ℏ c π2 L2

90 D3 −
7ℏ cπ3 L2

15k c D4 +
2ℏ cπ2 L2

D3 O( π
2

k c
2 D2 )  . 

 

 Hence for kc≫1  we can approximate 

E(D)≈24 ℏ c
π2 L2 kc

4 L1−
4 ℏ c
π k c

3−ℏ c π2

90
L2( 1

D3+
1

(L1−D)3 )  . 
 

The force acting on the inner plate is therefore 

F(D)=− ∂E
∂D
≈− 1

30
ℏ c π2 L2( 1

D4−
1

(L1−D)4 )  which for L1≫D  becomes 

F(D)≈− ℏ cπ2 L2

30 D4  and we conclude that there appears an attractive force between 

 the plates when they are at distance D  from each other, the attractive 

 pressure being p= 1
30
ℏ cπ2

D4  . 
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                                     Aharonov-Bohm effect 

An electron passing around a long solenoid would pick up a phase shift dependent on 
the magnetic field of the solenoid, even though the electrons themselves pass through 
a region of space which has a zero magnetic field. For an electron of charge e and 
mass m in an electromagnetic field  Having the four-potential (Aα)α=0 ,3=(φ , A⃗)    
we have a Hamiltonian (see Chap. Electromagnetic four-potential …) :

H=
( p⃗+e A⃗)2

2m
+eφ  . Therefore for the wave function (in the non-relativistic case) 

 of the electron ψ̄=ψ̄(t , x⃗)  we have ψ̄(t , x⃗)=exp(− i
ℏ Ĥ t)ψ( x⃗)  with ψ=ψ( x⃗)

 satisfying the time-independent Schroedinger equation Ĥ ψ=Eψ  for energy 
 levels E∈ℝ  that is: 

1
2 m

(−i ℏ ∇+e A⃗)2ψ( x⃗)=Eψ( x⃗)   (1) when we take the Coulomb gauge with φ=0.

 

Equation (1) is equivalent to :

∇2 ψ+ 2e i
ℏ A⃗⋅∇ ψ+ e i

ℏ (∇⋅A⃗)ψ+(2m

ℏ2 E− e2

ℏ2 A⃗2)ψ=0       (2)  

 Let ψ0=ψ0( x⃗)  a solution of (1) for A⃗=0  : ∇ 2ψ0+
2 m
ℏ2 Eψ0=0  .  

 Taking for each x⃗∈ℝ3  paths Γ( x⃗)  from 0⃗  to x⃗  defining 

ψ( x⃗)=ψ0( x⃗)exp(− i e
ℏ ∫

Γ(x⃗)
A⃗⋅d x⃗)  we have 

∇ψ=(∇ψ0)exp (− i e
ℏ ∫

Γ( x⃗)
A⃗⋅d x⃗)− i e

ℏ ψ0 A⃗ exp(− i e
ℏ ∫

Γ( x⃗)
A⃗⋅d x⃗)   

∇2 ψ=(∇ 2 ψ0−
2 ie
ℏ (∇ ψ0)⋅A⃗− ie

ℏ ψ0(∇⋅A⃗)− e2

ℏ2 ψ0 A⃗2)exp(− i e
ℏ ∫

Γ(x⃗)
A⃗⋅d x⃗)   

 and so ψ=ψ( x⃗)  satisfies (2)  . 

 

 We can take solutions ψ1=ψ1( x⃗)  , ψ2=ψ2( x⃗)  corresponding respective to  
 different choosing of paths Γ1=Γ1( x⃗)  , Γ2=Γ2( x⃗)  and Γ=Γ1∨(−Γ2)  the closed 

 path from 0⃗  to x⃗  and back from x⃗  to 0⃗ .

 

Between the solutions corresponding respectively to the two paths at the point with 

 coordinate x⃗  appears a phase difference Δφ= e
ℏ (∫Γ1

A⃗⋅d x⃗−∫
Γ2

A⃗⋅d x⃗)= e
ℏ∫Γ A⃗⋅d x⃗  . 

By Stokes theorem we derive Δφ= e
ℏ∫Σ (∇× A⃗)⋅nd σ  =− e

ℏ∫Σ B⃗⋅ndσ  =−eΦ
ℏ  

 where Σ  with normal n  is a surface surrounded by Γ .

 

The phase difference at a point is proportional to the flux of the magnetic field 
through a surface surrounded by the closed path containing the point. 
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The wave function will have a different phase depending on which path the electron 
is taking, left or right around the solenoid and so the double slit interference pattern is 
therefore modified by the phase difference (see fig.1) . Electrons emerging from S 
pass through two slits S1 and S2 interfering on an observation screen with the 
interference pattern shifted when a magnetic field changed.

 The electromagnetic potential vector is A⃗=B(− y

√x2+ y2
,

x

√x2+ y2
,0)  , 

 the magnetic field is B⃗=(0,0 , B

√x 2+ y 2
)  with B  -constant, the coordinates (x , y , z)

 system origin being at the center of the solenoid .

 

The direction of the magnetic field is outward from the figure and the arrow shows 
the orientation of the vector potential.
P0 -interference central maximum in absence of magnetic field.
P -interference  maximum in presence of magnetic field. 
At the interference maximum P on the observation screen the phase difference 

introduced by the  path lenght difference ‖⃗S1 P‖−‖⃗S2 P‖ wich for l≪D  is p
ℏ l sinθ   

must compensate the phase difference Δφ introduced by the presence of the magnetic 
field.
D  is the distance between the plane of the slits and the observation screen plane  ,
which planes are parallel and parallel to the z -axis, the magnetic field direction.
l  is the distance between slits ‖⃗S1 S2‖ and θ  is the angle between S⃗1 P  and S⃗ P0  , 
  S  is situated behind the slits at equal distances from them.

 

Thus the path difference compensation leads to 
p
ℏ (‖⃗S1 P‖−‖⃗S2 P‖)=Δφ=− eΦ

ℏ +2 nπ   with n∈ℤ  and in O(ε2)  approximation 

 where ε  = l
D

     (see Chap. Wave propagation) p=‖p⃗‖=ℏ
λ  , 

λ  -de Broglie wavelenght of the electron. 

 we will have ‖⃗S1 P‖−‖⃗S2 P‖≈lsin θ   ,  ‖⃗P0 P‖≈|D tanθ− l
2|≈|D sinθ− l

2|
 

 Taking S0  the middle of the segment S1 S2  and considering α  the angle between 

S⃗0 P  and S⃗0 P0  we obtain 

|α |≈
‖⃗P0 P‖

D
 , α≈−eΦ+2nπℏ

pl
− l

2 D
 , θ≈−eΦ+2 nπℏ

p l
.

 

Obviously the closest to P0  interference maximum is obtained for 

n=⌊2 eΦD+ pl2

4πℏ D
+ 1

2 ⌋  and is determined by the corresponding value of α  .  

(see fig.2) 
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                     Mott scatering. Scattering of a spin ½ particle 
                     on a spinless charged particle. Spin Hall effect

As before we take the speed of light in vacuum constant c = 1 , reduced Planck 
constant h = 1 , electric permittivity of vacuum ε = 1 (by suitable choosing of 
measuring units for time , length and electric charge).
Let p be the incoming four-momentum of the charged spin ½ particle with charge q1 
and mass m and k the incoming four-momentum of the spinless particle having 
charge q2 and mass μ . The mass μ is supposed to be much larger than the mass m and 
so we can consider the scattering in the mass center frame of the particles which in 
this case can be assimilated to the lab frame where the heavier particle is at rest.
Then according to Feynman rules (see Chap. Feynman amplitudes and lattice gauge 
theory) , the Feynman amplitude of the scattering process at q1 q2 first order is 

A=(2π)4 M δ4(p+k− p′−k′)  , 

M=−i q1 q2 u(p′) γμu(p) 1
(p−p′)2

(k+k ′)μ  , 
 

where p’ , k’ are the outgoing four-momenta of the fermion respective the spinless 
particle.
 In the center of mass frame we have p⃗+k⃗= p⃗′+k⃗ ′=0  and energy conservation 
 leads to E=p0+k 0=p′0+k′0  , ‖p⃗‖=‖k⃗‖=‖p⃗′‖=‖⃗k′‖=r  , 

r= 1
2 E

((E2−(m+μ)2)(E2−(μ−m)2))1 /2  with p0= p′0=√r2+m2  , k 0=k ′0=√r2+μ2 . 

 

According to Chap. Canonical quantization of a scalar field, decay rate and cross 
section, taking as in Chap. Feynman amplitudes and lattice gauge theory, for the 
electron field the normalization Ep/m instead of 2ω(p) in the cross section formula, 
we will have a differential cross section given by 

d σ  
dΩ

= 1
|v1−v2|

4 m2

4 k 0 p0

1
(2π)2

2(k 0+ p0)r
8(k 0+ p0)

2
|M|2  

 where in the mass center frame v1=
r
p0

  ,  v 2=−
r
k0

  and so  

dσ  
dΩ

=m2

E2

1
(4π)2

|M|2  . 

 

As we proved in Chap. Anomalous magnetic moment of the electron we have the 
Gordon decomposition 

u(p′)γμu(p)= 1
2m

u(p′)((p′+ p)μ+iσ μν(p′−p)ν)u(p)  where σ μν=1
2

i [ γμ , γν]  .  

Thus 

M=
−i q1 q2

2m
u(p′)((p′+ p)(k′+k)+i(p′−p)ν(k′+k)μσ  μν)u(p) 1

(p′− p)2
 . 
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In the mass center frame we have
(p′+ p)(k′+k )=(p′+p)(2k+ p−p′)=2 k (p+ p′)=4 k 0 p0+2 p⃗( p⃗+ p⃗′)=

=4 k 0 p0+4 r 2cos2(θ/2)  considering that p2= p′2=m2  and θ  is the scattering 

 deflection angle between p⃗  and p⃗′ : p⃗⋅⃗p′=r 2cos (θ)  , p⃗× p⃗′=e3 r2 sin(θ)   ,  
 where e j=(δi j)i=1 ,3  for j=1 ,3 .

 

i(p′−p)ν (k+k′)μσ
 μ ν=−((p′−p)ν(k+k′)0−(p′−p)0(k+k′)ν) γ

0γν−   

−i(( p⃗′− p⃗)×( k⃗+ k⃗′))⋅⃗Σ=
 

=2k 0(γ
0 p−p′ γ0)−4 k 0 p0−2 i( p⃗× p⃗′)⋅⃗Σ  , where as usual p=γν pν   ,   

Σ⃗=(σ⃗ 0
0 σ⃗)   ,  σ⃗  =(σi)i=1 ,3  are the Pauli matrices. 

(p′−p)2=2 m2−2(m2+r2)+2r 2cos (θ)=−4 r2 sin2(θ/2)  . 
 

 Because u(p′) p′=mu(p′)   ,  pu(p)=m u(p)  we obtain  

M=
i q1 q2

m
(2 m k0 u(p′) γ0u(p)+

+2r2 cos2(θ/2)u(p′)u(p)−ir 2sin (θ)u(p′)Σ3 u(p)) 1

4 r 2sin2(θ/2)
 . 

 

Consider now a flat conductor plate in which exists a flux of  electrons j⃗  and we  
 always measure the spin in direction n⃗  . We have two relevant cases: 
 1) n⃗=e3  , j⃗∥e1  and (e1 , e2)  is the plane of the conductor plate; 

 2) n⃗=e3  , the conductor plate plane is (e2 , e3)  and j⃗∥(0 ,cos(φ) ,sin (φ))  . 
 

In the 1) case we measure the spin normal to the motion of electrons and in 2) case 
we measure the spin along a direction contained in the plane in which the electrons 
are constrained to move.
 Let ε ,ε′∈{± } the spin polarizations of the incoming respective outgoing  
electron in the scattering process. The charge carriers (electrons with mass m and 
charege e = - |e|) have spin up or down states along e3 and can scatter on impurities 
from the cristal lattice grid, impurities that build a network of heavy charged 
diffusion centers in the way of motion for the electrons. A diffusion center is 
considered to have charge q and mass μ .  
For a scattering on a diffusion center,  the p⃗′  outgoing moment of the electron   
is constrained to be in the (e1 , e2) plane in the 1) case and in the (e2 , e3) plane in the 
2) case and we will have  p⃗× p⃗′∥e3  , p⃗∥e1  in the 1) case and p⃗× p⃗′∥e1  ,  
 p⃗=r(0 ,cos(φ) ,sin (φ))  in the 2) case. 

 
We take first the 1) case: 

 

                   /                /        

 

            /  /                                                    /    
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 Let B=B(χ , e1)=(
cosh χ −sinhχ 0 0
−sinhχ cosh χ 0 0

0 0 1 0
0 0 0 1

)=exp(−χ K1)   

 where p=(p0 ,−r , 0 , 0)=(pα)α  as a column vector with 

B (
m
0
0
0
)= p   ,  sinh χ= r

m
  ,  cosh χ=

p0

m

 

R=R(θ , e3)=(
1 0 0 0
0 cosθ −sin θ 0
0 sin θ cosθ 0
0 0 0 1

)=exp(θJ 3)  , 

  K l , J l  , l=1,3  Lorentz group generators. 

 

(see Chap. Representations of the rotations group and of the restricted Lorentz group) 
 Then for P=cosh( χ

2
) I+sinh ( χ

2
) γ1γ0  , 

Q=cos( θ
2
)I−isin ( θ

2
)Σ3=cos( θ

2
)I+sin (θ

2
)γ1γ2  , 

uε=(wε

0
0 )   ,  w +=(10)   ,  w−=(01)   we will have:  

u(p)=P uε  , u(p′)=Q P uε′.

 

To compute M for the ε , ε’ spin polarizations of the incoming respective outgoing 
electrons we have to compute

u(p′) γ0 u(p)=uε′
+ P+ Q + P uε=H  , 

u(p′)u(p)=uε′
+ P+ Q + γ0 P uε=G  , 

u(p′)Σ3u(p)=uε′
+ P + Q + γ0Σ3 Puε=K  . 

 

After some calculus we obtain :
H=δεε′(cos( θ

2
)cosh χ+iεsin (θ

2
))  , 

G=δεε′(cos(θ
2
)+iεsin ( θ

2
)cosh χ)  , 

K=δεε′(εcos (θ
2
)coshχ+i sin( θ

2
))  , 

M= i e q

2m r2 sin2(θ/2)
δεε′((k0 p0+r 2)cos(θ

2
)+iεm k 0 sin( θ

2
))  , 

dσ  
dΩ

=( α2 E )
2 1

r 4 sin4 (θ/2)
((k0 p0+r 2)2cos2( θ

2
)+m2 k 0

2sin2(θ
2
))  . 
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(k 0 p0+r2)2 cos2( θ
2
)+m2 k0

2 sin2( θ
2
)=k 0

2 p0
2−k 0

2r 2sin2(θ
2
)+2 r2 k 0 p0 cos2( θ

2
)+

+r4 cos2( θ
2
)  . 

For r
m

, m
μ ∈O(ϵ)  in a non-relativistic approach we have 

r2 k 0 p0

(k 0 p0)
2
= r

m
r
p0

m
k 0

∈O(ϵ3)  

 

and so disposing of the O (ε3) terms we obtain 

dσ  
dΩ

=(α k0 p0

2 E )
2

1

r4 sin4(θ/2)
(1−v2 sin2( θ

2
))=(dσ  

dΩ )
Rutherford

(1−v2 sin2( θ
2
))   with  

v= r
p0

 the incoming velocity and α= e q
4 π  . 

 

As we can see, in the 1) case spin flipping is not allowed during the scattering process 
and the amplitude depends on the incoming spin polarization but the cross section 
does not depend on spin polarizations (since ε2 = 1).
However if there is a spin-orbit coupling between the electron and the diffusion 
center we expect the differential cross section to be spin polarization dependent since 
the spin-orbit coupling involves the magnetic moment of the electron and so different 
spin polarization electrons will be scattered at different angles. This fact can arise by 
higher order scattering Feynman diagrams since the amplitudes have to be added with 
the first order diagrams amplitudes and so ε comes in in the squared absolute 
amplitude.

In the case 2) we take 
B=exp(−χ K2)   ,  R=exp(θ J 1)   ,  S=exp(φ J 1)  , 

P=cosh( χ
2
) I+sinh ( χ

2
) γ2 γ0  , Q=cos( θ

2
)I−isin ( θ

2
) Σ1=cos( θ

2
)I+sin (θ

2
)γ2γ3  , 

C=cos( φ
2
) I−isin ( φ

2
)Σ1=cos ( φ

2
) I+sin ( φ

2
) γ2 γ3

 having u(p)=C P uε  , u( p′)=Q C P uε′   and we have to compute  

 

u(p′) γ0 u(p)=uε′
+ P+ C + Q+ C P uε=uε′

+ P+ Q+ P uε=
~H   

u(p′)u(p)=uε′
+ P + C + Q + γ0 C P uε=uε′

+ P + Q + γ0 Puε=
~G   

u(p′)Σ1 u(p)=uε′
+ P + C + Q + γ0 Σ1C Puε=uε′

+ P+ Q + γ0 Σ1 P uε=
~K  . 

 

We obtain 
~H=δεε′cos( θ

2
)cosh χ+i δ−ε′εsin( θ

2
)   

~G=δεε′cos( θ
2
)+i δ−ε′εsin ( θ

2
)coshχ  

~K=δ−εε′cos( θ
2
)coshχ+i δε′εsin ( θ

2
)   
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M= i e q

2m r2 sin2( θ
2
)(δεε′(p0 k0 cos( θ

2
)+r 2cos ( θ

2
))+δ−ε′ε im k 0sin ( θ

2
))   

d σ  
dΩ

=( α2 E )
2 1

r4 sin4( θ
2
)(δεε′(k 0 p0+r2)2 cos2( θ

2
)+δ−ε′εm

2 k 0
2sin2( θ

2
))   

 Considering again the non-relativistic case r
m

, m
μ ∈O(ϵ)  and disposing of all the 

O(ϵ3)  smaller terms we will have: 

 

d σ  
dΩ

=(α k0 p0

2 E )
2

1

r 4 sin4( θ
2
) (δεε′cos2( θ

2
)+δ−ε′ε sin2( θ

2
)−δ−ε′ε v2 sin2( θ

2
))  .  

Averaging over incomong spin polarizations (unpolarized incoming current) and 
summing over outgoing spin polarizations (outgoing spin polarization is not 
measured) we obtain the same differential cross section formula as in the 1) case, as 
expected.
We notice that at larger scattering angles appears spin flipping during the scattering 
process in the case 2) when the spin orientation is in the motion plane. 

As in Chap. Perturbation theory for the two-component Dirac equation, since the 
electron scatters in a Coulomb field we will have a spin-orbit interaction with a 
Larmor interaction energy given by
ΔH L=−gS

α
2m2 r3 L⃗⋅⃗S    with L⃗=m x⃗×v⃗   the angular momentum, gS≈2  the 

 gyromagnetic ratio and α= e q
4 π

 , x⃗  the position vector of the electron pointing 

 from the diffusion center, v⃗= d x⃗
d t

 , r=‖x⃗‖ . 

 

We have also a Thomas precession with an instantaneous rotation of the electron ret 
frame angular velocity 

  ω⃗T=−
1
2

v⃗×a⃗  where a⃗=d v⃗
d t

 is the acceleration of the electron.  

In the classical Coulomb scattering we have an acceleration

a⃗= 1
m
α
r3 x⃗  and so ω⃗T=

1
2m2

α
r 3 L⃗   ,  d a⃗

d t
=− 3α

mr 5 ( x⃗⋅⃗v) x⃗+ 1
m
α
r3 v⃗  .   

For the Thomas precession contribution to the energy we have to consider the inertial 
forces acting on the spinning ball to which we approximate the electron in its rest 
frame, having a uniformly distributed mass with density ρ and spinning angular 
velocity ω.
In the electron rest frame R’ , which has an instantaneous rotation of angular velocity
ωT (see Chap. Perturbation theory for the two-component Dirac equation) we have 

Page 5 of 22 422 of total 515  Gh.V.B. Introd. to...QFT 



 the Euler inertial forces field with density −ρ
d ω⃗T

d s′
×x⃗′  ( (s′ , x⃗′)  time-space 

 coordinates in R′  ) d t
d s′

=γ≈1  , γ= 1

√1−v2
 , 

d ω⃗T

d s′
≈

d ω⃗T

d t
=− 1

2
v⃗×( 3α

mr5 ( x⃗⋅⃗v) x⃗)= 3α
2m2r 5 ( x⃗⋅⃗v) L⃗  . 

 

In the cassical Coulomb scattering, when the electron is in the proximity of the 

diffusion centre, the distance r is near to its minimum and so x⃗⋅⃗v=1
2

d
d t

r2≈0  .  

Therefore we can neglect the influence of the Euler force on the scattering process.
 The centrifugal forces field is Fcf=−ρω⃗T×(ω⃗T×x⃗′)  and has an energy 

Ecf=
4πρR5

15
ωT

2=1
5

R2ωT
2 m  where R=3

5
e2

4πm
 is the estimated radius of the  

 

electron (see Chap. Perturbation theory for the two-component Dirac equation) . 

 Thus with 
e2

4π=
α
Z

 we have Ecf=
9

500
α4

Z2m5 r6 L⃗2  . 

 Since in the classical Coulomb scattering L⃗  is constant we take the centrifugal 

 forces energy contribution as a potential W=W (r)∝ 1

r6  . 

 

If we consider a scattering of electrons on impurities in a crystal lattice grid we can 
determine Z as the electric charge of one impurity node in the lattice grid which is the 
difference between the number of valence electrons of the impurity atom and the 
number of valence electrons of the majority atom of the lattice grid ( Z can be 
positive or negative and has the same sign as α ) .
 The Coriolis inertial forces field is F cor=−2ρ(ω⃗T×(ω⃗× x⃗′))  .  
As we noticed in Chap. Perturbation theory for the two-component Dirac equation , 

for the spin angular momentum we must have  S⃗=2
5

m R2 ω⃗  and so  

F cor=−
5

m R2 ρ(ω⃗T×( S⃗×x⃗′))=125
18

Z2

α
ρ

m r3 (( L⃗⋅⃗S) x⃗′−( L⃗⋅⃗x′) S⃗)  .  

 If L⃗∥S⃗  ( which is the situation in the 1) case ), the Coriolis forces field is 
 is conservative and we have a corresponding energy 
Ecor=∫

B

( ∫
Γ(x⃗′)

−2ρ(ω⃗T×(ω⃗×x⃗″))d x⃗″)d3 x⃗′    where B  is the electron ball of  

 radius R  , Γ( x⃗′)  is a path from the origin to x⃗′∈B   . 

 

Thus in the 1) case we have 

Ecor=
8πρ
15

R5 ω⃗⋅ω⃗T=
α

2 m2 r3 L⃗⋅⃗S  .  
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In the 2) case we take the conservative part of the Coriolis force field which can be
~Fcor ( x⃗′)=

125
18

Z2

α
ρ

m r3 (( L⃗⋅⃗S) x⃗′−(Li x′i Si)i=1 ,3)  and 

Ecor=∫
B

( ∫
Γ( x⃗′)

~Fcor ( x⃗″)d x⃗″)d3 x⃗′= α
2 m2r3 L⃗⋅⃗S  . 

 

The dissipation generated by the non-conservative part of the Coriolis force field in 
the 2) case on a closed path Γ in the R’ frame is according tho Stokes theorem 
 proportional to the flux of S⃗×L⃗  through the surface surrounded by Γ  and since 
L⃗  is constant  in the classical Coulomb scattering 
 and as we will see the motion equations determined with the conservative part 
 potential additional spin-orbit interaction energy are in the 2) case not 
 dependendent on spin, to compensate this dissipation we will have the flipping of 
 the spin angular momentum S⃗  during the scattering process in the 2) case. 

 

Hence we have a spin-orbit interaction energy 

ΔH=ΔH L+W +Ecor=−
(gS−1)α

2m2r 3 L⃗⋅⃗S+ 9
500

α4

Z2

1

m5 r6 L⃗2  .  

As in the classical Coulomb scattering (see I. Ința, S. Dumitru Complemente de 
fizică) , we consider a shock parameter ρ (do not confuse with the density of the 
electron ball above) which is the distance between the initial motion line and the axis 
parallel to the incoming moment p⃗  with ‖p⃗‖=m v∞   through the spinless heavy 
diffusion center so that we have L⃗∞=−ρm v∞ e3  in the 1) case and L⃗∞=−ρm v∞ e1   

in the 2) case and in both cases we take W=W (r)= 9
500

α4

Z2

1
m3 r6 ρ

2 v∞
2  , r=‖⃗x‖ .  

The work done by spin-orbit interaction forces to time moment t is 

ΔH=W (r)−
gS−1

2m r3 α(q×q̇)⋅⃗S−H0  where H0  is a zero point energy and 

q= x⃗  are the position coordinates. 

 

 Therefore since ΔH=∫
0

t

(∂(ΔH)
∂ q̇

q̈+
∂(ΔH )
∂q

q̇)d t  

 and for T=1
2

m q̇2  kinetic energy and V=α
r

 the Coulomb potential we must have 

 

∫
0

t

(∂T
∂ q̇

q̈−∂T
∂q

q̇)d t=∫
0

t

− ∂V
∂q

q̇ d t−ΔH  on solutions with q̇(0)=q̇(t)=0   

 and integrating by parts we obtain 

∫
0

t ( d
d t (∂T

∂ q̇ ) q̇−∂T
∂q

q̇+ ∂V
∂q

q̇− d
d t (∂(ΔH )

∂ q̇ ) q̇+∂(ΔH )
∂q

q̇)d t=0

 

we conclude that the Lagrangian of the system is
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L=L(q , q̇)=T−V−ΔH=mq̇2

2
−A (r)−m M

r3 (q×q̇)⋅⃗S   where  A (r)=α
r
+W (r)  , 

  M=−
(gS−1)α

2m2  , r=√q2  . 

 

Introducing the generalized moment coordinates 

p=∂ L
∂ q̇

=m q̇−m M
r 3 S⃗×q  we have a Hamiltonian 

H= p q̇−L= p2

2m
+A (r)+ M

r3 S⃗⋅(q× p)+ 1
2

m
M 2

r6 ( S⃗×q)2
 

The Hamilton-Jacobi system is 

q̇=∂H
∂ p

= p
m
+M

r3 S⃗×q  

ṗ=− ∂H
∂q

=−A′(r)q
r
+3

M

r5 (S⃗⋅(q×p))q+M

r 3 ( S⃗× p)+3
m M 2

r 8 ( S⃗×q)2q−

−m M2

r6 (S⃗2 q−( S⃗⋅q) S⃗)

 

In the 1) case, we notice from the system that if  q(0) , q̇(0)  are in the (e1 , e2)   
plane , then the entire solution (q , p) remains in the (e1 , e2) plane. Thus we have to 
consider only the (q1 , q2 , p1 , p2) variables and in the 1) case we will have

q×p∥S⃗∥e3   ,  S⃗⋅q=0  , S⃗⋅p=0  , q̇× p+q× ṗ=0  . 
 Hence in the 1) case q×p  is conserved in time and also H  is conserved in time. 

 

 Therefore we have q×p=Λ⃗=Λ e3=−ρm v∞e3  , 

p2

2m
+A (r)+ 1

8
M2

r 4 +
M

r3 S⃗⋅(q×p)=E=1
2

m v∞
2  during the motion in the 1) case. 

 

 with S⃗=1
2
εe3   ,  ε∈{±1} .  

From the HamiltonJacobi system we derive the motion equations

m q̈=α
r3 q−

W ′(r)
r

q+3
M

r5 ( S⃗⋅(q×p))q+3 m M2

r8 ( S⃗2 q−(S⃗⋅q)2 S⃗)−

− 3m M

r5 (q⋅q̇)( S⃗×q)+ 2m M

r3 ( S⃗×q̇)
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 In the 2) case we write the motion equations as m q̈i=Fi  , i=1 ,3  and have the  
 bounding x=0  choosing the generalized coordinates (q2 , q3)  with 

x=0   ,  y=q2   ,  z=q3   and therefore the generalized forces are  

Q2=F1
∂ x
∂ q2

F2
∂ y
∂ q2

+F3
∂ z
∂ q2

=F2  

Q3=F1
∂ x
∂q3

+F2
∂ y
∂q3

+F3
∂ z
∂ q3

=F3  . 

 

Thus in the 2) case we have 

q=(0 ,q2 , q3)  , S⃗×q=1
2
ε(−q2 ,0 ,0)  , 

p=m q̇−m M
r3 (S⃗×q)=( εm M

2 r3 q2, m q̇2 ,m q̇3)   ,  ( S⃗×q)⋅p=− m M
4 r3 q2

2  , 

Q2=(αr 3−
W ′(r)

r )q2    ,   Q3=( αr3−
W ′(r)

r )q3    and the motion equations are 

 

m ÿ=( αr3−
W ′(r)

r ) y   

m z̈=( αr3−
W ′(r)

r )z
 

We notice that in the 2) extreme case, with the spin angular momentum in the motion 
plane we have no spin dependence of the motion equations. However we have proved 
that in the 2) case spin flipping appears. Thus in an intermediate case with the spin 
angular momentum having an arbitrary direction and electrons confined to move in 
the flat conductor plane we expect differentiate scattering to the left or right of the 
charge current direction depending on spin polarization as we will see in the 1) case
and also spin flipping during the scattering process.

Considering now the 1) case, we have
er=(cosθ ,sin θ)    ,  eθ=(−sinθ ,cosθ)  , 

q=r er   ,  q̇=ṙ er+r θ̇  eθ  , q̈=r̈ er+2 ṙ θ̇  eθ−r θ̇  2 er+r θ̈  eθ  

Λ=mr (r θ̇  + εα
4 m2r2 )   ,  

1
2

m ṙ2=E−B(r)  , 

B(r)=α
r
+W (r)−α

4
1

m2 r3 εΛ+
1
32

α2

m3 r 4+
Λ2

2m r2   

(dθ
d r )

2

=θ̇  2

ṙ2 =
(Λ− εα

4 m r )
2

2 mr 4(E−B(r))

    (1)
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 For ᾱ=|αZ|=
e2

4π≈
1

137
 we will require |Λᾱ|<1  and also, since the electron is  

 as a well defined particle on mass shell we must consider that r  is greater than 
half the reduced Compton wavelenght (see Chap. Relativistic dynamics... Compton 

 wavelenght) and so m r> 1
2

 . 

 

 Thus |α4 1

m2r 3|=2 m|Z|O(ᾱ2)  and |W (r)/(α4 1

m2 r3 Λ)|=|Z|288
500

O(ᾱ4)  

 and so in O(ᾱ4)  approximation we can drop the W (r)  term in the  

B (r)  expression, leaving us with B(r)=α
r
+ Λ2

2m r2−
α
4

1
m2r 3 εΛ+

1
32

α2

m3 r4  . 

 

 For F (r)=E−B(r)  the equation F (r)=0  has at least one positive root, since 
F(∞)=E>0  and F (0)=−∞  . Considering the (1) relations it follows that from 

t=−∞  when θ(−∞)=π  (we consider Λ<0 ) and r (−∞)=∞  to t=0  when 
θ(0)=θ0  and r (0)=rm  , the function r=r( t)  is decreasing until at t=0  it reaches 
 the minimum value rm  where rm  is the greatest positive root of F(r)=0  ( the  

 equation F (r)=0  is a quartic equation in 
1
r

 ) . From t=0   to t=∞  when 

θ(∞)=φ  where φ  is the scattering angle and r(∞)=∞  the function r=r (t)  is 
 increasing. ṙ= ṙ(t)  changes sign only at t=0  since rm  must be the greatest  
 positive root of F (r)=0  . 

 

 Therefore ṙ (t)=−√ 2
m

F (r)  for t<0   ,  ṙ (t)=√ 2
m

F(r)  for t>0  and from (1) 

 follows now θ(r (t))−θ0=(sign t)∫
rm

r(t ) Λ− εα
4 r m

r2√2m√E−B(r)
d r

 

The unicity of solutions for the differential equations system in r = r (t) , θ = θ (t) 
 for r (0)=rm   ,  θ(0)=θ0  leads to θ(t)−θ0=θ0−θ(−t)  , r (t)=r (−t)  and so 

 taking χ=−∫
rm

∞ Λ− εα
4 r m

r2√2m√E−B(r)
d r  we will have φ+2χ=−signΛπ

 

 We have E−B(r)= 1
E3 r4 G(E r)  where 

G(x)=x 4−α x3−Λ2

2
E
m

x2+εαΛ
4 ( E

m )
2

x−α2

32 ( E
m )

3

 , 

∫
rm

∞ Λ− εα
4 r m

r2√2 m√E−B(r)
d r=∫

Erm

∞ √ E
2 m

Λ−εα
4 x

E
m

√G(x)
d x  . 
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 We consider α>0  . Taking A=−α  , B=− Λ2

2
E
m

 , C=εαΛ
4 ( E

m )
2

 , 

D=− α2

32 ( E
m )

3

 , a=− 3
8

A2+B  , b=A3

8
−A B+C  , c=− 3

256
A4+ A2 B

16
− A C

4
+D  , 

p=− a2

12
−c  , q=− a3

108
+ a c

3
−b2

8
 after some calculus , for E

m
=O(ϵ)  , 

ϵ→0  , |Λᾱ|<1  we obtain 

 

b≠0   ,  27 q2+4 p3>0  and solutions of the equation G(x)=0  can be expressed as 

u(C , D)=− A
4
+ 1

2
(−δ√2 y−a±√−2 y−a+4δ√ y2−c)  with δ∈{±1} , 

y=a
6
+w− p

3w
 , w=

3√− q
2
+√ q2

4
+ p3

27
 and we have 

u(C , D)=u(0,0)+O(ϵ2)  . 

 

 Thus in O(v∞
4 )  approximation we can ignore the C ,D  terms in the expression of 

G  so we can take B(r)≈α
r
+ Λ2

2m r2  .         (2) 
 

 Considering (2) and the case α>0  , |Λᾱ|<1  , v∞≪1  we will have 

m rm v∞
2 = κ2 v∞

3

−α+√α2+κ2 v∞
3
≈2α  where κ2=ρ2 m2 v∞  . 

 

 Therefore α
4 mr|Λ|

≤ α
4 m rm

|Λ|
< 1

8
v∞

|ρ|m
< 1

4
v∞≪1  if |ρ| is  greater than 

 half the reduced Compton wavelenght. 

 

 Hence sign (θ−θ0)=signΛ  for t>0  if |ρ| exceeds half the reduced 

 Compton wavelenght and |Λα|<1  and v∞≪1  . 
 

 If |Λα|<1  , v∞<α  , v∞≪1  we will have 

v⃗2=q̇2= ṙ2+(r θ̇  )2= 2
m
(E−B (r))+( Λm r

− α
4(mr)2 )

2

<v∞
2 +2 Λ2

(m rm)
2+

1
8

α2

(m rm)
4 < 

<v∞
2 + 1

2
(Λα )

2

v∞
4 + 1

128
( v∞α )2 v∞

6 ≪1.

 

We remain therefore, for the α > 0 case, in the non-relativistic application domain 
during the entire motion of the electron. 
Integrating with (2) expression for B (r) we obtain
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(sign t)(θ−θ0)= ∫
1/r

1 /rm
Λ− εα

4 m
τ

√2m√E−α τ− Λ2

2 m
τ2

d τ=

=(signΛ)(1+ εα2

4Λ3 )(π2−arcsin

Λ2

r
+αm

√2Λ2 E m+α2 m2 )−εα v∞

4Λ2 √1− 2α
m r v∞

2 −
ρ2

r2  . 

 

φ=−(signΛ)π+2(signΛ)(1+ εα2

4Λ3 )(π2−arcsin
αm

√2Λ2 E m+α2 m2)− εα
2Λ2 v∞  .  

We consider further that α>0   ,  v∞<α   ,  |Λ|α <1  and it follows:  

−(signΛ)φ=π−2(1+ εα2

4Λ3 )arctan
|Λ|v∞
α +(signΛ) εα

2Λ2
v∞=π−2(1+ εα2

4Λ3 ) (|Λ|α v∞+

−|Λ|
3

α3

v∞
3

3
+|Λ|

5

α5

v∞
5

5
−... )+(sign Λ)εα v∞

2Λ2 =π−2 arctan
|Λ|v∞α + 2

3
ε v∞

3

α sign Λ+O(v∞
4 ) .

 

φ≈−(sign Λ)π+2arctan
Λ v∞α −2

3
ε v∞

3

α  .    (3) 

We notice that in absence of spin effects ( ε = 0 ) we obtain 

cot2 φ
2
=Λ2 v∞

2

α2  which is the dependence of the scattering angle φ  on ρ  from the  

classical Rutherford non-relativistic Coulomb scattering (see I. Ința , S. Dumitru , 
Complemente de fizică). 
The relation (3) defines the dependence of the diffusion angle φ on the shock 
parameter ρ  ( since Λ=−ρm v∞  ) when a flux of particles are scattered on the  
same diffusion center.
Let the number of particles having shock parameter in the interval (ρ , ρ+dρ) , that 
are scattered in an unit of time be dN. These particles are scattered in the angular 
interval (φ , φ+dφ) . If j is the flux of incoming particles (the number of particles 
passing in an unit of time through a normal to motion direction unit surface element)
 we must have d N= j 2π|ρdρ|= jπ|dρ2| and if dσ  is the differential cross section 
 we have d N= j dσ  . Thus dσ  =π|dρ2|.

 

Since the conduction electrons in the flat conductor plate are restricted to move in 
 direction j⃗  parallel to the (e1 ,e2)  plane ( j⃗∥e1  ) we have to consider the number  
of electrons passing a normal section of height b and width d y parallel to the (e2 , e3)  
 in an unit of time as d N= j b d y  and we can define the bidimensional flux 
~
j⃗=d N

d y
e1= j⃗ b  and subsequently the bidimensional cross section ~σ  =1

b
σ  for the 

 scattering in the (e1 ,e2)  plane. 
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 As we proved, if A=(2π)4 M δ4(p+k−p′−k′)  is a total scattering amplitude, 
 then the differential cross section is 

dσ  =
k 0 p0

(k 0+ p0)r
4 m2

4 k 0 p0

1

(2π)2
d 3 k⃗′

2ω(k′)
d 3 p⃗′

2ω(p′)
|M|2δ4(k+ p−k′−p′)=

= 1
(4π)2

m2

(k0+ p0)
2|M|2 dΩ  with ω(k′)=√ k⃗′2+μ2   ,  ω(p′)=√ p⃗′2+m2

 

Introducing cilindrical coordinates ( r̄ ,θ̄ , p̄)  , θ̄∈(−π , π)    with   

x 1= r̄ cos θ̄  , x2= r̄ sin θ̄  , x3= p̄  , r′=√ r̄ 2+ p̄2  , 

E=k 0+ p0=√r′2+μ2+√r′2+m2  leads to r′= 1
2 E

((E2−(m+μ)2)(E2−(μ−m)2))1/2  . 
 

 Taking I= d3 k⃗ ′
2ω(k′)

d3 p′
2ω(p′)

δ4(p+k−p′−k′)  

 with p⃗+k⃗=0  in the mass-center frame we derive 

I= 1
2ω(k′)

1
2ω(p′)

r′2sin ψd θ̄dψδ(E−√r′2+μ2−√r′2+m2)d r′   

   where ‖⃗k′‖=‖p⃗′‖=r′  , 
d r′
d E

=√r′2+μ2√r′2+m2

E r′
 , ψ∈(0 ,π).

 

Therefore the number of electrons scattered in an unit of time in directions defined by

θ̄∈(θ ,θ+dθ)  is d N= j(∫
0

π

∫ r′
4 E′

sinψδ(E′−E)|M|2d E′dψ) m2

r (k 0+ p0)
1

(2π)2
d θ̄   

 where we have |M|2=|M|2(r ,θ̄ ,ε)  , r′=r′(E′)=r(E′)  defined above. 

 

 Hence d N= j
1

2 E2

m2

(2π)2
|M|2d θ̄  .  

According to the interpretation of the bidimensional flux and cross section we have

d N=~j d~σ  and so d N= j dσ=~j d~σ= j
1

2 E2

m2

(2π)2
|M|2d θ̄  

 and since ~j= j b  we obtain d~σ
d θ̄

=1
b

1

2 E2

m2

(2π)2
|M|2=2

b
dσ
dΩ

 

Considering the flux of electrons that are scatteredby the same diffusion center when 
the motion of electrons is constrained to the (e1 , e2) plane we have the shock
  parameter ρ̄  which is the distance between the trajectory of an incoming electron  
and the axial plane through the diffusion center, parallel to the  flux vector j⃗  and  
perpendicular to the plate. Then the number of particles which have the shock 
 parameter in the interval (ρ̄ ,ρ̄+d ρ̄)  and are deflected in an unit time interval is 
d N=~j|d ρ̄| . The d N  particles will be deflected in the scattering angle interval 

(θ̄ , θ̄+d θ̄)  having ρ̄  as a function of θ̄  and d~σ  =d N
~j

=|d ρ̄|     (4) . 
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 Thus d~σ  =d~σ  
d θ̄  

d θ̄= 2
b

dσ
dΩ

(r ,θ)dθ=|d ρ̄| .  

 If dσ
dΩ

 not depends on the angle ψ  between S⃗  and the incoming moment (that is 

it depends only on  incoming moment norm r )integrating with dΩ=sinψd θ̄dψ  

we obtain σ  =∫ dσ
dΩ

dΩ=2∫ dσ
dΩ

d θ̄=b∫ d~σ
d θ̄ d θ̄=b~σ  and we verify ~σ  =σ

b
 . 

 

 In the (e1, e2)  plane we have x⃗(r ,θ ,ψ)=x⃗ (r̄ , θ̄ , p̄)  , ψ=π
2

 , p̄=0  , θ=θ̄  , r= r̄  

 where x⃗(r ,θ ,ψ)=(r cosθ , r sinθ sinψ , r sinθcosψ)  and therefore for the 

 bidimensional approach θ=θ̄  in the spherical coordinate argument of 
d σ
dΩ

.

 

In the motion plane , the tridimensional scattering angle can be identified with the 
plane scattering angle  ( θ=θ̄=φ  ) and also the tridimensional shock parameter ρ   
 can be identified with the bidimensional shock parameter ρ̄  .  

 The determination of d~σ
d θ̄  

 is made in the supposition that the spin angular 

 momentum is normal to the motion plane. We cannot extend the relation 
d~σ
d θ̄  

= 2
b

d σ
dΩ

 to the entire tridiensional solid angle since this relation, as we 

 proven may be valid for ψ=π
2

 but the motion plane changes if we vary ψ  and  

 the spindirection is no more normal to the motion plane and as we have seen in  
 the derivation for the 2) case equations, the motion becomes spatial and we have 
 a dependence on ψ  of the tridimensional cross section (r ,θ ,ψ)  spherical 

 coordinates. So we have d~σ
d θ̄  

= 2
b

d σ
dΩ

 only in the ψ=π
2

 plane. 

 

For the situation we consider ( a Copper with Iridium impurities plate ) we have
Z≥1  ( Copper has one valence electron and Iridium has to nine valence electrons) 
 and so α>0  and |̄ρ| must be considered smaller than half the minimum distance 

 

between impurity nodes in the plate crystal lattice grid (measured normal to charge 
current direction) which we denote a / 2 where a is a lattice grid constant.
v∞  is the drift velocity of the electrons determined by the charge current e j⃗  . 

 Therefore we will have |Λ|ᾱ <1  , v∞<α  , v∞≪1  and since Λ=−ρ̄m v∞  , 

 considering (3) we obtain 

d ρ̄=− α
2 m v∞

2

1

sin2(φ2 +ε v∞
3

3α )
dφ  

    with φ=θ̄  as the scattering angle in (e1, e2)  plane, 
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φ∈(φ+
1 (ε) ,φ+

2 (ε))∪(φ−
1 (ε) ,φ−

2 (ε))      where 

φ+
1 (ε)=−π−2ε v∞

3

3α   ,  φ+
2 (ε)=−π+2arctan (am v∞

2

2α )−2ε v∞
3

3α   , 

φ−
1 (ε)=−φ+

2 (−ε)   ,  φ−
2 (ε)=−φ+

1 (−ε)  . 

 

From (4) follows now that the bidimensional differential cross section is

d~σε

dφ (φ)={ α
2m v∞

2

1

sin2(φ2 +ε v∞
3

3α )
 if φ∈(φ +

1 (ε),φ +
2 (ε))∪(φ−

1 (ε) ,φ−
2 (ε))  

0  else 

 

 and we can verify that 
d~σε

dφ (φ)=d ~σ−ε

dφ (−φ)      (5) .  

The number of up-spin electrons that are deflected to the left of the incoming flux 
direction  ( e3× j⃗  gives the left side direction of the flux vector direction ) is  

nl(+1)=~j ∫
φ +

1 (+1)

−π d ~σ +

d φ d φ+~j ∫
φ−

1 (+1)

φ−
2 (+1)

d ~σ +

dφ dφ=~j α
m v∞

2 (tan ( v∞
3

3α )+ a m v∞
2

2α )    
and the number of up-spin electrons that are deflected to the right of the incoming 
flux direction in an unit of time is

nr(+1)=~j ∫
−π

φ +
2 (+1)

d ~σ +

dφ dφ=~j α
m v∞

2 (−tan ( v∞
3

3α )+ a m v∞
2

2α )    
 We notice that nl(+1)>nr(+1)  and so we can see that up-spin electrons are  
deflected mostly to the left of the incoming flux direction or equivalent to the  right 
of the charge current direction, since electrons carry negative charge and in the same 
way we conclude that down-spin electrons are deflected mostly to the left of the 
charge current direction (as we proved, in the considered 1) case, spin flipping during 
the scattering process is not allowed so up-spin will accumulate on the right edge of 
the plate with respect to charge current direction and down-spin will accumulate on 
the left edge of the plate). 
In the bidimensional approach, we will have a mean free path of the electrons that are 

moving in the conductor plate plane given by l= 1
~n~σ

 ( see Chap. Feynman   

amplitudes and lattice gauge theory ),  where ~n  is the areal concentration of  
impurity nodes in the plate and  ~σ  is the total bidimensional cross section  
~σ  =∫ d~σ

dφ
dφ=a  .  

The number of electrons scattered in an unit of time by a diffusion center at angles in 
 the interval (φ ,φ+dφ)  and having spin polarization ε  is ( spin flipping is not  
allowed as we noticed ) :
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d nε=
~j d~σε

dφ (φ)dφ  which gives a particles bidimensional flux vector 

~⃗
jε=

d nε

l dφ
(φ)(cosφ , sinφ)

 

Hence we will have a total bidimensional spin flux vector given by 
~
j⃗s=

1
2
∫(

~
j⃗ + (φ)−

~
j⃗− (φ))dφ=

~j
2 l
∫(d ~σ +

d φ − d ~σ−

d φ )(cosφ , sinφ)d φ  .  

From (5) follows that in the (e1 , e2) plane we have:
~⃗
js⋅e1=0   and  

~⃗
js⋅e2=

~j
l
∫ d ~σ +

d φ sinφd φ=

=
~j
l

α
2m v∞

2 ∫
π−2arctan (a m v∞

2

2α )

π 1

sin2( φ
2
) (sin(φ−2 v∞

3

3α )−sin (φ+2 v∞
3

3α ))d φ=
=−

~j
l

α
m v∞

2 ∫
π−2 arctan( a m v∞

2

2α )

π

sin (2 v∞
3

3α )( 1

sin2(
φ
2
)
−2)d φ=

=(−~j a
l
+4

~j
l

α
m v∞

2 arctan(a m v∞
2

2α ))sin(2 v∞
3

3α )

 

 We verify that a m v∞

2α
<1  and v∞≪1  and so since lim

x→0

arctan x
x

=1  we derive 

 that 
~
j⃗s⋅e2>0  . Therefore we have a spin current in the flat conductor plane that is 

 

normal to the charge current and is oriented to the right of the charge current 
direction (again we notice that the charge current has opposite orientation to the 
particles flux vector since electrons have negative charge). The apparition of the spin 
current pointing to the normal right direction of the charge current in a flat conductor 
sample is known as direct spin Hall effect.
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 For this figure we have Λ=−ρm v∞<0  , φ+2χ=π   ,  ‖O A‖=rm  . 

 We assumed above conditions like |Λ|ᾱ <1  , v∞<ᾱ  , v∞≪1  with ᾱ= 1
137

 , 

 so we have to verify that the conditions (formulated in Planck units since 
 we have already considered ℏ=1  , c=1  ) : 
2 ᾱ
am

>v∞  , v∞<ᾱ  , v∞≪1       (6) are experimentally available. 

 

Time reversal not changes the spin-orbit coupling 
L⃗⋅⃗S  since L⃗ , S⃗  being angular momenta are both odd under time reversal. 
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Thus considering the time reversed inverse spin Hall effect, inverse spin Hall effect in 
which spin dependent skew scattering of spin carriers from an injected pure spin 
current on impurities in a crystal lattice grid, for example, generates a charge current 
giving a measurable inverse spin Hall effect signal ISHE of intensity IC  with a 
inverse spin Hall effect induced voltage UISHE , we will obtain a process equivalent to 
the direct spin Hall effect  in which the drift velocity of electrons corresponding to 
the signal current intensity IC is the scattering initial velocity  v∞  generating  
as described above the normal to its direction spin current.
We use the inverse spin Hall effect experiments data (from references [1], [2]) to 
illustrate a spin-orbit coupling influenced scattering of electrons on diffusion centers 
as presented above and verify that (6) assumptions are indeed experimentally 
available.
The experiments used a Copper with Iridium impurities plate of width w = 10-7 m , 
height b = 10-7 m . The Copper crystal lattice constant is d = 3,6 10-10 m . 
When V is the volume of the plate and c is the fraction of Iridium atoms from the 
total number of atoms in the sample we estimate the minimum distance between 
Iridium atoms in the lattice grid as a , having

c=

V
a3

V

d3+
V

a3

  and so  
V

a3=
V

d3

c
1−c

 , a=d 3√ 1−c
c

 .  

Copper has a density ρ = 8,94 103 kg / m3 and a atomic mass A = 63,5 10-3 kg / mol. 
The concentration of atoms for Copper is n = NA ρ / A where 
NA = 6,023 1023 atoms / mol is the Avogadro number.
 The measured ISHE voltages are in a range U ISHE∈(0 , 10−5)  V (Volt ) . 

The inverse spin Hall effect resistances are in a range |R ISHE|∈(0 ,5⋅10−5)Ω(Ohm)
at 10 K (Kelvin)  for a concentration c=9 % and |R ISHE|∈(0 ,3⋅10−5)Ω  for c=6 % .

 

 The occurred flux of electrons is j=
IC

w b e
 where e=−1,6⋅10−19C (Coulomb) is 

 the electron charge and IC=
U ISHE

RISHE

    (the  R ISHE  values are controlled through an  

 applied magnetic field ). 

 

The Copper has one free electron per atom and so the concentration of conduction 
electrons is equal to n and the drift velocity of electrons that occurs is 

v= j
n
=

U ISHE

R ISHE

A
N Aρ

1
w b e

 . Taking the maximal values for voltage and resistance  

 we compute after dividing the value in m/s of v  with the speed of light constant 
3⋅108 m / s to obtain the value in Planck units :

v∞=3.4⋅10−6  for c=9 %  and v∞=5.66⋅10−6  for c=6 %.
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 We have the Planck lenght lP=1.6⋅10−35 m   the Planck mass mP=2.17⋅10−8 kg

 and the electron mass m=9.1⋅10−31kg  and so in Planck units we compute 

a m=
d 3√1−c

c
m

lP mP

  ,  am=1.91⋅103  for  c=9%  and a m=2.21⋅103  for c=6 % .

 

We can verify that for both considered Iridium concentrations we have 
2ᾱ
a m

>v∞  and so the (6) assumptions are satisfied.  

 As we proved for |Λ|ᾱ <1  , v∞≪1  , 0<α  we have the trajectory of the electron 

 in the scattering process on a diffusion centre given by 

θ−θ0=(signΛ)(1+ εα2

4Λ3)( π2−arcsin

Λ
r
+αm

√2Λ2 E+α2 m ² )−εα v∞

4Λ2 √1−
ρ2

r2−
2α

mr v∞
2

 for t>0  with θ(−t)−θ0=θ0−θ(t)  relation that can be written as 

θ−θ0=(signΛ)(1+ εα2

4Λ3 )arcsin
|Λ|v∞ y

√Λ2 v∞
2 +α2

−εα v∞

4Λ2 y   for  t>0  , 

 where y=√1−Λ2 v∞
2

z2 −2α
z

  ,  z=m r v∞
2  , z>zm  , zm=

Λ2 v∞
2

−α+√Λ2 v∞
2 +α2

≈2α  

 and we have y=y (z)  , y (zm)=0  , y(∞)=1  , y∈(0 ,1)  , z∈(zm ,∞)  . 

 

 The scattering angle is φ=−signΛπ−2χ  with θ=θ(r)   ,  χ=(θ0−θ)(∞)  

 and so φ=−signΛπ+2(1+ εα2

4Λ3 )arctan
Λ v∞α −εα v∞

2Λ2  

 having also θ0+χ=−signΛπ     as it follows from the figure. 

 

 We notice that if (r ,θ(r))r  is the trajectory in polar coordinates for 
(signΛ ,ε)=( f , e)∈{±1}×{±1}  then (r ,−θ(r))r  is the trajectory for 
(signΛ ,ε)=(−f ,−e)  with the same |Λ|, v∞  . 

 

 We take signΛ=−1  , Λ=−ρm v∞  , ρm>1
2

 , |Λ|<ᾱ  , v∞≪1  .  

 Since for t>0  we have θ−θ0=∫
rm

r Λ− εα
4 m r

r2√2m√E−B(r)
d r  and with the 

 considered assumptions as we proved sign (Λ− εα
4 mr )=sign Λ  we obtain that 

 for t>0 ,θ  is a decreasing function of  r  and θ−θ0<0  , θ(rm)=θ0  . 

 

Therefore considering θ as a function of y we have that θ0 – θ is a increasing function 
of y . 
For getting a relevant graphic representation of the trajectory in polar coordinates 
r=r (θ)   we have  0<θ0−θ<χ=(θ0−θ)(1)  ( we consider further θ=θ( y)  ) .  
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 We want an upper limitation for y  ( or equivalently for z  or r  ) when 
θ0−θ  ∈(0 ,χ−δ)  with δ>0  . 

 

 Because θ0−θ  is increasing of y  we derive that if (θ0−θ)( x̄)=χ−δ  then for 
y∈(0 , x̄)  we will have (θ0−θ)( y)∈(0 , χ−δ)  . 

 

 Reminding that we have taken Λ<0  , we have 

(θ0−θ)′( y)=(1− εα2

4|Λ|3 ) 1

√h2− y2
+ εα v∞

4Λ2  where h=√1+ α2

Λ2 v∞
2 .

 

 We have also α2

4|Λ|3
= 1

4α ( α|Λ|)
3

>1  and so (θ0−θ)′  is increasing of y  if ε=−1   

 and decreasing of y  if ε=1  and obviously we have (θ0−θ)′>0  in both cases. 

 

 Hence if ε=−1  we obtain δ=(θ0−θ)(1)−(θ0−θ)( x̄)<(θ0−θ)′(1)(1−x̄)=

=
|Λ|v∞α (1− x̄)   ,  x̄<1− δα

|Λ|v∞

 In this case we have χ=(1+ α2

4|Λ|3 )arctan
|Λ|v∞α −α v∞

4Λ2>

>
|Λ|v∞α −1

3

|Λ|3 v∞
3

α3 − v∞
3

12α
 . If we take v∞  sufficiently small v∞<

1
2

 since already 

ρm> 1
2

 and |Λ|<α  we derive χ> 1
6
|Λ|v∞α  and we can take δ=(Λ v∞α )2≪χ  

 obtaining x̄<1−
|Λ|v∞
α

 

 If ε=1  we have δ<(θ0−θ)′(0)(1− x̄)=((1− α2

4|Λ|3 ) |Λ|v∞

√Λ2 v∞
2 +α2

+αv∞

4Λ2 )(1−x̄)  

 If further α< 1
4

 since ρm>1
2

 , |Λ|<α  we derive 

δ<((1− α2

4|Λ|3 )
|Λ|v∞

α+ 1
2
αv∞

2
+α v∞

4Λ2 )(1−x̄)=

=(|Λ|v∞
α + α v∞

8(ρm)2
1

1+ 1
2

v∞
2 )<(|Λ|v∞

α + 1
2
αv∞)(1− x̄)  

 

 Because α< 1
4

 in this case we have χ=(1− α2

4|Λ|3 )arctan
|Λ|v∞
α +α v∞

4Λ2>
|Λ|v∞
α  . 

 If 1
2
α v∞<

|Λ|v∞α  we can take δ=2 (Λ v∞α )2≪χ  and if 
|Λ|v∞α < 1

2
αv∞  we can 

 take δ=αv∞
|Λ|v∞α ≪χ  in both situations  

 obtaining x̄<1−
|Λ|v∞α  . 
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 For x̄=√1−Λ2 v∞
2

z2 −2α
z

 we obtain the upper limitation for z  as 

1
z
> 1
α
−1+√1+2κ3−κ4

κ2 ≈ 1
α (κ−1

2
κ2)  where κ=

|Λ|v∞α  . 

 

 The figure below shows the limit case |Λ|=v∞=α=0.98  . 
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                               Steepest descent approximation

For a given real Lagrangian density 
ℒ=ℒ(φ ,∂φ)  with φ=φ(t , x)  , (t , x)=(xμ)μ∈ℝ4  , μ=0 ,3  , x0=t  , x=(xi)i=1,3  

|(φ(0 , x))x⟩=|ψI ⟩   ,  |(φ(T , x))x ⟩=|ψF ⟩ ,φ(t , x)=0n  for any x∈ℝ3∖D, t∈ℝ∖[0 , T ] ,
φ(t , x)∈ℝn  for any (t , x)∈ℝ4 ,  the action S(φ)=∫ℒ(φ ,∂φ)d t d3 x  by taking 

 a discretization Γ  of the φ  -space φ→(q1 , ... , qN)=q∈ℝ
N  can be written in the 

 form S=S (q)=S(a)+ 1
2
(q−a)T A (q−a)+O(‖q−a‖3)  with (q−a)  as a column  

 vector and A∈M N×N (ℝ)  , A=A
T  , A=S″(a)  with S′(a)=0  , A  depending  

 only on the spacing of the discretization. 

 

For computing the transition amplitude from state ψI to state ψF we will have (see 
Chap. … Path integral formalism …) :

⟨ψF|exp(− i
ℏ Ĥ T )|ψ I⟩=∫Dφ exp( iℏ∫ℒ(φ ,∂φ)d t d

3x)=

=C∫d q1 ...d qN exp( iℏ S(q))     with C  a discretization dependent constant. 
 

 Normalizing the field φ  such that O(‖q−a‖2)=O(ℏ)      (*) we obtain  

⟨ψF|exp(− i
ℏ Ĥ T )|ψF⟩=C exp ( iℏ S(a))( (2π i ℏ)

N

det A )
1/2

exp(i O(ℏ1 /2))  for N→∞   

 (where C , A  obviously depend on the discretization and so on N  ). 

 

 Thus in the limit ℏ→0  we can consider 

⟨ψF|exp(− i
ℏ Ĥ T )|ψ I⟩=C exp ( iℏ∫ℒ(φs ,∂φs)d t d

3 x)  where C  is a constant 
 

 and (dμ( ∂ℒ∂(∂μφ))−
∂ℒ
∂φ )(φs ,∂φs)=0  (which corresponds to S′(a)=0 ) 

 Then if ℒ= 1
2
(∂ φ)2−V (φ)+J⋅φ  with J=J (t , x)∈ℝn  a source field and taking 

S (φ)=∫ (1
2
(∂φ)2−V (φ))d t d3 x   ,  Z (J )=exp( iℏW (J ))=⟨0|exp(− i

ℏ Ĥ T )|0⟩  

 

we will have : 

Z (J)=exp( iℏ (S (φs)+J φs))∫D φexp (− i
ℏ∫

1
2
φ(∂2+V ″(φs))φd t d

3 x)   

 where ∂2φs+V ′(φs)=J  and we denoted J φs=∫ J ( t , x)⋅φ s(t , x)d t d3x

 

 Since det A=exp (tr (log A))  we can derive 

W (J )=S(φs)+J φs+i
ℏ
2

tr( log(∂2+V ″(φs)))+ℏO(ℏ
1/2)  . 
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                     Classical limit of Schroedinger equation

As we have seen in Chap. … Path integral formalism … we can consider a 
discretized system described by generalized momentum and respective coordinates 
 operators p̂=( p̂i)i=1 , N=(−i ℏ ∇q i)i=1 ,N   ,  q̂=(q̂i)i=1 ,N  
   with wavefunctions ψ=ψ(t , q)  , q=(qi)i=1 ,N -spatial coordinates ,

t  -time coordinate and a Hamiltonian operator Ĥ ( p̂ , q̂)= p̂2

2m
+V (q̂)  . 

 

 If we consider an initial state |q I ⟩=ψI  and a final state ⟨qF|=ψF  then a system 

 particle, starting at t=0  from qI  has a wave function ψ(t)=exp (− i
ℏ Ĥ t)ψI  and 

ψ(t , qF )=⟨qF|ψ(t)⟩=⟨qF|exp (− i
ℏ Ĥ t)|qI ⟩  with the |q ⟩  states normalized as 

⟨q|q′⟩=δN (q−q′)  , ∫δN(q−q′)dN q=1 .

 

Therefore according to Chap. … Path integral formalism … we have 

ψ(t , qF)=∫Dq exp( iℏ∫
0

t

L(q , q̇)d τ)  where ∫Dq ...  means integration over all 

 paths q=q(τ)  with q(0)=q I  , q( t)=qF   and  L(q , q̇)=p q̇−H (p ,q)     (1) 

  q̇=∂H
∂ p

      (2) ( as we can easily derive , with the (1) definition the (2) relation 

 is equivalent to p=∂L
∂ q̇

      (3) . 

 

 For ℏ  approaching 0  we can consider (see Steepest descent approximation) for  
 any q I  a family of paths (~q=(q(τ))τ)~q  defined by the motion equations 

d
d t ( ∂L∂ q̇i )−

∂L
∂qi
=0  , i=1 , N  and q(0)=q I  such that for any qF  there is a path 

~q=(q(τ))τ  in the family with qF∈~q  , qF=q(t)  and we can have well defined 

S=S(t ,qF)=∫
0

t

L(q(τ) , q̇(τ))d τ  , ψ(t , qF)≈ψ0exp ( iℏ S)  with ψ0  a constant. 

 

Under reasonable assumptions upon L , studying the bilocal problem represented by 
the motion equations and the conditions q(0)=q I  , q(t)=qF  we conclude that  
 we can take a infinitesimal variation δq=δq( τ)  of ~q  such that δq(0)=0  , 
δq(t)  has an arbitrary direction and q+δq  remains in the (~q )~q  family of paths. 
 The corresponding infinitesimal variation of S  at (t ,qF)  will be 

δS= ∂ S
∂ qF

(t , qF)δq(t)  and we have also δS=∫
0

t

(∂L∂q δq( τ)+∂L∂ q̇ δ q̇(τ))d τ  =

=∫
0

t

(∂L∂ q− d
d τ (∂L∂ q̇ ))δq(τ)d τ  +∂L

∂ q̇
δq(t)
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 Thus since on the ~q  path the motion equations are satisfied and the infinitesimal 

δ(t)  can have arbitrary direction it follows 
∂S
∂q
(t , q(t))=∂L

∂ q̇
(q(t) , q̇(t))= p  with 

q=q(τ)  the ~q  path in the motion trajectories family that satisfies 
q(0)=qI  , q(t)=qF  . 

 

With the same notations we obviously have :
dS
d t
(t , q(t))=L(q(t) , q̇(t))  , d S

d t
=∂ S
∂ t
+ ∂ S
∂q
q̇    and so 

∂ S
∂ t
(t ,q)=L−p q̇=−H (p ,q)

 

 therefore on the motion trajectories we have ∂S
∂q
(t , q(t))=p(t)      (4) , 

∂ S
∂ t
(t ,q( t))=−H (p(t) , q(t))         (5)  with p=∂L

∂ q̇
(q , q̇)  , H (p ,q)=p q̇−L  . 

 

 Taking for simplification q I=0N  it follows from (4) and (5) that if on the assumed  

 trajectory the momentum p=∂L
∂ q̇
(q, q̇)  and the energy E=H (p ,q)  are well 

 defined constant measurable quantities, then S= pq−E t  and so the wave function 

 will be as expected ψ  =ψ0 exp( iℏ (pq−E t))

 

 Plugging the ψ(t ,q)=ψ0 exp( iℏ S(t , q))  relation for the wave function into the 

 Schroedinger equation iℏ∂t ψ(t , q)=Ĥ ψ(t , q)=−
ℏ2

2m
∇2ψ(t , q)+V (q)ψ( t , q)  

 

 we obtain − ∂ S
∂ t
=−i ℏ

2m
∇ 2S+ 1

2m
(∇ S)2+V  and with the (4) relation, this  

 equation becomes in the ℏ→0  limit −∂ S
∂ t
= p2

2m
+V (q)  which is precisely  (5). 

 

 The limit ℏ→0  corresponds in fact to λ= h
p
→0  that is a small wavelenght scale.  

The classical limit solution represented by the classical solutions of (4) , (5) implies 
therefore the Schroedinger equation in the case of small wavelenghts in comparison 
to spatial dimensions which we consider, the numerical value of the Planck constant 
defining according to the (*) normalization in “Steepest descent approximation” the 
scale of lenghts. 
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                        Symmetry breaking. Effective potential 

 Consider first a system described by generalized coordinates (q j)j=1 ,n  and a 

  Lagrangian L=1
2

mq̇2−V (q)  . 
 

 The Euler-Lagrange equations are m q̈=−V ′(q)  and the system has stable 
 equilibrium points at the minimum points qs  of the potential energy V=V (q)  , 

 having V ′(qs)=(∂V
∂ ql

(qs))l=1 ,n

=0n  . 

 

At low energy we choose one of the minima at qs and study small oscillations around 
that minimum.

 For example, if V (q)=− 1
2

q2+ λ
4

(q2)2  we have minima at ‖qs‖=v=√ k
λ  if k ,λ>0 . 

 commuting to one of the minima ‖qs‖=√k / λ  breaks the reflection symmetry 
q→−q  of the system, or if n>1  , the O(n)  orthogonal group symmetry of the 

 

system.
In quantum mechanics, the particle can tunnel between the minima, the tunneling 
barrier being V (0) - V (qs) . The probability of being in one of the minima must be 

equal , thus respecting the symmetry of the Hamiltonian  H= p2

2 m
+V (q). 

In particular, the ground state wave function respects the symmetry and is of the form
ψ=ψ(‖q‖) . However, in quantum field theory, for a generic scalar field φ=φ(t , x⃗) ,

 with (t , x⃗)=x∈ℝ4  and Lagrangian density ℒ=1
2
(∂0φ)2−1

2
(∇ φ)2−V (φ)   

 we again have to find the the minimum of the potential energy 

∫d3 x⃗(1
2
(∇ φ)2+V (φ)).

 

 In particular for the example V (φ⃗)=− 1
2

μ2 φ⃗2+ λ
4

(φ⃗2)2  we will have minima at 

φ⃗s
2=μ2

λ  . The tunneling barrier is now (V (0⃗)−V (φ⃗ s))∫d3 x⃗  and hence infinite (or 

 

more precisely extensive with the volume of the system). Tunneling is shut down and 
the ground state wave function is concentrated around  one of the states φ⃗s .  It does  
 not matter which φ⃗s=(φ j s) j=1 ,n  state we choose. The physics will be the same  
 because of the O(n)  symmetry of the Lagrangian. For n=1  the reflection  
 symmetry φ→−φ  is broken and for n≥2  the continuous O (n)  symmetry is  
broken by commuting to one of the φ⃗s  solutions to minima of the potential energy.

 

This is the spontaneous symmetry breaking of a symmetric quantum field system.

Page 1 of 8 445 of total 515  Gh.V.B. Introd. to...QFT 



In quantum field theory the ground state is also known as the vacuum, in which the 
field is “ at rest ” with no particles present. The value assumed by φ in the ground 
state is known as the vacuum expectation value of φ . 
Upon spontaneous symmetry breaking we will observe the emergence of a massless 
boson. 

 Construct for example the complex field φ= 1
√2

(φ1+i φ2)  so that the Lagrangian 

 density ℒ=1
2
((∂ φ⃗)2+μ2 φ⃗2)−λ

4
(φ⃗2)2  can be written as 

ℒ=(∂φ)+ (∂φ)+μ2 φ+ φ−λ(φ+ φ)2  which is manifestly invariant under U (1)
 (the groupsO(2)  and U (1)  are locally isomorphic) .

 

 We parametrize the field by φ(x)=ρ(x)exp(iθ(x))  with ρ( x)∈ℝ +  , θ( x)∈ℝ   
 and we have ℒ=ρ2(∂θ)2+(∂ρ)2+μ2 ρ2−λρ4.

 

 Spontaneous symmetry breaking means setting ρ=v+χ    with v=√ μ2

2λ  obtaining 

ℒ=
μ4

4 λ+v2(∂θ)2+((∂ χ)2−2μ2 χ2−4√μ2 λ
2

χ3−λ χ4)+(√2μ2

λ χ+χ2)(∂θ)2 .

 

 The 
μ4

4λ  term is just −V (φ)  
 |φ  =v

 . If we are only interested in the scattering of 

 the mesons associated with χ  this term does not enter at all: we are free to add 
 an arbitrary constant to ℒ  to begin with. The same situation appears in quantum 

 

mechanics. In the discussion of the quantum harmonic oscillator the zero point 

energy 1
2

ℏω  is not observable; only transitions between energy levels are physical. 

We recognize in the phase θ (x) the massless field . The second term in the above 
expression is the kinetic energy of the massless field θ , the third term corresponds to 
the kinetic energy and potential energy of the massive field χ , which has the mass
√2μ  and the fourth term corresponds to the interaction between θ  and χ  fields. 
 In the same way, spontaneous breaking with parametrization φ1=v+φ′1   ,  

v=√μ2

λ  , φ2=φ′2  we obtain a theory with a massive field φ′1  and a massless  

 field φ′2  and Lagrangian density 

ℒ=
μ4

4 λ+ 1
2
((∂ φ′1)

2+(∂φ′2)
2)−μ2 φ′1

2+O(φ′3)  the field φ′1  having mass √2μ  . 

 

Generally we will have Goldstone’s theorem which states that whenever a continuous 
symmetry is spontaneously broken, massless fields, known as Nambu-Goldstone 
bosons emerge.
With every continuous symmetry, according to Noether theorem , a conserved charge

Page 2 of 8 446 of total 515  Gh.V.B. Introd. to...QFT 



Q̂  can be associated. That Q̂  generates a symmetry is stated as [ Ĥ , Q̂]=0  ( indeed 
 according to Chap. Quantum statistical ensemble , with Q̂  not depending explicit 

 on time we have 
d
d t

⟨Q̂⟩t=i ⟨[ Ĥ , Q̂]⟩t  expressing the conservation in time of Q̂ ) . 

 

 With |0 ⟩  the ground state, by adding an appropiate constant to the Hamiltonian, we 
 can always write Ĥ|0 ⟩=0

 

 Normally the vacuum is invariant under the symmetry transformation exp(iθ Q̂)   
 in other words exp(i θ Q̂)|0 ⟩=|0 ⟩   ,  Q̂|0 ⟩=0 .

 

 Suppose the symmetry is spontaneously broken so that Q̂|0 ⟩≠0  . 
 The Noether current to the conserved charge is (Jμ)μ=0 ,3  so that we have 

Q=∫d3 x⃗ J 0( t , x⃗)  . Conservation of the charge says that the integral can be 

 evaluated at any time. Consider the state |s ⟩=∫d 3 x⃗ exp (−i k⃗⋅⃗x) Ĵ 0(t , x⃗)|0 ⟩  which 

 has a spatial momentum k⃗  . As k⃗  goes to 0⃗  the state |s ⟩  goes to Q̂|0 ⟩  which has 
 zero energy since Ĥ Q̂|0 ⟩=Q̂ Ĥ|0 ⟩=0  . Thus as the momentum of the state |s ⟩  
 goes to 0⃗  its energy goes to zero. In a relativistic theory this means that |s ⟩   
 describes a massless particle. 

 

 Indeed for φ̂=φ̂(x)  field operator function we have 
φ̂(x+a)=exp (i p̂ a)φ̂(x)exp (−i p̂ a)  and so Ĵ (x+a)=exp(i p̂ a) Ĵ (x)exp(−i p̂a)  
 (with p̂  -the four momentum field operator, see Chap. Spin-statistics theorem ) 
Ĵ (x+a)−Ĵ (x)=i [ p̂ , Ĵ (x)]+O(a2)  , −i ∂l Ĵ (x)=[ p̂l , Ĵ (x)]  and since p̂l|0 ⟩=0

 we will have p̂l|s ⟩=∫d3 x⃗ exp(−i k⃗⋅⃗x)[ p̂l , Ĵ 0(t , x⃗)]|0 ⟩=
=∫d3 x⃗(−i k l)exp (−i k⃗⋅⃗x) Ĵ 0(t , x⃗)|0 ⟩=kl|s ⟩ .

 

We see that the number of Nambu-Goldstone bosons is clearly equal to the number of 
conserved charges that do not leave the vacuum invariant, that is do not 
 anihilate |0 ⟩ .  In general, if the Lagrangian is left invariant by a symmetry group G   
with n (G) generators but the vacuum is left invariant by only a subgroup H of G with 
n (H) generators then there are n (G) – n (H) Nambu-Goldstone bosons.

Consider now the scalar field theory defined by the Lagrangian density 

ℒ=1
2
(∂φ)2−V (φ)   ,  φ=φ(t , x⃗)∈ℝ

 ( for example we can take V (φ)=− 1
2
μ2 φ2+ λ

4!
φ4  ) 

 The action is S(φ)=∫d4 x ℒ (φ ,∂φ)  . 

 

 For μ2>0  the action is minimized at some φmin≠0  and the symmetry is broken.  

 For μ2<0  the action is minimized at φ=0  and quantizing the small fluctuations 
 around φ=0  we obtain scalar particles that scatter of each other. 

 

If we take in consideration quantum fluctuations, to absorb cutoff dependence (as we 
show in Chap. Path integral formalism . Theory renormalization) we have to include 
counterterms as indicated, taking a Lagrangian density
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ℒ (φ ,∂φ)+A (∂ φ)2+Bφ2+Cφ4  and we will see that the μ=0  theory is posed on  
the edge of symmetry breaking and quantum fluctuations ought push it over the 
brink.
 The amplitude in presence of the field sources J=J (t , x⃗)  defining the scalar field  
 theory (see Chap. Path integral formalism) is 

 

⟨0|exp(− i
ℏ Ĥ T )|0⟩=Z (J )=exp ( i

ℏ W (J))=∫Dφ exp( i
ℏ (S(φ)+J φ))   

 where we dropped a discretization dependent factor Z (J=0)  adopted the 
 shorthand J φ=∫d4 x J (x)φ(x)  and Ĥ  is the Hamiltonian operator corresponding 
 to a Lagrangian density ~ℒ (φ ,∂φ)=ℒ (φ ,∂φ)+J (x)φ(x)  : 

H=∫d3 x⃗( ∂ℒ
∂(∂0 φ)

∂0 φ− ~ℒ (φ ,∂φ))  while T  is the considered time 

 interval of the action. 

 

As we know, by differentiating W with respect to the source J (x) repeatedly we can 
obtain any scattering amplitude we want.
As a particular case of the relation derived in Chap. Feynman amplitudes … we have:

⟨0|exp(−i Ĥ T )φ̂( x)|0⟩=∫D φexp ( i
ℏ (S(φ)+J φ))φ(x)  and so since the ground 

 state can be considered a Ĥ  eigenstate we conclude that 

φc( x)= δW
δ J (x)

= 1
Z(J)∫ Dφ exp( i

ℏ (S(φ)+J φ))φ=⟨0|φ̂(x)|0⟩       (1) 

 

The relation (1) determines the vacuum expectation value of the field operator 
function  which is  φc  as a functional of the source field J . 
 Taking the Legendre transform of W  we obtain a functional of φc  through the  
 implicit dependence of J  on φc  : 

Γ(φc)=W (J )−∫d4 x J (x)φc (x)  and we have 
δΓ(φc)
δφc ( y)

=∫d4 x
δ J ( x)
δφc( y)

δ W (J )
δ J (x)

−∫d4 x
δ J (x)
δφc ( y)

φc (x)−J ( y)=−J ( y)         (2) 

 

 We can expand Γ(φc)  in the form 

Γ(φc)=∫d4 x(−V eff (φc(x))+K (φc(x))(∂ φc (x))2+...)       (3) 
  where (...)  indicates higher and higher powers of ∂ .

 

V eff=V eff (φc)  is the effective potential and we notice that if  J  and φc  not  
 depend on x  the relation (2) reduces to V ′(φc)=J  . In other words, the vacuum 
 expectation value of φ̂  in the absence of an external source is determined by  
 minimizing V eff (φc)  . 

 

As we proved in Chap. Steepest descent approximation we have for a proper 
normalization according to the distances scale that 
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W (J )≈S(φs)+J φs+
i ℏ
2

tr log (∂2+V ″(φs))        (4) 

 where φs=φ s(x)  is the steepest descent function satisfying 
δ(S (φ)+J φ)

δφ(x)
 
 |φ=φ s

=0  

 or more explicitly ∂2 φs(x)+V ′(φs(x))=J (x)      (5) 
 so that φs  as a solution of (5) is to be regarded as a function of J  . 

 

 Therefore φc (x)= δW
δ J (x)

≈
δ(S (φs)+J φs)

δφs

δφs

δ J
+φs+O(ℏ)=φs+O(ℏ)  .  

 To leading order in ℏ  the expectation value φc  is equal to φs  and we have 

S (φc)+J φc=S (φs)+J φs+∫
δ(S(φs)+J φs)

δφs
(φc−φs)d4 x+O(ℏ2)=

=S(φs)+J φs+O (ℏ2)  and so 

Γ(φc)=W (J )−J φc≈S(φc)+
i ℏ
2

tr log(∂2+V ″(φc))  . 

 

In practice it is impossible to evaluate the trace for arbitrary φc : we have to find all 
 the eigenvalues of the operator ∂2+V ″(φc)  take their log  and sum . However we  
 can be content to study Γ(φ)  for φ  independent of x  in which case V ″(φ)  is a 
 constant and the operator ∂2+V ″(φ)  is translation invariant and easily treated in 
 momentum space: 
tr log (∂2+V ″(φ))=∫d4 x ⟨ x|log(∂2+V ″(φ))|x⟩=

=∫d4 x∫ d4 k
(2π)4∫

d4 k′
(2π)4 ⟨x|k ⟩⟨k|log(∂2+V ″(φ))|k′⟩ ⟨k′|x⟩=

=∫d4 x∫ d4 k
(2π)4 log (−k 2+V ″(φ))

   where we used ∫ 1
(2π)4|k ⟩ ⟨k|=I    ,   ⟨ x|k⟩=exp(i k x)

 

Therefore for φc not depending on x we have 

V eff (φc )≈V (φc)−
i ℏ
2 ∫ d 4 k

(2π)4 log ( k 2−V ″(φc)

k2 )      (5)  

Note that we have added a φc independent constant to the potential to make the 
argument of the logarithm dimensionless. 
The first term in (5) is the classical energy density contained in the background 
φ = φc while the second term is the vacuum energy density of a scalar field with mass 

 squared equal to V ″(φc)=−μ2+1
2

λφc
2  (in natural units with ℏ=1  , c=1  ).  
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Consider a fermion field described  by the Dirac spinor field ψ=ψ(x)  interacting  
with the scalar field, adding to the Lagrangian density the term 
ψ(i∂−m−f φ)ψ    with p=γα pα  for any p=(pα)α=0 ,3   ,  f  -coupling constant  

and we will have the path integral 

Z (J)=exp( i
ℏ W (J ))=

=∫ Dφ D ψ D ψexp( i
ℏ∫d4 x (1

2
(∂ φ)2−V (φ)+ψ(i ∂−m−f φ)ψ+J φ))

 

Respecting the steps as above, considering that integrating over ψ variables first (see 
Chap. Feynman amplitudes … and Chap. Dirac equation … Fermion propagator)  

Z (J)=∫ Dφ exp( i
ℏ∫d4 x(1

2
(∂ φ)2−V (φ)+J φ)−i ℏ tr log (i∂−m−f φ))   ,  

we find that for J , φc not depending on x , the fermion field contributes with

V F(φc)=2 i ℏ∫ d4 k
(2π)4 tr log ( k2−m2(φc)

k 2 )     to V eff (φc)   (where m(φc)=m+f φc  ) ,  

which as we know is the vacuum energy density of a fermion field with mass m (φc) 
(in natural units h = 1 , c = 1) . (Notice the contrasting sign in VF (φc) of the integral 
compared to the sign of the integral term in (5) . ) 

 To evaluate I=i∫ d4 k
(2π)4 log( k 2−V ″(φc)+i ε

k2+iε )  we take a cutoff on k⃗  -space 

‖⃗k‖<Λ  and ε>0  , ε→0  with k=(ω , k⃗)  integrating first over ω  by parts and 
 residues theorem obtaining 

 

I=i
∫d3 k⃗

(2π)3 ∫
dω
2π log ( ω2−ωk

2+iε
ω2−ω′k

2+iε )=i∫ d3 k⃗

(2π)3
∫ dω

2π ( 2ω′k
2

ω2−ω′k
2+iε

−
2ωk

2

ω2−ωk
2+iε )=

=−∫ d3 k⃗

(2π)3 (ωk−ω′k)=− 1

2π2∫
0

Λ

k2(√k 2−V ″(φc)−k )d k=

= Λ4

8π2 −
1

2π2∫
a

∞ V ″2(φc ) y2

( y2−1)3 d y=Λ4 1−a

8π2 −
V ″2(φc)

2π2 ∫
a

∞ 1

4( y 2−1)2 d y=

=− 1

16 π2 Λ2V ″(φc)+
1

64π2 V″2(φc)−
V ″2(φc)

32π2 ( 1
a−1

+ 1
a+1

+log a−1
a+1 )+O( 1

Λ2 )=

=− 1

8π2 Λ2V ″(φc)−
1−4 log2

64 π2 V ″2(φc)+
V ″2(φc)

32π2 log Λ2

V ″(φc)
+O( 1

Λ2 )  , 

 where ωk=√k⃗ 2+V″(φc)   ,  ω′k=‖k⃗‖  ,  a=√1+
V″(φc )

Λ2

 and we used the Cebyshev substitution y=(1+
V″(φc)

k 2 )
1/2

.

 

      /                          /          

 

                                                          /                            

 

                                                                           /        
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 Thus suppressing ℏ  (taking units such that ℏ=1 , c=1  ) we will have 

V eff (φ)=V (φ)+ 1

16π2 V ″(φ)Λ2− 1

64 π2 V″2(φ) log Λ2

V ″(φ)
+1−4 log2

128 π2 V ″2(φ)+

+Bφ2+Cφ4  . 

 (6) 

 We were instructed to introduce counterterms A(∂φ)2+Bφ2+C φ4  to absorb  

 cutoff dependence (of which only B φ2+Cφ4  are relevant since 
φ  is independent of x  ). 

 

 Because V ″(φ)=−μ2+ λ
2

φ2  it follows that we have just enough counterterms in 

B φ2+Cφ4  to absorb cutoff dependence in (6) and the theory is clearly 
 

renormalizable for first order in quantum fluctuations.
Supposing in contrast that V is a polynomial of degree 6 in φ we are allowed to have 
three counterterms B φ2 + C φ4+ D φ6 but that is not enough since (V’’ ( φ ))2 is now a 
polynomial of degree 8. This means that we should have started with V a polynomial 
of degree 8 but then V’’ would be a polynomial of degree 12 , the process escalating 
into an infinite degree polynomial and having so a non-renormalizable theory.
In the renormalizable φ4 theory, in Chap. Quantum field theory … Theory 
renormalization we fix the counterterms by imposing conditions on various scattering 
amplitudes. Here we would have to fix the coefficients B and C by imposing 
conditions on Veff (φ) . 
Consider the case μ = 0 , at the edge of symmetry breaking.

 Thus V (φ)= λ
4!

φ4     ,    V ″(φ)= λ
2

φ2  , 

V eff (φ)=( 1

32π2 λ Λ2+B)φ2+( 1
4!

λ+ λ2

(16π)2
log

λ φ2

2Λ2 +C)φ4+ 1−4 log 2
2(16 π)2 λ2 φ4  . 

 

We see explicitly that the Λ dependence can be absorbed into B and C .

μ=0  means 
d2V

dφ2
 
 |φ=0

=0  . To say that we have a μ=0  theory means that we have 

 to maintain a vanishing renormalized squared mass and thus we impose 
d2V eff

d φ2
 
 |φ=0

=0  and so we want B=− Λ2

32π2 λ  . 

 

Similarly we would be to set 
d4 V eff

d φ4
 
 |φ=0

equal to some coupling, but differentiating 

 the φ4 log φ2  term in V eff  four times we are going to get a term like log φ2  which 

 

 is not defined at φ=0.  We are forced to impose our condition on 
d4 V eff

dφ4  not at 

φ=0  but at φ  equal to some arbitrarily chosen mass M .

 

(Recall that φ has the dimension of mass) 
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 The second condition reads 
d4 V eff

d φ4
 
 |φ=M

=λ(M )  .  

After absorbing some φ independent constants into C we have :

V eff (φ)=( λ
4!

+ λ2

(16 π)2 log
φ2

Λ2 +C)φ4   

d4 V eff

d φ4 =λ+4!C+ λ2

(16 π)2 4!log
φ2

Λ2 +
25

(8π)2
λ2   

λ(M )=λ+4!C+ λ2

(16 π)2 4!log
M 2

Λ2 + 25
(8π)2 λ2  

λ(M )=λ (M0)+
3

(4 π)2 λ2 log
M
M0

  

V eff (φ)=( λ(M )
4!

+ λ2

(16π)2
log

φ2

M2 −
25

(8π)2
λ 2

4! )φ4  

 

 At some M0  we must have λ (M0)=λ+O(λ2)  and so  λ(M )=λ+O(λ2)  , 

O(λ (M ))=O(λ)  , λ 2=(λ(M ))+O((λ(M ))3)

V eff (φ)=( λ(M )
4!

+
(λ (M ))2

(16π)2 (log
φ2

M2 −
25
6 ))φ4+O((λ(M ))3)     (7) 

 

As we can see from (7) , C and the cutoff Λ have both disappeared so we have a 
renormalizable theory. 
Quantum fluctuations (for the μ = 0 theory) generate a correction to the potential of 
 the form φ4 log φ2  . 

d V eff

dφ =(λ(M )
6

+
(λ(M ))2

(8π)2 (log
φ2

M 2−
11
3 ))φ3  

 

d2V eff

d φ2 =3(λ(M )
6

+
(λ(M ))2

(8π)2 (log
φ2

M2 −3))φ2   

log
φmin

2

M2 =11
3

−
(8π)2

6λ(M )
      ,      

d2V eff

d φ2 (φmin)=2
(λ(M ))2

(8π)2 φmin
2 >0    

 Therefore φmin≠0  defined by (8) is a minimizing point for V eff  which means that 
 quantum fluctuations break the discrete symmetry φ→−φ  pushing over the brink, 
 as we announced the edge of symmetry breaking μ=0 .
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43. Anderson-Higgs mechanism
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                                 The Anderson-Higgs mechanism 

 Consider a U (1)  invariant theory with a complex scalar field φ=φ(t , x⃗)  , 
(t , x⃗)=x∈ℝ4  , described by a Lagrangian density 

ℒ=(∂φ)+ (∂φ)+μ2φ+ φ−λ(φ+ φ)2 .
 We gauge the theory, replacing ∂ν  with Dν=∂ν+i e Aν   ,  Aν=Aν(x)  , ν=0 ,3  . 

 

Parametrizing the field in polar coordinates 
φ=ρ(x)exp(iθ(x))  the gauged theory expresses a Lagrangian density 

ℒ=− 1
4

Fμν Fμ ν+ρ2(∂θ+e A)2+(∂ρ)2+μ2ρ2−λρ4   with  Fμν=∂μ Aν−∂ν Aμ  . 
 

 Under a gauge transformation φ→exp(iα)φ   ,  α=α(x)  we have 
θ→θ+α  , e Aμ→e Aμ−∂μα  and so the combination 

Bμ=Aμ+
1
e
∂μθ  is gauge invariant. 

 

 Upon spontaneous symmetry breaking, allowing φ  a vacuum expectation value 

⟨φ⟩= v

√2
∈ℝ +    ,  v=√μ2

λ ≠0  we write ρ= 1

√2
(v+χ)

 (see Chap. Symmetry breaking) and we have 

ℒ=− 1
4

Fμν Fμ ν+1
2

M2 B2+e2 v χ B2+ 1
2

e2 χ2 B2+

+1
2
(∂χ)2−μ2 χ2−μ √λ χ3−λ

4
χ4+ μ4

4 λ

 

The theory now consists of a vector field ( Bμ ) μ  with mass M = |e| v interacting with 
a real scalar field χ  with mass √2μ  . The phase field which would have been the   
Nambu-Goldstone boson in the ungauged theory has disappeared: the gauge field 
(Aμ)μ has eaten the Nambu-Goldstone boson. 
More general, in a spontaneously broken non-abelian gauge theory derived from a 
Higgs field φ Lagrangian density invariant under G = S U (N) 

ℒ=1
2
(∂μφ)⋅(∂μφ)−V (φ⋅φ)  with a vacuum expectation value ⟨φ⟩=v  , 

 where we replace ∂μ  with Dμ=∂μ−i g Aμ
a T a   ,  (Ta)a  the generators of the SU (N )

 representation, if the symmetry is broken to a subgroup  H  of  G  with generators  
(T c)c  ( the vacuum expectation value is left invariant under H  ) , considering that 
 the n(G)−n(H )  Nambu-Goldstone bosons are eaten by gauge bosons, we obtain 
 the mass spectrum of the gauge bosons replacing φ  by its vacuum expectation  

 value in the kinetic term 1
2
(Dμφ)⋅(Dμφ)=1

2
Aaν (μ2)ab Aν

b  and determining the  

 eigenvalues of μ2=((μ2)ab)a ,b  where (μ2)a b=g2(T a v)⋅(Tb v)  . 

 

Page 1 of 2 454 of total 515  Gh.V.B. Introd. to...QFT 



Obviously μ2 is self-adjoint and positive definite and we can diagonalize it to obtain 
the masses of the gauge bosons. The eigenvectors tell us which linear combinations 
 of (Aν

a)ν  correspond to mass eigenstates. ((μ2)ab)a ,b  has n(H)  zero eigenvalues. 

 ( indeed, v  is left invariant by  H  which means T c v=0  for any T c  generator  
 of H  and hence the gauge boson associated with T c  remains massless) 

 

As a useful aplication we consider a Higgs field φ transforming as the adjoin 
representation of S U (5)  ( under U ∈G=S U (5)  we have φ→U φU +  with  
  φ  a traceless self-adjoint 5×5  matrix having vacuum expectation value  

⟨φ⟩=diag(− 1
3

,− 1
3

,− 1
3

, 1
2

, 1
2
)  . 

 We have Dμφ=∂μφ−i g Aμ
a [T a,φ]  ,(μ2)ab=g2 tr ([Ta , ⟨φ⟩][⟨φ⟩ ,T b])  , a,b=1 ,24  

 

 The gauge bosons Aa  for which Ta  commute with ⟨φ⟩  remain massless, while 
 the other bosons acquire mass, that is the S U (5)  symmetry is broken to 
S U (3)×S U (2)×U (1)  since generators of the form 

(C 0
0 0)  or (0 0

0 B)  or the generator diag(2 ,2 ,2 ,−3 ,−3)  commute with ⟨φ⟩

 where C=C +∈M3×3(ℂ)   ,  B=B +∈M2×2(ℂ)   ,  tr C=tr B=0  . 
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                                            Chiral anomaly 

Consider  the theory of a single massless fermion with Lagrangian density 
ℒ 0(ψ,∂ψ)=ψi γμ∂μψ   where  ψ=ψ(x)  , x∈ℝ4  is the fermion Dirac spinor 
 field. As we noticed in Chap. Fermion charge conserved current ... ℒ 0  is 

invariant under the separate transformations ψ→exp(iθ)ψ  and ψ→exp (iθ γ5)ψ  , 

 

corresponding according to Noether theorem to the conserved current 
(Jμ)μ=(ψγμψ)μ    and respective the conserved axial current  (J 5

μ)=(ψ γμ γ5ψ)μ  .  
From the equations of motion (Euler-lagrange equations derived from the 
Lagrangian) follows immediately  ∂μ Jμ=0      (1)   and ∂μ J 5

μ=0        (2) .  
Now we want to check if relations (1) and (2) continue to hold under quantum 
fluctuations for massless fermions in a gauged quantum electrodynamics theory that 
involve photons, that is a Lagrangian density 

ℒ(ψ ,∂ψ , A ,∂ A)=− 1
4

Fμ ν Fμν+ψ iγμ∂μψ−eψγμ Aμψ=

=ℒ1(ψ ,∂ψ , A ,∂ A)−e Jμ Aμ

   with (Aμ)μ  electromagnetic four-potential as photon field, Fμ ν=∂μ Aν−∂ν Aμ  , 

 

and e -electron charge.
As we prove in Chap. SO(10) unification, relation (1) continues to hold under 
quantum fluctuations, since otherwise we would have no gauge invariance of the 
amplitudes.
To check if (2) is violated under quantum fluctuations we have to consider an infinite 
number of Feynman diagrams that produces the expectation value 
⟨0|∂μ Ĵ 5

μ( x)|0⟩  , computable in Lattice gauge theory for the Lagrangian density 
ℒ(ψ ,∂ψ , A ,∂ A)   that is (see Chap. Feynman amplitudes and lattice gauge  

 theory): ⟨0|∂μ Ĵ 5
μ(x)|0⟩=∫DψDψD A exp (i∫ℒ(ψ ,∂ψ, A ,∂ A)d4 w)∂μ J 5

μ(x)  . 

  

The zero and first order in e diagrams produce 
 ∫DψDψD A exp (i∫ℒ1(ψ ,∂ψ , A ,∂ A)d4 w)∂μ J 5

μ(x)  and respective 

 ∫DψDψD A exp (i∫ℒ1(ψ ,∂ψ , A ,∂ A)d4 w)∂μ J 5
μ(x)∫d4 y e J λ( y) Aλ( y)   

 and these expressions vanish since the first is ∂μ(γαβ
μ γβδ

5 i Dδα
fer (x−x))=0  and the 

second vanishes because the integrand is odd in the A( y)  path integration variables.

 

The second order in e diagrams are the chiral anomaly diagrams from fig.1. 
Hence in O (e3) approximation we have : 

∫ ⟨0|∂μ Ĵ 5
μ(x)|0⟩ exp(−i q x)d 4 x=i∫⟨0|Ĵ 5

μ(x)|0⟩qμ exp(−i q x)d 4 x=
=i∫d 4 x exp(−i q x)∫DψDψD A exp(i∫ℒ1(ψ ,∂ψ , A ,∂ A)d4 w)
(−e2)∫d 4 y d4 z J 5

μ( x)J λ( y)J ν(z) Aλ( y)Aν(z)=
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=e2∫qμ tr (γμγ5 1
p−q

γν 1
p−k 1

γλ 1
p
+γμ γ5 1

p−q
γλ 1

p−k 2

γν 1
p )δ4 (q−k1−k2)   

 1
(2π)8

Aλ(k 1) Aν (k 2)d
4 k 1 d4 k2 d 4 p=

=e2∫ iΔμλ ν(k1 , k2)qμδ
4(q−k1−k2)Aλ(k 1)Aν(k2)d

4 k 1d 4 k 2

  where  Aλ( x)= 1
(2π)4

∫exp (ik x)Aλ(k)d
4 k  we have an extra (-) sign for the  

 fermion loop and Bose statistics for the two photons and we defined 

 (3) 

Δμλ ν(k1 , k 2)=∫ tr(γμ γ5 1
p−q

γν 1
p−k1

γλ 1
p
+γμγ5 1

p−q
γλ 1

p−k2

γν 1
p ) i3

(2π)8
d4 p=  

=(2π)−4∫DψDψD A exp(i∫ℒ1(ψ ,∂ψ, A ,∂ A)d4 w)∫ J 5
μ(0)Jλ( y) Jν(z)

exp(i k 1 y)exp(i k 2 z)d4 y d4 z  with q=k1+k 2  . 
 

 The charge Q=∫d3 x⃗ J 0(t , x⃗)  counts the number of fermions and must be a 

 conserved in time quantity, which happens if ∂μ Jμ=0  ( since d Q
d t
=∫∇⋅⃗J d3 x⃗=

= lim
R→0

∫
S( 0⃗ ,R )

J⃗⋅nd σ  =0  ) .

 

We can see, as in Chap. SO(10) unification that we must have 
 k1λΔ

μλ ν (k1 , k 2)=k 2νΔ
μλ ν(k 1 ,k 2)=0  since otherwise fermion number conservation  

 and also gauge invariance are violated. 

.                              q = k1 + k2                                                         q = k1 + k2               
                               γ μ γ 5                                                                                                            γ μ γ5   

                             x                                                                     x   
               p – q                                                           p – q                p

                γν  z                  y   γ λ                                  γ λ  y                     γ ν   z
                         p – k1                                                               p – k2 
            k2                                  k1                              k1                                             k2    

                                                           fig.1

 Writing k 1=p−(p−k 1)  in the first term and k 1=p−k2−(p−q)  in the second  
 term of k1λΔ

μλ ν (k 1 , k 2)  we obtain 

k 1λΔ
μλ ν(k 1, k 2)=−i∫ d4 p

(2π)8
tr (γμγ5 1

p−q
γν 1

p−k 1

−γμγ5 1
p−k 2

γν 1
p )  

 

 

                      /    /    /    /      /          /   /     /   /      /      

 

                                /   /     /   /      /          /   /      /   /      /     

 

            /    /     /   /                             /     /   /     /    /                    
 

                                                /   /     /   /            /   /      /    
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 Therefore k1λΔ
μλ ν(k1 , k 2)=−

i
(2π)8

∫( f (p+a)−f (p))d4 p   ,  

 where f (p)=tr (γμ γ5 1
p−k 2

γν 1
p )      , a=−k1    .  

 If the integral ∫ f (p)d4 p  is convergent or even logarithmically divergent, we can  

 shift integration variable, leading to ∫( f (p+a)−f (p))d4 p=0  . 
 

In our case the integral has superficial degree of divergence 2 and so we can’t shift 
integration variables. 
Further we will consider the k1  , k2 photons on mass shell , k1

2 = 0  ,   k2
2 = 0 and we 

 will take a , k1
0 , k 2

0  as small quantities which approach 0 .  Thus excepting a small 
 range of ‖p⃗‖ on which the integral is negligible under the assumptions we made, 
 integrating over p0  using residues theorem, we have that the poles of f (p)  and  

f (p+a)  as functions of p0∈ℂ  with, f (p)=
tr (γμγ5(p−k 2) γ

ν p)

((p−k2)
2+iε)(p2+iε)

 , ε>0  , ε→0 ,

 

 are of the form c−i d  with c ,d∈ℝ  , c d>0  and so (as in Chap. ... Georgi-Glashow 
 model. Renormalization) we can perform a Wick rotation to euclidean 
 four-dimensional space: 

 

 I (a)=∫d 4 p(f (p+a)−f (p))=i∫dE
4 p( f ((i p0 , p⃗)+a)−f (i p0, p⃗))=

=i∫ dE
4 p(aλ∂

λ f (i p0 , p⃗)+...)≈i lim
R→∞

−aλ
Pλ

R
~
f (P)2π2 R3   where  (Pλ)λ=(i p0 , p⃗)   

 and Pλ
~f (P)  is understood as an average on the 3-dimensional spherical surface 

 with radius R   ,  ‖P‖=p0
2+ p⃗2    ,   SR={p∈ℝ4|‖P‖=R} of Pλ f (P) .

 

 We have tr(γμ γ5(p−k2)γ
ν p)=tr( γ5(p−k 2) γ

ν p γμ)=4 i ϵρ νσμ k 2ρ pσ    

 where ϵρ νσμ  is the completely antisymmetric symbol with ϵ0123=1   
 

 and so we obtain k 1λΔ
μλ ν(k1 , k2)=

1

(2π)8
lim
R→∞

k 1
δ Pδ Pσ

R2 4 i ϵρ νσμ k 2ρ2π2   .  

 By a symmetry argument the averaged 
Pδ Pσ

R2  is − 1
4
ηδσ  and we conclude 

k 1λΔ
μλ ν(k 1 ,k 2)=

1

(2π)4
1

8π2 ϵ
μνσρ k1σ k2ρ    ,   

k 2νΔ
μλ ν(k1 , k 2)=

1

(2π)4
1

8π2 ϵ
μλσ ρk2σ k1ρ

 (4)

For having fermion number conservation and gauge invariance not violated by those 
not vanishing expressions, we choose to shift integration variable in the linearly 

 

                             /   /      /        

                                                                    /   /      /     

                         /   /       /            /   /       /    
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 divergent integral Δμλ ν(k 1 , k 2)  by an arbitrary four-vector a  defining 

Δμλ ν(a ,k 1 , k2)=i3∫ d4 p
(2π)8

tr (γμγ5 1
p+a−q

γν 1
p+a−k1

γλ 1
p+a

+
  

+[λ , k1←→ν , k 2])    
and we will choose a  such that  k1λΔ

μλ ν (a ,k 1 , k2)   and k 2νΔ
μλ ν(a, k 1 ,k 2)  vanish.  

 We take f (p)=tr (γμγ5 1
p−q

γν 1
p−k 1

γλ 1
p )  and in the same way as above we will  

 have Δμ λ ν(a , k 1, k 2)−Δ
μ λ ν(k 1 , k2)=−

i
(2π)8

∫d4 p( f (p+a)−f (p))=

= 1
(2π)8

lim
R→∞

aω
Pω

R
tr(γμ γ5 P γν PγλP)

R6 2π2 R3+[λ , k1←→ν , k 2]=
 

= 1
(2π)4

1
8π2 iaσϵ

μλ νσ+[λ , k1←→ν , k2]   

 We can take a=α(k1+k 2)+β(k1−k 2)  and so we obtain 

Δμλ ν(a ,k 1 , k2)=Δ
μλ ν(k1 , k2)+

iβ
(2π)4 4π2 ϵ

μ λ νσ (k1−k 2)σ  . 
  (5) 

 Thus with β=− 1
2

 ,considering (4) we will have 

k 1λΔ
μλ ν(a , k1 , k2)=k 2νΔ

μλ ν(a , k1 , k2)=0

 

 With this shifted integration choice of Δμλ ν(a, k 1 ,k 2)  replacing Δμ λ ν(k 1 , k2)  for 
 not violation of fermion number conservation and gauge invariance, according to 
 (3) , in O (e3)  approximation we have ∫⟨0|∂μ Ĵ 5

μ(x)|0⟩ exp(−i q x)d4 x=
=e2∫i qμΔ

μλ ν(a , k1 , k2)δ
4(q−k 1−k 2) Aλ(k1) Aν(k 2)d

4 k1 d4 k2=

=e2∫(i qμΔ
μ λ ν(k 1 , k2)+

ϵμλσ νk 1μ k 2σ

(2π)4 4 π2 )δ4(q−k1−k 2)Aλ(k 1)Aν(k2)d
4 k 1 d4 k 2

 

 Writing q=p−(p−q)  we obtain after some calculus as above :  

qμΔ
μ λ ν(k 1 ,k 2)=−

i
(2π)8

∫d4 p tr(γ5 1
p−q

γν 1
p−k1

γλ−γλγ5 1
p−k 2

γν 1
p )  +   

+[λ , k 1←→ν , k2]=k1μΔ
λμν(k 1 , k2)+k 2μΔ

νλ μ(k1 , k 2)=
iϵλ νμσ k 1μ k 2σ

(2π)4 4 π2  .  

It follows now that 

∫⟨0|∂μ Ĵ 5
μ(x)|0⟩exp (−i q x)d4 x=∫

e2ϵνλμσ k1μ k2σ

(2π)82π2 exp (−iq x)exp(i k1 x)exp (ik 2 x)

Aλ(k 1) Aν (k 2)d
4 x d4 k 1 d4 k 2=∫

e2ϵμλσ νexp(−i q x)
2π2 ∂μ Aλ(x)∂σ Aν (x)d

4 x  , 

 

 

                                             /   /   /     /   /   /      /  /   

 

                                /   /     /   /      /       

                               /     /    /     

 

            /    /    /   /      

                                               /   /     /    /               /   /      /    
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⟨0|∂μ Ĵ 5
μ( x)|0⟩= e2

8π2 ϵ
μλσν Fμλ(x)Fσν (x)  .  

Hence under quantum fluctuations, the axial current of a massless fermion field is not 
conserved and its divergence is an operator capable of producing two photons 

(according to the fig.1 diagram) and having   ∂μ J 5
μ= e2

8π2 ϵ
μλσ ν Fμλ Fσ ν  .  

Writing the Lagrangian density in terms of left and right handed fields 

ψL=
1
2
(I−γ5)ψ   and  ψR=

1
2
(I+γ5)ψ  , introducing 

J R
μ=ψRγ

μψR   ,  JL
μ=ψL γ

μψL  we have 

∂μ J R
μ=1

2
∂μ Jμ+1

2
∂μ J 5

μ= e2

16π2 ϵ
μλσ ν Fμλ Fσ ν  , 

∂μ J L
μ=1

2
∂μ Jμ−1

2
∂μ J 5

μ=− e2

16π2 ϵ
μλσ νFμλFσ ν

 

We can think of the left handed and right handed fermions running around the loop in 
fig.1 contributing oppositely to the anomaly.

Coupling the fermion field to a scalar field by adding f φ ψ ψ to the lagrangian 
density or as already done coupling it to the electromagnetic field, higher order 
diagrams such as the three loop diagram in fig.2 arise .

                                      q

                                   w2  
                               w1   

                             
           k1                                                                 k2                 

                            fig.2      

Before we integrate over the momenta of the propagators labeled by w1 , w2 in fig.2 
the Feynman integrand has seven fermion propagators and thus is more than 
sufficiently convergent so that we can shift integration variables. Thus before we 
integrate over w1 and w2 , all the appropiate current conservation identities are 
satisfied, for instance
qλ Δλ μ ν 3 loop ( k1 , k2 , w1 , w2 ) = 0 . Hence we encounter the non-renormalization of the 
anomaly so that higher order diagrams not contribute to the anomaly. 

Page 5 of 7 461 of total 515  Gh.V.B. Introd. to...QFT 



 Having the ψ→exp(iθγ5)ψ  symmetry with the associated conserved charge 

Q=∫d3 x⃗ J 5
0( t , x⃗)  the anomaly allowing for the charge Q̂  a non-zero vacuum 

 expectation value so that Q̂|0 ⟩≠0  and Q̂  satisfying [Ĥ ,Q̂ ]=0  since generates 
 a symmetry ( Ĥ  the Hamiltonian operator of the fermion field system) , following 

 

the considerations in Chap.Symmetry breaking , the Goldstone theorem leads to a 
Nambu-Goldstone boson |s ⟩=∫d 3 x⃗ exp (−i k⃗⋅⃗x)J 5

0(t , x⃗)|0 ⟩  which describes  the 

masless particle known as the pion having  momentum k⃗  .  
 The pseudovector spin 1 meson π0  (pion) is made of a confined quark and 
 antiquark, color-anticolor combination ψM=(ψM

μ (x1 , x2))μ=(ψ
a(x1) γ

μγ5ψa(x2))μ  
 

(with summation over color index a) which at a location x = x1 = x2  in space-time has 
a pseudovectorial spin 1 particle of effective mass mπ equivalent Lorentz 
pseudovector field operator function (a pseudovector transforms as a Lorentz vector 
under the restricted Lorentz group and changes sign under parity transformation ; see 
Chap. Fermion charge … CPT transformations)   φ̂=(φ̂μ(t , x⃗))μ  so that for  
 F̂μ(x)=ψM

μ (x , x)  the propagator of the π0  meson is 

Dμλ(x− y)=−i⟨0|T ( F̂μ(x)F̂λ( y))|0⟩=−i ⟨0|T (φ̂μ(x)φ̂λ( y))|0⟩   ( with a pion 

 Lagrangian density 1
2
(∂μφν)(∂

μφν)−mπ
2 φμφ

μ  ; see Chap. Feynman amplitudes  

 

and lattice gauge theory … Meson and barion masses). 
 If |k ⟩  is the pion with four momentum k  state, then Lorentz invariance tells us that 
⟨0|Ĵ 5

μ(0)|k ⟩=f kμ  . 
 As in Chap. Spin-statistics theorem we have 
⟨0|Ĵ 5

μ(x)|k⟩=⟨0|exp(i p̂ x) Ĵ 5
μ(0)exp (−i p̂ x)|k ⟩=⟨0|Ĵ 5

μ(0)|k⟩ exp(−i k x)=
=f kμ exp(−i k x)   where p̂  is the four-momentum operator, acting on the 
 states Hilbert space and so ⟨0|∂μ Ĵ 5

μ(x)|k ⟩=−i f k 2 exp(−i k x)=−i f mπ
2 exp(−i k x)  

 

So if the pion is massless as a Nambu-Goldstone boson to the spontaneously broken 
chiral symmetry  in an ideal world , the axial current is conserved.
In the unified S U(3) x S U(2) x U(1) theory we can consider the decay of the π0 pion 
 into two photons π0→γ+γ  and the corresponding amplitude which can be 
 computed in lattice gauge theory 
−e2∫ ⟨0|a(k1)a(k2)T ( Âν(z) Âλ( y) Ĵν( z) Ĵ λ( y) Ĵ 5

μ(x))|0⟩d4 y d4 z     (6) 

 

with a = a (k) anihilation operator for the photon of four momentum k and k1 ,  k2 

four-momenta of the outgoing photons . In first approximation, the Fourier transform 
of (6) in four-momentum q space of the incoming pion is (to multiplication with 
incoming and outgoing states normalization connstants) equal with:
ελ(k1)εν(k 2)

√2ωk 1√2ωk 2

e2Δμλ ν (a , k1 , k2)δ
4(q−k1−k2)  where ε(k1) ,ε(k 2)  are the photon 

polarization four-versors and a is taken as above respecting the necessity of gauge 
invariance and fermion number conservation (vector current conservation under 
fluctuations)  (see also Chap. Feynman amplitudes and lattice gauge theory).
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 The integrand in (6) can be written as a sum 
∑

k
⟨0|a(k 1)a(k2) Âν(z) Âλ( y) Ĵ ν(z) Ĵλ( y)|k⟩ ⟨k|Ĵ 5

μ(x)|0⟩

 over all k  -four-momentum states which states must be pion states, so that 
⟨k|Ĵ 5

μ(x)|0⟩  not vanishes. 

 

  Since ⟨k|Ĵ 5
μ(x)|0⟩=f ∗ kμ exp(i k x)  and ⟨0|∂μ Ĵ 5

μ(x)|k⟩=−i f mπ
2 exp (−i k x)  it 

 follows that if the axial current is conserved and mπ≠0  then f=0  and the pion 
 

decay cannot occur. Therefore, since pion decay is observed we conclude that the real 
pion has an effective non-zero mass.

The strong interaction (Quantum chromodynamics) path integration theory allows 
computations (in lattice gauge theory for example) of amplitudes of processes in 
which hadrons interact by exchanging pions , for example schematically a proton
 ua ub dc  ( a ,b , c  -different color indices, u  -up quarks ,d  -down quarks ) on  
 proton scattering through exchanging a pion da d a  involves an amplitude 

∫ ⟨0|P( x̄)P( ȳ)d c(x)dc (x)dc ( y)d c( y)P(w̄)P( z̄)|0⟩d4 x d4 y    where we denoted 
P( x̄)=ua(x1)u

b(x 2)d
c (x3) , P(w̄)=ua(w1)u

b(w2)d
c(w3) ,

P( ȳ)=ua( y1)u
b( y2)d

c( y3) , P( z̄)=ua(z1)u
b( z2)d

c (z3)   with x j , y j ,w j , z j∈ℝ
4

 

and generally we can construct a theory of nucleons interacting by exchanging pions.
(see Chap. Feynman amplitudes and lattice gauge theory) .
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                                   Non-abelian gauge theory 

We begin with a quantum field theory defined by a field 
φ=φ(t , x⃗)  , x=(t , x⃗)∈ℝ4  and a Lagrangian density ℒ=ℒ(φ ,∂φ)  which is 
 invariant under an unitary Lie group G  of field transformations. 
 ( for the sake of definiteness we let φ=(φ1 ,φ2 ,... ,φN)   ,  G=S U (N )  and 
ℒ=(∂φ)+ (∂φ)−V (φ+ φ)  ) 

 

 We make then the transformations U ∈G  , U U +=I  to vary from place to place  
 in space-time: U=U (x)∈G .

  

 Clearly φ + φ  is still invariant but under a transformation 
φ(x)→U (x)φ(x)   ,  ∂μφ  transforms as ∂μφ→∂μ(U φ)=U (∂μφ+(U

+ ∂μU )φ)  . 
 

 To cancel the unwanted term (U + ∂μU )φ  we generalize the ordinary derivative 
∂μ  to a covariant derivative Dμ  with Dμφ(x)=∂μφ(x)−i g Aμ(x)φ(x)   with 
g  a coupling constant and (Aμ)μ  transforming as a Lorentz vector under a 
x→Λ x  , Λ∈S O+ (3,1)  coordinates transform, where the field (Aμ)μ  is called 
 a gauge potential in direct analogy with electromagnetism. 
 We see that under a φ(x)→U (x)φ(x)  gauge transformation we will have 
Dμφ( x)→U (x)Dμφ(x)  so that the Lagrangian density 
ℒ(φ ,∂φ)=(Dμφ)

+ (Dμφ)−V (φ+ φ)  remains invariant, if A=(Aμ)μ  transforms 
 as g Aμ→g U Aμ U +−i(∂μU )U +=gU AμU + +i U ∂μU + .          (1) 

 

Clearly Aμ have to be N x N matrices and the condition Aμ  =A +
μ is preserved by the 

gauge transformation (1) and thus is consistent to take Aμ to be hermitean. 
 Writing U=exp (iθ a T a)  (with summation over a  index ) where (T a)a  are the  

 the generators of G  and θ  a=θ  a(x)∈ℝ  we have the  infinitesimal form of (1) 

g Aμ→g Aμ+i gθ a[T a , Aμ]+∂μθ
 a Ta+O(θ 2)  .    (2) 

 

 The Lie algebra of the group G  is defined by the structure constants ( f a b c)a ,b ,c   

 with [T b ,T c]=i f a bc Ta   ( for G=SU (N )  the (Ta)a  are N2−1  linear independent 
 

hermitean traceless matrices (see Chap. On the rotations group and the restricted 
Lorentz group)). 
We notice that if G = U (1) we have only one generator, which is a real constant 
number and (2) is a gauge transformation of a gauge potential familiar from 
electromagnetism, G being abelian. 
 Since (Ta)a  are hermitean generators and Aμ  is hermitean we can write 

Aμ=Aμ
a Ta  and if T a  are traceless we see from (2) that the trace of Aμ  does not 

 transform and so if Ta  are traceless we can take Aμ  traceless and we have 

Aμ=Aμ
a Ta  with Aμ

a=Aμ
a (x)∈ℝ  , real functions. 

 

 We can construct the Lorentz invariant 1-form A=Aμd xμ . 
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 In order to define a Lagrangian density for the non-abelian gauge potential (Aμ)μ  

 which is an analog of the electromagnetism Lagrangian density − 1
4

Fμ νFμν  , 

 we find our task in constructing a Lorentz invariant 2-form F=1
2

Fμν d xμd xν   

 from A .

 

 From A  we can construct two possible 2-forms : d A=1
2
(∂ν Aμ−∂μ Aν)d xνd xμ  

 and A2=Aμ Aνd xμd xν=1
2
[Aμ , Aν]d xμd x ν .

 

 Under a U=exp(iθ a Ta)  transformation we have: 

A→U A U ++ 1
g

iU d U +       (3) where d U=∂μU d xμ .

 Applying d  to (3) we obtain 

d A→U (d A)U ++(d U )A U +−U A d U + + 1
g

i d U d U +  . 

 Also we have A2→U A2U ++ 1
g

iU A d U +− 1
g

i(d U ) A U ++ 1
g2 d U d U +   

( where we used U d U +=−(d U )U +  since U U += I  ). 

 

Hence d A−i g A2→U (d A−i g A2)U +  and taking F=d A−i g A2=1
2

Fμνd xμ d xν ,  

 we have that − 1
2

tr (Fμν Fμ ν)  is Lorentz invariant and invariant under the 

U=U ( x)  transformation and 
Fμν=∂μ Aν−∂ν Aμ−i g [Aμ , Aν]  . 

 

 Normalizing the (T a)a  such that tr (Ta T b)=1
2
δab  we have Fμ ν=Fμν

a Ta  with 

Fμν
a =∂μ Aν

a−∂ν Aμ
a+g f ab c Aμ

b Aν
c   . 

 

 With the Yang-Mills Lagrangian density defined as 

ℒ((Aμ
a ,∂ Aμ

a)a ,μ)=−
1
2

tr (Fμν Fμ ν)=− 1
4
(∂μ Aν

a−∂ν Aμ
a)(∂μ Aaν−∂ν Aaμ)−

− 1
2

g(∂μ Aν
a−∂ν Aμ

a) f ab c Abμ A c ν− 1
4

g2 f a b c f ad e Aμ
b Aν

c Adμ A e ν

 

we have a Yang-Mills quantum field theory for the ((Aμ
a)μ)a  gauge vector bosons.  

We can consider that the gauge bosons have masses (Ma)a and so we add to the Yang-

Mills Lagrangian density  terms like 1
2

Ma
2 Aμ

a Aaμ  .  

When we give that way masses to the gauge bosons we see that the quadratic part of 
the Yang-Mills Lagrangian density is equivalent to
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1
2
∑

a
Aμ

a((∂2+M a
2) ημν−∂μ∂ν) Aν

a  and so we can verify that the propagator for the 

(Aμ
a)μ  gauge boson is (Dνλ

a )ν ,λ  given in the coordinates space by 

Dν λ
a (x)=∫ d4 k

(2π)4 Dνλ
a (k)exp (ik x)  with the momentum space propagator 

Dν λ
a (k)=

−ηνλ+ kνkλ

Ma
2

k 2−Ma
2+iε

 with ε→0  , ε>0 ,

 

showing that we have made the right choice of mass term. 
Following the path of Fadeev-Popov method exposed in Chap…Quantum 
electrodynamics , for massless gauge bosons we write

S (A)=∫d4 x(− 1
4

Fμν
a Faμν+J aμ Aμ

a)  , 

I=∫D A exp(i S(A))=∫Dθ∫D A exp(i S (A))Δ(A)δ( f (Aθ))=
=∫Dθ∫D A exp(i S(A))δ( f (A))     (4)   

 

 where A→Aθ  stands for the gauge transformation A→Ag  , g∈G  ( do not confuse 
g∈G  with the coupling constant g  ) 

Aθμ=Aμ+iθ a[T a , Aμ]+
1
g
∂μθ

 a Ta   ,  θ=(θ a)a  , f (A)=∂μ Aμ−σ  =∂ A−σ  , 

Aθμ
a =Aμ

a−f abcθ b Aμ
c+ 1

g
∂μθ

 a  , σ  a=σ  a(x)∈ℝ  , σ  =σ a T a

 

Δ(A)=(∫Dθδ((∂ Aa−σ  a−∂μ( f a b c θ b Aμ
c−1

g
∂μθ

 a))
a
))
−1

      (5)  

 Since in (4) Δ(A)  is multiplied with δ( f (A))  we can take in (5) ∂ Aa−σ  a=0   

 We have ∂μ( f a bc θ b(x) Aμ
c (x)−1

g
∂μθ

 b(x))=∫ d4 y Kab(x , y)θ b ( y)   

Kab(x , y)=∂μ( f ab c Aμ
c (x)−1

g
∂μδ

 ab)δ4( x− y)

 and (Kab(x , y))(a ,x) ,(b , y)  as a matrix K  so that in (4) we can take 

Δ(A)=(∫Dθδ(K θ))−1
=det K

 

 We can take ca=ca(x)  so called ghost fields with (c a(x))a ,x  , (ca
+ ( x))a ,x   

independent sets of anticommuting Grassmann variables and we have to 
multipication with independent normalization constants that
det K=∫D c D c + exp (i Sghost (c

+ , c))  
 where Sghost(c

+ , c)=∫d4 x d4 y c+ (x)K ab(x , y)cb( y)=

=∫d4 x (1
g
(∂ca

+ (x))(∂ ca(x))−∂μ c a
+ ( x) f abc Aμ

c (x)cb(x))
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 Defining Dμ c=∂μ c−i g Aμ
a [T a , c ]=(∂μ c a−g f abc cb Aμ

c )T a=(Dμ c a)T
a  , 

 we will have Sghost(c
+ , c)=1

g
∫d 4 x∂μ ca

+ Dμ c a

 

 Therefore factoring out ∫Dθ  and ∫D σ exp(−(i /(2ξ))∫ d4 x (σ(x))2)  since 

I  is independent of σ  we obtain 

I=~C∫Dσ exp (−i
2ξ∫ d4 xσ  2)∫D A D c D c + exp (i(S(A)+Sghost(c

+ , c)))δ(∂ A−σ)
 

 with ~C  an independent constant.  
 Thus I=~C∫D A D c D c + exp(i S eff (A ,c + , c))  where 

S eff (A ,c + , c)=∫d4 x(ℒ 0+ℒ1)   ,  

ℒ 0=−
1
4
∑

a
(∂μ Aν

a−∂ν Aμ
a)(∂μ Aa ν−∂ν Aaμ)− 1

2ξ∑ā
(∂μ Aμ

ā)2+∑
a

1
g
∂μ c a

+ ∂μ ca+

+∑
b

1
2

M b
2 Aμ

b Abμ   (we take the ā  index summation over all massless gauge bosons 

 and the b  index summation over all massive gauge bosons) 

 

ℒ 1=−
g
2
(∂μ Aν

a−∂ν Aμ
a) f ab c Abμ A c ν− g2

4
f ab c f ad e Aμ

b Aν
c Adμ A e ν−∂μ ca

+ f a b c cb Aμ
c   

 From the form of ℒ0  we derive the propagator for massless gauge bosons as 

Dν λ
a (k)=(−ηνλ+(1−ξ) kνkλ

k2 ) 1
k2  

  (in the Rξ  gauge, with ξ∈ℝ  the gauge parameter ) 

 and the ghost fields propagator as Dab
ghost (k)= g

k 2 δab

 

 From the form of ℒ1  we derive couplings as follows: 

 a) g f ab c(ημν(k1−k2)
λ+ηνλ(k 2−k3)

μ+ηλμ(k 3−k 1)
ν)  for a cubic gauge bosons  

 interaction, where k 1 ,k 2 , k3  label respective the incoming four-momenta to the 
 interaction vertex a,b , c  indexed bosons; 

 b)−ig2 ( f a bc f ade (ημληνε−ημεην λ)+f adc f ab e(ημλ ηνε−ηλεημ ν)+
+f abd f ac e(ηνμηλ ε−ηνεημλ))    for a quartic gauge bosons interaction verttex; 

 c) f ab c kμ  for a ghost fields - gauge boson interaction vertex where k  labels  
 the outgoing ghost particle four-momentum indexed with a  and b  is the  
 incoming ghost particle index , c  is the incoming boson index. 

 

 Note that the ca  and ca
+  are known as ghost fields because they violate  

 spin-statistics connection: Though scalar , they are treated as anticommuting.  
 This 'violation' is acceptable because they are not associated with physical  
 particles and are introduced merely to represent Δ(A)  in a convenient form. 
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              Electroweak unification. Quantum chromodynamics
                                    Georgi-Glashow model 

We will denote further the SU(N) canonical representation 
S U (N )∋U=(U j

i )i , j=1 , N :ℂN∋(φi)i→(U j
i φ j)i∈ℂ

N   by N  . 

 A field φ=(φi)i  will be denoted transforming as (N1 ,N 2, r)  (that is belongs to a 
(N1 , N2 ,r)  representation of SU (3)×S U (2)×U (1)  if it transforms as a N 1  
 representation under S U (3)  as a N2  representation under S U (2)  ( N 1∈{1 ,3} , 

N2∈{1,2} with 1  meaning the identity representation ) and as φ→exp(iθ Y
2
)φ   

 (with 
Y
2
φ=r φ  , r∈ℝ   and Y  a self-adjoint operator), under exp(iθ)∈U (1) . 

 

 The generators of S U (N)  are self-adjoint traceless matrices (Ta)a=1 ,N 2−1  and we 

 have f ab c∈ℝ  with a ,b , c=1 ,N 2−1    ,   [T b ,T c]=i f ab c Ta

 ( with summation over a  index). Considering the generators normalized so that 

tr (Ta T b)=1
2
δa b  we will have i f ab c=2tr (Ta [T b, T c])  leading to 

f abc=−f ac b=f cab  for any a,b , c .

 

As we noticed in Chap. Fermion charge… Majorana neutrino . Chirality , the weak 
interaction occurs only with participation of the left handed fields, so we put the left 
handed neutrino field νL and the left handed electron field eL into a 2 representation of 
SU (2) and the right handed electron filed eR into a 1 representation of SU(2) :
ψL=(νe )L    ,  eR  where νL  and eL  are left handed Dirac spinor fields and eR  is a  

right handed spinor field.
To include electromagnetism with a massless boson field which would turn out to be 
the photon, we extend the gauge symmetry to SU(2) x U(1) , denoting the generator 

 of U (1)  by Y
2

 , called the hypercharge, so that we have a covariant derivative 

Dμ=∂μ−i gW μ
a Ta−i g′Bμ

Y
2

    with T i=1
2
σi  , σi   -the Pauli matrices , i=1,3 .

 

To generate a mass term for the electron we introduce a Higgs field 

φ=(φ1

φ0)  transforming as a 2  under S U (2)  and having a vacuum expectation value  

⟨φ⟩= 1
√2 (0v)  with v∈ℝ  which couples to ψL  and eR  in the interaction terms 

−f ψLφ eR−f eRφ
+ ψL=−

1
√2

f v eLeR−
1
√2

f v eR eL   
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 giving to the electron a mass m= 1
√2

f v  .  

We can verify that upon spontaneous symmetry breaking of the Higgs field 
Lagrangian density symmetry (see Chap. Symmetry breaking) from the SU(2) x U(1) 
group to the U(1) group by setting the potential energy minimum point at the 

 vacuum expectation value ⟨φ⟩= 1
√2 (0v)  ( for example a Higgs field Lagrangian  

 density (∂μφ
j)+ (∂μφ j)+μ2φ j+ φ j−λ(φ j+ φ j)2  

 with v=√μ2

λ   ) three of the four degrees of freedom for the Higgs field 

 ( since φ0 ,φ1  are complex) are the resulting Nambu-Goldsone bosons and they 
 are eaten by the three (W a)a=1 ,3  bosons and it remains one real degree of freedom 

 

which corresponds to the Higgs particle.
 The Ta  generators are normalized by the commutation relations [Ta , Tb]=iϵa bc T c  

 and tr Ta2=1
2

 to Ta=1
2
σ a   ,  a=1,2 ,3 .

 

 The normalization of the Y
2

 operator is not fixed and so is not the normalization  

of the gauge coupling g’ . By construction we want spontaneous symmetry breaking 

to leave invariant a linear combination of T3  and Y
2

 to be identified as the  generator 

the massless photon couples to, namely the charge operator Q=T3+Y
2

 .  

 For eL  to have charge −1  (we choose g ,g′  to be positive ), the doublet ψL  must 

 have 
Y
2
ψL=−

1
2
ψL .  The field  eR  must have 

Y
2

eR=−1  since T3 eR=0 .

 The invariance of the f ψLφ eR  forces the field φ  to have 
Y
2
φ=1

2
φ .  Also for 

φ=⟨φ⟩  we have T 3φ=− 1
2
φ .
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 Through spontaneous symmetry breaking (see Chap. Anderson-Higgs mechanism) 

 we have φ→⟨φ⟩= 1

√2 (0v)  leading to 

(Dμφ)
+ (Dμφ)→ g2

2
Wμ

a W bμ(0 , v)T aT b(0v)+g g′W μ
a Bμ(0 , v)T a Y

2 (0v)+
+ g′2

2
BμBμ(0 , v)(Y

2 )
2

(0v)= g2

8
v2W μ

+ W −μ+

+ 1
2
(g Wμ

3 T3φ+g′Bμ
Y
2
φ)

+

(gW 3μT3φ+g′Y
2
φ)= g2

8
v2W μ

+ W −μ+

+ v2

8
(g Wμ

3−g′Bμ)(gW 3μ−g′Bμ)        where W ±=W1∓iW 2  . 

 

 Therefore defining tanθ= g′
g

 we will have massive W bosons W 1 ,W 2   

 with mass squared v 2

4
g2=MW

2  , a massive Z boson Z=W 3 cosθ−B sinθ

 with mass squared M Z
2=

MW
2

cos2θ
=v2

4
(g2+g′2)  while the orthogonal combination 

A=W 3sin θ+B cosθ  remains massless and will be identified with the photon. 

 

 We include quarks in the theory by taking doublets qL
α=(u

α

dα)
L

 transforming as 2  

 under S U (2)  and singlets uR
α , dR

α  transforming as 1 under S U (2)  where α=1,3  
 denotes the color index, uL

α ,dL
α  are the left handed and uR

α , dR
α  are the right handed 

 

up- respective down- quark Dirac spinor fields. The up-quarks have charge 2/3 and 

the down quarks have charge -1/3 and so uR
α  must have hypercharge Y

2
uR
α=2

3
uR
α  ,   

dR
α  must have hypercharge Y

2
dR
α=− 1

3
dR
α  and  qL

α  must have hypercharge 

Y
2

qL
α=1

6
qL
α .

 

 Taking Bμν=∂μBν−∂ν Bμ    ,   W μν
a =∂μW ν

a−∂νW μ
a+g ϵabc Wμ

b W ν
c  

   (see Chap. Non-abelian gauge theory) , 

(ψβ)β=((ν , e) ,(uα , dα)α)=(ψλ1 ,ψλ 2)λ  , ψλ=(ψλ 1

ψλ 2)   ,  ψλ=(ψλ 1 ,ψλ 2)   ,  
 

the electroweak Lagrangian density (we can also include the other families of leptons 
and quarks (see Chap. Feynman amplitudes and lattice gauge theory)) can be written 
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 as ℒ=∑
β
ψβ (i∂−mβ)ψ

β+∑
λ
(g
2

W μ
− ψL

λ 2γμψL
λ1+ g

2
W μ

+ ψL
λ1 γμψL

λ 2)+   

+∑
λ

g
cosθ

Zμ(
1
2
(ψL

λ 1γμψL
λ1−ψL

λ 2 γμψL
λ 1)−J em λ

μ sin2θ)+∑
λ

g sinθ Aμ J em λ
μ +

+1
2

M Z
2 ZμZμ+1

2
M W

2 W μ
+ W −μ−1

4
Bμ νBμν−1

4
W μν

a W aμν
 

 where J em λ
μ =(ψλ1 ,ψλ2)γμQ(ψλ 1

ψλ 2)  is the electromagnetic current with Q=T3+Y
2

  

 an we take Y νR=0 ,  following that we must have the charge of the electron  
e=−gsin θ  . 

 

We can see that the exchange of a W boson generates the Fermi weak interaction term

− g2

2 M W
2 νLγ

μ eLeLγμνL  .  

 ( Indeed, since the W μ
1 (x)W ν

2 ( y)  and W μ
2 (x)W ν

1 ( y)  terms in a W − (x)W + ( y)  
 W boson exchange of order g2  Feynman diagram path integration vanish because  
 they are odd in integration variable the corresponding amplitude reduces to 

−i g2

4
νL(p)γμ eL(q)eL(r) γ

ννL(s)(Dμ ν
1 (p−q)+Dμ ν

2 (p−q))(2π)4δ4(p+r−s−q)

 where the boson propagator is Dμν
1 (k)=Dμ ν

2 (k)= 1

k2−MW
2 +iε (−ημν+ kμ kν

MW
2 )   

 and as we learned in Chap.Feynman amplitudes and lattice gauge theory we can 
 dispose of the kμ kν  term, since k=p−q  with p ,q  on mass shell in the amplitude 
 expression. Also because the boson mass is much larger than the fermion masses we 
 approximate k2−MW

2 ≈−MW
2  and so the above equivalent interaction term can 

 express the Fermi weak interaction between electrons an neutrinos. 

 

We can write the Z boson coupling as g
cosθ

Zμ(Jleptons
μ +J quarks

μ )  and the exchange of  

a Z boson generates, in asimilar way as for the W boson, a neutral current interaction 
between leptons and quarks 

− g2

MW
2 (J leptons+J quarks)

μ(J leptons+J quarks)μ  . Studying various processes described by  

 this interaction we can determine θ  and then estimate g  from e=g sinθ  . 

 

J quarks
μ =1

2
(uLγ

μuL−dLγ
μdL)−(

2
3

uγμu−1
3

d γμd )sin2θ  

J leptons
μ =1

2
(νLγ

μνL−eL γ
μ eL)+eγμ e sin2θ

 

We can also write, considering that T aψR
λ=0  the electroweak Lagrangian density as  

 

                   /    
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ℒ=∑
β
ψβ(i∂−mβ)ψ

β+∑
λ

gψλ γμW μ
a T aψλ+∑

λ
g′ψλ γμBμ

Y
2
ψλ+1

2
M Z

2 ZμZμ+  

+1
2

M W
2 W μ

− W +μ−1
4

Bμ νBμν−1
4

W μν
a W aμν   .  

As we mentioned we have three families of leptons and quarks (see Chap. Feynman 
amplitudes and lattice gauge theory) : 
(νe ,e− )  neutrino and electron  -first generation; 
(νμ ,μ− )  muon neutrino and muon  -second generation; 
(ντ , τ

− )  tau neutrino and tauon   -third generation; 
(uα , dα)   up quark and down quark  -first generation; 
(cα , sα)  charm quark and strange quark  -second generation; 
(tα , bα)  top quark and bottom quark  -third generation; 
α=1,2 ,3   -color index ; 

 The  uα ,cα , tα  have electric charge 2
3
|e|;

 The  dα , sα , bα  have electric charge − 1
3
|e|;

 The neutrinos have neutral electric charge;
 The e− ,μ− ,τ−  have charge e=−|e|.

 

A generation makes a family of leptons and quarks and u,c,t,d,s,b are the quark 
flavors, νe , e - ,  νμ , μ - , ντ  , τ – are the leptons. 

The W bosons interaction part of the Lagrangian density ,
g
2

W μ
+ uL

α γμdL
α+ g

2
W μ

− dL
αγμuL

α+ g
2

Wμ
+ νLγ

μ eL+
g
2

Wμ
− eLγ

μνL  ,  

allows the β -decay in which for example  ( β - -decay ) in a neutron ,which is a color 
singlet udd (see Chap. Feynman amplitudes and lattice gauge theory), a down quark 
becomes a up quark emitting a W boson which then decays into an electron and a 
antineutrino so that the neutron becomes a proton uud by emission of an electron and 
a antineutrino according to the coupling (see fig. 1)  

− g2

4
uL
αγμdL

αW μ
+ ( x)W ν

− ( y)eL γ
ν νL  .  

We can also have a β+ decay in which a proton becomes a neutron by emission of a 
positron and a neutrino. In β – decay the weak interaction converts an atomic nucleus 
into a nucleus with atomic number increased by one while emitting an electron and 
an antineutrino. In β + decay the weak interaction converts an atomic nucleus into a 
nucleus with atomic number decreased by one while emitting a positron and a 
neutrino. β -  decay occurs in neutron rich nuclei and β + decay occurs in proton rich 
nuclei . In all cases where β + decay is allowed energetically , also electron capture is 
possible in which a nucleus captures one of its atomic electrons resulting the emission 
of a neutrino: a up quark from a proton uud interacts with the electron exchanging a 

 

               /   
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W boson and becomes a down quark emitting a neutrino according to coupling (see 
fig. 2) 

− g2

4
dL
αγμuL

αW μ
− (x)W ν

+ ( y)νLγ
νeL  .  

              u   d    u                           ν   
                                                                                 u   d    d    
                                                          e -                                                                  ν 

                                            W -                                                                                                                                                 e -  

                                                                                                                   W +  

       u  d    d                                                 u
                                                                          d     u  

             fig.1                                                         fig.2   

The Δ++  baryon, consisting of three up quarks which have no orbital angular 
momentum has a total spin of 3/2 (each quark contributes with spin angular 
momentum 1 / 2) . Therefore the Δ++ baryon must be a fermion and have an 
antisymmetrical wave function. For the tensorial product of three identical up quark 
wave functions leading to an antisymmetrical state we must have at least three 
discrete degrees of freedom for the up quark wave function. Hence we derive for the 
quark the existence of color degree of freedom. The quarks come in three colors and 
we define the SU(3) invariance by color transformations and the 8 color charges

(ρa)a=1 ,8  of the color quark (ψα)α=1 ,3  , ψα  a Dirac spinor function , 

ρa=ψα 1
2
λαβ

a ψβ  , λa , a=1 ,8   -the Gell-Mann matrices , generators of SU (3) .
 

(see Chap. Feynman amplitudes and lattice gauge theory) .
The Quantum chromodynamics is therefore a SU(3) gauge group non-abelian gauge 
theory described by a Lagrangian density 

ℒ= ∑
 flavors 

ψα (iγμ(δαβ∂μ−i g Aμ
a T αβ

a )−mδαβ)ψ
β−1

4
Fμν

a Faμ ν  where (Aμ
a)μ , a  is the 

 gauge field known as gluon field and 

Fμν
a =∂μ Aν

a−∂ν Aμ
a+g f ab c Aμ

b Aν
c  , T a=1

2
λ a  , [Tb , T c]=i f a bc T a .
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Note that quarks of different flavors can have different masses m. 
As we proved in Chap. Feynman amplitudes and lattice gauge theory , the potential 
energy of a quark-antiquark system or that of a baryonic three quark system grows 
with the (square of) separation distance if the momentum range of the quarks is small 
enough, so that, due the strong coupling constant g , at small energies, the quarks are 
confined in quark-antiquark particles or three quark particles as protons (u u d) or 
neutrons (u d d) or other hadrons. As we will show, the strong coupling constant 
flows to zero in the large momentum limit and so at high energies we have 
asymptotic freedom of quarks, with quarks interacting as isolated particles.
The perturbative calculation of the renormalization group flow (for the dependence of 
the coupling constant on momentum range parameter), since the coupling g becomes 
ever stronger down to the momentum scale, requires higher order in g approximations 
and becomes finally inadequate.Nevertheless it is plausible that g goes to infinity 
with decreasing to zero momentum scale and that the gluons keep the quarks and 
themselves in permanent confinement. To calculate the amplitudes of various 
processes in the non-perturbative approach for low momentum scale we can use 
lattice gauge theory (see Chap. Feynman amplitudes and lattice gauge theory) and 
provide the order parameter for confinement (below from which the higher order 
terms in g  become significant). 

Further we can consider a theory which includes Electroweak interaction and strong 
Quantum chromodynamics interaction.

 The left handed up and down quarks are in a doublet (u
α

dα)
L

 with hypercharge 

Y
2
=1

6
. We denote this (3,2 ,

1
6
)

L
 with the three numbers indicating how these  

 

fields transform under SU(3)xSU(2)xU(1) . Similarly the right handed up quark is 

(3 ,1 , 2
3
)

R

,  the right handed down quark is (3 ,1 ,− 1
3
)

R

.  The leptons (νe )L
 and eR   

 are (1 ,2 ,− 1
2
)

L

 and respective (1,1 ,−1)R  where 1  in the first entry indicates that 
 

these fields do not participate in the strong interaction.
All the quarks and leptons of each family are placed in

(3 ,2 , 1
6
)

L

 , (3 ,1 , 2
3
)

R

 , (3 ,1− 1
3
)

R

 , (1 ,2 ,− 1
2
)

L

 , (1 ,1 ,−1)R       (*) .  

Since gauge transformations commute with the Lorentz group, the gauge 
transformations cannot change left handed fields to right handed fields. The charge 
conjugation changes left handed fields to right handed fields and viceversa. So by 
charge conjugation of the right handed fields, instead of (*) we can write 

(3 ,2 , 1
6
)  , (3∗ ,1 ,− 2

3
)  , (3∗ ,1 , 1

3
)  , (1 ,2 ,− 1

2
)  , (1,1 ,1)            (**)  

with all fields left handed. 
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 ( where N ∗  denotes the representation of S U (N)  which transforms elements 
(φi)i=1 , N∈ℂ

N  like (φ i∗ )i=1 ,N  with (φi)i  transforming in the N  representation. 

 Thus under U=(U j
i )i , j∈SU (N )  we have φi→(U j

i )∗φ j=U i
+ jφ j  ) 

 

The smallest SU(N) group that contains SU(3)xSU(2)xU(1) is SU(5) . 
Of the 24 traceless self-adjoint matrices that generate SU(5) we have 8 which have

 the form (A 0
0 0)  with A∈M 3×3(ℂ)  and 3  have the form 

(0 0
0 B)  with B∈M2×2(ℂ)  so we can take A=1

2
λ a  , a=1 ,8  , λa  -the Gell-Mann 

 matrices and B=1
2
σi  , i=1 ,3  , σi   -the Pauli matrices and therefore S U (3)  and 

S U (2)  fit into SU (5) .

 Furthermore the 5×5  self-adjoint traceless matrix 
Y
2
=diag(− 1

3
,− 1

3
,− 1

3
,
1
2

,
1
2
)

 generates a U (1)   . Y
2

 is the hypercharge .

 

 In other words we separate the index (α ,i)α=1 ,2,3 ; i=4 ,5  . The three objects ψα   
transform as 3 under SU(3) and do not transform under SU(2) and hence each of them 
belong to a 1 singlet of SU(2) . Furthermore they carry hypercharge -1/3 . 

 So the (ψα)α  transform as (3 ,1 ,− 1
3
)  under S U (3)×S U (2)×U (1) .

 The two objects ψi  transform as 1 under S U (3)  and as 2 under S U (2)  and carry 

 hypercharge 1 /2  . Thus they transform as (1,2 , 1
2
)  and so the 5  of S U (5)   

 decomposes into representations of SU (3)×S U (2)×U (1):  

5→(3 ,1 ,− 1
3
)⊕(1,2 ,

1
2
)  . 

 

Taking the conjugate we see that 

5∗→(3∗ ,1 , 1
3
)⊕(1 ,2∗ ,− 1

2
)  and therefore, identifying 2→2∗  through 

(ν , e)→(e ,−ν)  we decompose 5∗→(3∗ ,1 ,
1
3
)⊕(1 ,2 ,− 1

2
)  with the two composing 

 parts appearing in the (**) list. 

 

Consider now the antisymmetric tensor representation of SU(5) denoted as 10 defined 
 by antisymmetric 5×5  matrices (ψμν)μ ν  , ψμ ν=−ψνμ  with μ , ν=1 ,5   

 transforming under U=(U ν
μ)μ ,ν∈S U (5)  as ψ=(ψμ ν)μ ,ν→U ψUT

 with U T=(Uμ
ν)μ , ν.  Thus a generator T a  of SU (5)  acts on ψ  like 

(T aψ)μν=Tμδ
a ψδ ν+ψμδT νδ

a  , 

 since U ψU T=exp(iθaT a)ψexp (iθa TaT)=ψ+iθa(T aψ+ψT aT)+O (θ  2)  . 
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 We know already 5→(3 ,1 ,− 1
3
)⊕(1,2 , 1

2
)  and taking the antisymmetric tensorial 

 product, after we identify 3⊗A 3→3∗  by 3⊗A 3∋(φαβ)αβ→(ϵαβγφ
βγ)α∈3∗  we have 

(3 ,1 ,− 1
3
)⊗A (3,1 ,− 1

3
)→(3∗ ,1 ,− 2

3
)  

(3 ,1 ,− 1
3
)⊗A (1 ,2 , 1

2
)→(3 ,2 , 1

6
)  

(1,2 ,
1
2
)⊗A (1,2 ,

1
2
)=(1,1 ,1)   

 and so we derive 

10=5⊗A 5→(3 ,2 ,
1
6
)⊕(3∗ ,1 ,− 2

3
)⊕(1 ,1 ,1) .

 

Hence the known quark and lepton fields in a given family fit perfectly into the 5* 
and 10 representations of SU(5) . 

 We write therefore 5∗  as the column vector (ψμ)μ=(ψα
ψi )α , i

=((d c
α)α
e
−ν )  where we  

 denoted ~d  -the down quark Dirac spinor field, ~e   -the electron dirac spinor field, 

~ν   -the neutrino Dirac spinor field, d=~d L=
I−γ5

2
~
d   -the left handed down quark 

 field,  dc=γ
2~d R

∗  -charge conjugated right handed down quark 
~
dR=

I+γ5

2
~
d ,

e=~e L=
I−γ5

2
~e  -left handed electron field, ν=~νL=

I−γ5

2
~ν  -left handed neutrino .

 Obviously ((dc
α)α , 0 ,0)  transforms as (3∗ ,1 ,

1
3
)

  and (0 ,0 ,0 ,e ,−ν)  transforms as (1 ,2∗ ,− 1
2
) .

 

We write 10 as the antisymmetric matrices 
(ψμν)μ ,ν=(ψ

αβ ,ψα i ,ψiα ,ψi j)α ,β , i , j  with α ,β=1,3  , i , j=4 ,5   

(ψμ ν)μ ,ν=
1
√2 (

0 uc −uc u d
−uc 0 uc u d
uc −uc 0 u d
−u −u −u 0 ec

−d −d −d −ec 0
)   (where we suppressed the color index) 

 so that ψαβ= 1

√2
ϵαβγuc

γ  , ψα4=−ψ4α= uα

√2
 , ψα 5=−ψ5α= dα

√2
 , 

ψ45=−ψ54= 1

√2
ec   with  ~u  up quark , uc=γ

2~u R
∗   ,  ~u R=

I+γ5

2
~u   ,  
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~e R=
I+γ5

2
~e   ,  ec=γ

2~e R
∗  . 

 We add a (1,1 ,0)  field,ψ0  , which transforms obviously as the identity 1 

representation of S U (5)  corresponding to the antineutrino νc=γ
2~νR

∗  

 with  ~νR=
I+γ5

2
~ν .

 

Therefore we have the grand unified SU(3)xSU(2)xU(1) theory written in terms of 
S U (5)  representations Georgi-Glashow model 5∗⊕10⊕1  with a Lagrangian 

 density ℒ=− 1
4

Fμ ν
a Faμν+∑

Φ
Φ  γμ(i∂μ−mΦ)Φ+∑

ψ
g3ψ  ⋅γμ Aμ

a 3 T (3)
a [ψ]+

+∑
ψ

g2ψ  ⋅γμ Aμ
a 2T (2)

a [ψ]+∑
ψ

g1ψ  ⋅γμ√5
3

BμT (1)[ ψ]+
1
2
(μ2)a b Aμ

a Abμ       (1) 

 

 where Φ∈{~ν ,~e ,~uα  , ~d α|α=1 ,3} (we can consider obviuously also the other 
 families of quarks and leptons), 
ψ∈{ψμ ,ψμ ν ,ψ0|μ , ν=1 ,5} 

T (3)
a =(A 0

0 0)  , A=1
2
λa  , a=1,8  , 

T (2)
a =(0 0

0 B)  , B=1
2
σa  , a=1 ,3  , 

T (1)=√ 3
5

Y
2

  ,  (T a)a=1 ,12=((T (3)
a )a=1 ,8  , (T (2)

a )a=1 ,3  , T (1))  , 

(Aμ
a)a=1 ,12=((Aμ

a3)a=1 ,8  , (Aμ
a2)a=1 ,3  , Bμ)  ; [T

b ,T c]=i f ab c Ta  , 

Fμν
a =∂μ Aν

a−∂ν Aμ
a+g f ab c Aμ

b Aν
c   with g=g3  for a=1,8  , g=g2  for a=9,11  ; 

 

 For (ψ ,φ)=((ψμ)μ ,(φμ)μ)  we have defined γλ ψ=(γλψμ)μ  , ψ⋅φ=ψμφμ  and 

Ta[ ψ]=(−T νμ
a ψν)μ  ; 

 For (ψ ,φ)=((ψμ ν)μ ,ν ,(φμν)μ , ν)  we have defined γλψ=(γλ ψμν)μ , ν  , 

ψ  ⋅φ=ψμνφμν  and Ta [ψ]=T aψ+ψT a T  . 

 

 To generate the mass terms in the Lagrangian density (1), represented by 
−∑

Φ
ΦmΦΦ  we can introduce a Higgs field which transforms as a 5: (φμ)μ=1 ,5  , 

φμ=φ
μ∗  and has a vacuum expectation value ⟨φ⟩=(δ5μ v)μ=1,5  with v∈ℝ

 

 considering the couplings 2ℜ(ψμ
T f γ0 γ2ψμνφν+ψ

μ ν f γ0γ2ψλρφσ ϵμ νλ ρσ). 
The first coupling determines the mass of the down quarks and of the electron and the 
second coupling determines the mass of the up quark.
By the Anderson-Higgs mechanism, we obtain the mass operator ((μ2)a b ) a,b and the 
gauge mass spectrum as in the electroweak theory.
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 Thus we will have the corresponding massive W bosons W μ
±=Aμ

12∓i Aμ
22  , 

 the massive Z boson Zμ=Aμ
32cosθ−Bμ sinθ  and the massless photon 

Aμ=Aμ
32 sinθ+Bμ cosθ  with tanθ=

g1

g2

 , because as in the electroweak theory 

 we have Y
2
⟨φ⟩=1

2
⟨φ⟩ .

 

 We have also T (3)
a ⟨φ⟩=0  and so the (Aa3)a=1 ,8  remain massless.  

In a grand unified SU(5) theory we would have(5/3)1 / 2 g1 = g2 = g3 = g and 12 more 
gauge bosons that transform quarks into leptons and viceversa:
W uα

±=Wuα
1 ±i W uα

2   ,  W dα
± =W d α

1 ±iW d α
2  , α=1,2 ,3  corresponding to generators 

Tuα
1 =(δ4μδαν+δ4 νδαμ)μ , ν   ,  Tuα

2 =(−iδαμδ4ν+i δα νδ4μ)μ ,ν

Td α
1 =(δ5μδα ν+δ5νδαμ)μ ,ν    ,   Td α

2 =(−i δαμδ5ν+iδα νδ5μ)μ ,ν    with μ ,ν=1,5 .

 

The grand unified SU(5) theory would allow a proton decay in which the down quark 
and a up quark of the proton p = uud anihilate each other producing a W +

d boson 
which then decays into a positron e+ and a anti- up quark which forms with the 
remaining up quark of the incoming proton a outgoing pion π0 = uu  according to 
 interaction term ψαβγ

μψ5βW dαμ
− (x)W dαλ

+ ( y)ψ54 γ
λ ψα4  and the Feynman diagram 

 below in fig.3 . 
 

                u                                        e +

                                       W +
d  

                                                            u    
              d                                          
                              fig.3  

Let MX denote generically the masses of those gauge bosons transforming quarks into 
leptons and viceversa. Then the amplitude of proton decay is of order g2 / MX

2 and the 
proton decay rate  Γ is given by (g2 / MX

2)2  times a phase space factor controlled 
esentially by the proton mass since the pion and positron mass are negligible 
compared to the proton mass mP . By dimensional analysis we determine that 
Γ ~ (g2 / MX

2)2 mP
5 . The decay rate determines the evolution of the N = N (t) number 

of protons in a sample by the  equation d N
d t

=−ΓN  and so N=N0 exp(−Γ t)  and  
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the mean lifetime of a proton is therefore   τ  =
∫
0

∞

t N (t)d t

∫
0

∞

N (t)d t
= 1

Γ . 

We expect the world to be stable and so Γ has to be small and MX has to be huge 
compared to the kind of energy scales we can reach experimentally.
The mass MX is of the same order as the mass scale MGUT at which the grand unified 
SU(5) theory is spontaneously broken down to SU(3)xSU(2)xU(1) as we already 
exemplified in Chap. Anderson-Higgs mechanism , considering a Higgs field φ 
transforming as a traceless self-adjoint 5x5 matrix in the adjoint representation of 
S U (5)  allowing for φ  a vacuum expectation value 

⟨φ⟩=diag(− 1
3

,− 1
3

,− 1
3

, 1
2

, 1
2
) .

 

As we move up in the mass or energy scale μ , we will show that the couplings g3 (μ) 
 g2(μ) are asymptotically free decreasing while g1(μ) increases. Thus at some mass 
scale MGUT they will meet and that is where the SU(3)xSU(2)xU(1) theory is unified 
into SU(5) . We anticipate that the mass scale MGUT will come out much higher than 
any scale we were used to.

We will determine now the renormalizations of the couplimg constants g j  , j = 1,2,3
under consideration of quantum fluctuations to order O (g2) in SU(3)xSU(2)xU(1) 
theory with the (1) Lagrangian density considering the scattering process involving 
two particles interchanging bosons corresponding to generators which belong to 
one (j) of the three subrepresentations  generators (T ( j)

a )a  ,  j=1,2 ,3  .
 In the following m  stands generically for the fermion masses involved in the  
 interactions. We calculate the scattering process at energies high compared to the  
 mass m  and so we will set all quarks and leptons masses equal to one m→0  ,  
 setting m=0  everywhere we can, such as in the numerator of an expression. 

 

The order zero fluctuations Feynman diagram for a scattering process is fig.4 
 with s1  and s+q  four-momenta on mass shell, which since as mentioned we 

 consider m→0  leads to q2=−μ2≤0  and μ2  being the momentum transfer squared. 
 

                       s1                                  s1’         
                                       q    

                      s + q                            s’ – q         

                                  fig.4                                             s1 = s     ,   s1’  = s’      

Page 12 of 24 481 of total 515  Gh.V.B. Introd. to...QFT 



The q  four-momentum virtual boson can fluctuate into a fermion and an antifermion 
according to fig.5 and fig.6 diagrams 

                  s1                                                   s1’                                        

                           q                               q   
                  s+q                                                    s’ +q

                                          fig.5 

                                               =                                           + 

        +                                                                            +

                                                                                                                    +   …...
      +                                                                                                      

                                                 fig.6   

The Feynman amplitude for fig.5 fig.6 Feynman diagram scattering process with 
consideration of fluctuations is 
(2π)4M δ4(s1+s′1−s−s′)  with s1=s  , s′1=s′  , 

M=−g2 u(s)γμu(s+q) (i Dμν (q)+i Dμλ(q)iΠF
λ ρ(q)i Dρ ν(q)+

+i Dμλ(q) iΠF
λρ(q) i Dρσ(q) iΠF

σ κ(q) i Dκ ν(q)+...)u(s′) γνu(s′−q) tr(T aT a)   

 

where we suppressed the spin index for the generical fermion Dirac spinor function u 
and we take the massless boson propagator 
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Dμν(q)=(−ημν+(1−ξ)qμqν
q2 ) 1

q2   

(as we will notice the case of a massive boson propagator can be treated in the same 
way giving the same result since the momentum transfer being considered high 
compared to the boson mass for having a significant fluctuations contribution we can 
neglect the boson mass in the momentum space propagator denominator) and also , 
according to Feynman rules we will have 

iΠF
λρ(q)=∫ tr (− 1

(2π)4
i g γ  λ i

p−m+iε i g γ ρ i
p+q−m+iε)d4 p tr(T aT a)  .  

(Notice the minus sign for the fermion loop.)  
 We have qλ((p+q+m) γλ(p+m))α ε=4 m2 uα(p+q)u(p+q)(p+q)u(p)uε(p)−
−4 m2uα(p+q)u(p+q) pu(p)uε(p)=4 m3 (uα (p+q)u(p+q)u(p)uε (p)−

 

−uα (p+q)u(p+q)u(p)uε(p))=0   and so qλΠF
λρ(q)=0  and similar qρΠF

λ ρ(q)=0  .  
Together with Lorentz invariance this requires that 

iΠF
λρ(q)=g2(qλqρ−ηλ ρq2) iΠF (q

2)  and so g2ΠF (q
2)=− 1

3q2 ηλ ρΠF
λ ρ(q)   

 obtaining M=g2 iημνu(s) γμu(s+q)( 1

1+g2ΠF (q
2)
+ 'qμqν  term')u(s′)γνu(s′−q)  . 

 

 We have qμu(s) γμu(s+q)=u(s)(s+q)u(s+q)−u(s)s u(s+q)=0  
(since k u(k)=mu(k )) and so we can drop the qμqν  term in the above expression. 

 

If there are no gluon self interacting fluctuations which is the case in Quantum 
electrodynamics or the subrepresentation is of j = 1 , g = g1 the effective coupling 
 at momentum transfer squared μ2=−q2  is g(μ)  which comparing the resulted 
 expression for M  with the zero order in fluctuations amplitude , satisfies 

g2(μ)= g2

1+g2ΠF(−μ
2)

    (2) and generally we will have a correction to 
1

g2(μ)
 due 

 to fermion loop fluctuations described by fig.5 diagrams given by 
1

g2(μ)
= 1

g2+ΠF (−μ
2)  at momentum transfer squared μ2=−q2  and in Quantum  

 electrodynamics we have a electric charge renormalization e2(μ)= e2

1+e2ΠF (−μ
2)

.

 

 Let I (q2 ,m)=∫ d4 p
(2π)4

tr(γμ 1
p+q−m+iε γ

μ 1
p−m+i ε)           (3)  

 We have ΠF (q
2)=− i

3 q2 I (q2 , m) tr(T aT a) .

 Using the identity ∫
0

1 dα
α x−(1−α) y

= 1
x y

 we obtain: 

 

 

                                      /                 /  /                       

                   /   /           /                                        /   /   
                               /                              

                                            /   /                   /    
         /                         

 

                                      /  /               /       
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I (q2 ,m)=∫
0

1

∫ d4 p
(2π)4

tr (γμ(p+(1−α)q+m) γμ(p−αq+m))
(p2−m2+α(1−α)q2+iε)2

=  

=∫
0

1

∫ d4 p
(2π)4

−8 p2+8α(1−α)q2−8(1−2α) p q−8 m2

(p2−m2+α(1−α)q2+iε)2
=

=∫
0

1

dα∫∫
−∞

∞

H α(p0 , p⃗)d p0 d3 p⃗   where the poles of H α(p0 , p⃗)  as a complex 

 function of p0  are z±=±(a−i b)  with a ,b∈ℝ +   ,  b≠0  and so 

∫
−∞

∞

Hα (p0, p⃗)d p0=2π i Rez(Hα(⋅, p⃗) , z− )= ∫
−i∞

i∞

Hα( z , p⃗)d z=i∫
−∞

∞

Hα (i z , p⃗)d z  , 

  (4)

I (q2 ,m)=i∫ d α
(2π)4

∫ 8 k2−8(m2−α(1−α)q2)
(k2+m2−α(1−α)q2)2

dE
4 k       (5)  

 Taking a cutoff ‖k‖4<Λ  we derive: 

I (q2 ,m)=i∫
0

1 d α
(2π)4

∫
0

Λ2

π2 k
8 k−8(m2−α(1−α)q2)
(k+m2−α(1−α)q2)2

d k=

=i∫
0

1 d α
2π2 (Λ2−3(m2−α(1−α)q2) log

Λ2+m2−α(1−α)q2

m2−α(1−α)q2 −
2(m2−α(1−α)q2)
Λ2+m2−α(1−α)q2+

+2(m2−α(1−α)q2))  . 

 

 For mν
2≫m2  the integrand of I (q2 ,mν)  according to (5) is O( 1

mν
2 )  and is 

 negligible compared to thre integrand of I (q2 ,m)   and therefore we can take 
(mν ,cν)ν=1 ,3   ,  cν∈ℝ  , mν

2≫m2  such that 

 

∑
ν

c ν=1   ,  ∑
ν

cνmν
2=m2   ,  ∑

ν
cνmν

2 logmν
2=m2 logm2  and  

cν   remaining bounded while mν→∞   in the so called Paul-Villars regularization 
I (q2 ,m)≈ I (q2 ,m)−∑

ν
cν I (q2, mν

2)          (6) . 

 

 Thus for large Λ   , Λ→∞  we have 

I (q2 ,m)≈i∫
0

1
dα
2π2 3∑

ν
cν ((m2−α(1−α)q2) log(m2−α(1−α)q2)−

−(mν
2−α(1−α)q2) log (mν

2−α(1−α)q2))   . 

 

 We have also 
(mν

2−α(1−α)q2) log (mν
2−α(1−α)q2)=(mν

2−α(1−α)q2) logmν
2−α(1−α)q2+

+O( q2

mν
2 ).

 

 Hence for mν
2≫μ2   , taking  m→0  we obtain  

                                   /            /          /      /      
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I (q2 ,m)≈i∫
0

1

3
dα
2π2 (−α(1−α)q

2 log (−α(1−α)q2)+α(1−α)q2+α(1−α) log M2)=

=i q23∫
0

1 d α
2π2 (α(1−α) log M2

μ2 +α(1−α)(1−log (α(1−α))))
 

 where log M2=∑
ν

cν logmν
2   and taking M >0  such that 

log M2=log M 2+6∫
0

1

α(1−α)(1−log (α(1−α)))d α    we have a parameter M  so 

 that at momentum transfer squared μ2  with m→0  we have 

I (μ2)=I (q2 ,m)≈3 i q2 1

12π2 log
M 2

μ2

ΠF(q
2)= 1

12π2 log M2

μ2 tr (Ta Ta)         (7)  

 

 The effective coupling in Quantum electrodynamics case is g(μ)=−e(μ)  , 

e(μ)   -effective electron charge and is given by g2(μ)= g2

1+g2a log
M 2

μ2

 , 

a= 1

12π2   ,  
1

g2(μ)
= 1

g2 +2a log
M

μ  and taking t=logμ  as a renormalization group 

 flow parameter we have a renormalization group flow equation 
d g
d t
=a g3=β(g)   ,  a>0 .

 

 If a theory happens to have coupling constants gi  , i=1 , N  then we have 
d gi

d t
=bi(g1 , g2 ,... gN )  .The (g1 , g2 ,... , gN)  is interpreted as the coordinate of a 

 particle in N -dimensional space, t  -as time and bi(g1 , g2 , ... , gN )  , i=1 ,N   
 as a position dependent velocity field. As we increase t ( or μ  ) we study how the 
 particle moves or flows. We will denote (g1 , g2 , ... , gN )  as g  . Those couplings g∗  
 at which (bi(g

∗))i=1 ,N  vanish are fix points. If the velocity field around a fix point 

 

is such that the particle moves toward the point (and once reaching it, it stays there 
since its velocity is now zero) , the fix point is known as attractive or stable.
Thus to study the asymptotic behaviour of a quantum field theory at high energies we 
have to find all its attractive fix points under the renormalization group flow. We can 
tipically see that some couplings are flowing toward larger values while other are 
flowing to zero.
The asymptotic or high energy behaviour of the theory on the sign of bi . In the case 
of Quantum chromodynamics and Electroweak theory (couplings g3  and g2) we will 
notice a renormalization group flow with β < 0 (because of the gluon self-interaction 
fluctuations as we will show below) and so g = 0 is an attractive fix point at high 
energies (the coupling goes to zero as μ goes to infinity) and we have asymptotic 
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freedom of Quantum Chromodynamics and Electroweak theory causing the 
weakening of strong interaction and weak interaction at high energies (and low 
distances) , the quarks being no more confined at high energies. 

 In the S U (3)×S U (2)×U (1)  and  S U (5)  theories the tr (Ta T a)  factor in (7) 
 must be considered for both 5∗  and 10  representations. For the 5∗  representation 
 the factor is tr(T a Ta)  and for the 10  representation we have to consider all 

 summations ∑
μ ,ν ,α ,β

ψμν γ  ρ(Tμα
a ψαν+T νβ

a ψμβ)ψαβγ  σ(T αμ
a ψμβ+Tβ ν

a ψα ν)   

 with μ , ν ,α ,β=1,5  which leads to a factor 

T R
a= 1

4
∑

μ≠ν  , α≠β
(Tμα

a δβ ν+T νβ
a δαμ)(T αμ

a δβ ν+T βν
a δαμ)=

1
2
(3 tr(T aT a)+∑

μ=ν
Tμ ν

a T νμ
a )

 The generators are diagonal or have all diagonal elements equal to zero. 

 Therefore T R
a∈{32 tr(T a Ta),2 tr(T a Ta)} , max

a
T R

a=2 tr (Ta T a)

 and ΠF (q
2)= 1

12π2 ( tr(T
aT a)+T R

a )F log M 2

μ2

    where F  is the number of lepton-quark families. 

 

 The Higgs field φ  transforming as a traceless selfadjoint matrix in the adjoint  

representation of S U (5)  has vacuum expectation value diag (− 1
3

,− 1
3

,− 1
3

, 1
2

, 1
2
)
 

commuting with the T (i)
a  , i=1,2 ,3  generators and so when the SU (5)  symmetry 

 is spontaneously broken to S U (3)×S U (2)×U (1)  all S U (3)×S U (2)×U (1)  
 gluons will be massless and for the renormalization of g3  and g2  at some  

 momentum transfer squared μ2  we have to consider gluon self-interactions as in  

 

fig.7 (a) , (b) and to ensure gauge invariance of the amplitude computations we must 
consider also gluon-ghost interactions diagrams to order O (g2) as in fig.7 (c) . 

                           k                                                            k

       q                                 q                                        q                          q
                           p   
                   fig.7 (a)                                                                 fig.7 (b) 
                                                              k  

                                        q                                         q
                                                               p 
                                                       fig.7 (c)
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where the (a) is the two three gluons self-interaction vertices loop GT , (b) is the four 
gluons self-interaction vertex loop GF and (c) is the two gluon-ghost field interaction 
vertices loop GG.
The Feynman amplitude for the fig.4 scattering under considering of fig.5 and fig. 7 
fluctuations is  (2π)4M δ4(s1+s1′−s−s′)  with  

M=−g2 u(s)γμu(s+q) (i Dμλ(q)+i Dμρ(q) iΠ
ρσ(q)i Dσ λ(q)+

+i Dμρ(q) iΠ
ρσ(q) i Dσ κ(q) iΠ

κ ν(q)i Dνλ(q)+...)u(s′) γλu(s′−q) tr(T aT a)      (8) 
 

 where Dμλ(q)=(−ημλ+(1−ξ)qμaλ
q2 ) 1

q2   

Πρσ (q)=ΠF
ρσ (q)+ΠG T

ρσ (q)+ΠG F
ρσ (q)+ΠG G

ρσ (q)  and according to Feynman rules: 

 

iΠG T
ρσ (q)=∫ d4 k d4 p

2(2π)4
i Dαβ(k) i Dηδ(p)V ραη

abc (q , k , p)V σβ δ
a bc (−q ,−k ,− p)δ4 (q+k+ p) 

(with summation over b ,c indices and we notice the 1 / 2 symmetry factor)  

iΠG F
ρσ (q)=∫ d4 k

2(2π)4
i Dνδ(k )W ρσ νδ

aab b   

(with summation over b index , noticing the 1 / 2 symmetry factor) 

iΠG G
ρσ (q)=∫ (−1)d4 k d4 p

(2π)4
i Df b

ghost (p) i De d
ghost(k )H a eb

ρ (p)H a f d
σ (k)δ4(q+ p−k)   

(with summation over f , b , e , d indices , noticing the minus sign from the ghost 
loop, since the ghost fields are treated as Grassmann variables) 
where according to Chap. Non-abelian gauge theory we have 
Hae b

ρ =pρ f be a  (ghost-gluon coupling) 

Df b
ghost(p)= g

p2 δf b  (ghost field propagator) 

V ραη
ab c (q ,k , p)=g f abc (η ρα (q−k)η+η ρη(p−q)α+ηαη(k−p)ρ)  ( three gluon vertex 

 coupling) 

 

Wρσ νδ
bc de=−i g2 (f hbc f hd e(η ρνη σ δ−η ρ δη σ ν)+ f hd c f h be (η ρ νη δσ−η ρση δν)+

+ f hbd f hc e (η ρση νδ−η ρδη νσ))   ( four gluon vertex coupling) 
 

We take the Feynman-’t Hooft gauge with ξ = 1 and so 
Dν δ(k)=−

ηνδ
k 2+iε

 , 

iΠG F
ρσ (q)=− 3η ρσ

(2π)4
f a hb f ahb∫ d4 k

k2+iε
 ( with summation over h , b ) . 

 

 As we did for ΠF  we have I (m)=∫ 1
k2−m2+iε

d4 k=∫ 1

k0
2−k⃗ 2−m2+i ε

d k 0 d3 k⃗=

=∫∫
−∞

∞ 1

k 0
2−k⃗2−m2+iε

d k0 d3 k⃗=∫ ∫
− i∞

i∞ 1

z2−k⃗ 2−m2+iε
d z d3 k⃗=∫

−idE
4 k

k 2+m2−i ε
=
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=−iπ2∫
0

∞ k d k
k+m2−iε

 and therefore making the right cutoff ‖k‖4<Λ  we obtain 

I (m)=−iπ2(Λ2−m2 log
Λ2+m2

m2 )  . Taking (mν , cν)ν=1 ,3  , mν≫m  with ∑
ν

cν=1  , 

∑
ν

cνmν
2=m2  , ∑

ν
cνmν

2 log mν
2=m2 log m2  so that cν  remain bounded as mν→∞  

 we have in the Paul-Villars regularization I (m)≈ I (m)−∑
ν

cν I (mν)=0  . 

 Hence with m→0  in the Paul-Villars regularization we can consider  ΠG F
ρσ (q)=0  . 

 

Further , after some calculus we obtain 

iΠG T
ρσ (q)=− 1

2(2π)4
g2 f abc f a bc∫ d4 k

k 2(q+k)2
(−10kρkσ+2qρqσ+7 qρkσ+7 qσkρ−

−η ρσ (5 q2+2 k2+2k q))d4 k=g2 f a bc f a b c

2(2π)4
∫
0

1

dα∫ d4 k

(k 2+α(1−α)q2+i ε)2
(10kρ kσ+

+η ρσ ((5−2α(1−α))q2+2 k2)+  'qσ qρ  term' )=

=−i g2 f ab c f abc

2(2π)2
∫
0

1

dα∫
dE

4 k

(k 2−α(1−α)q2)2 (η ρσ (9
2

k 2−(5−2α(1−α))q2)+
+  'qσ qρ  term' 

 )    (with summation over b , c  indices ) 

 (9) 

Since qμu(s) γμu(s+q)=u(s)(s+q)u(s+q)−u(s)su(s+q)=(m−m)u(s)u(s+q)=0 
 and similar qλ u(s′) γ λ u(s′−q)=0  in the (8) expression of the amplitude, we can 
 drop any qρqσ   term from the ΠG F

ρσ (q)  expression in (9) 
 

 Taking I (q ,m)=∫ dE
4 k

(k2−α(1−α)q2+m2)2 (9
2

k 2−(5−2α(1−α))q2)   
 for a cutoff ‖k‖4<Λ  we have for large Λ

I (q ,m)≈π2∫
0

1

d α(9
2
Λ2−(9m2+(5−11α(1−α))q2) log Λ2

m2−α(1−α)q2
+

+ 9
2

m2+(5−13
2
α(1−α))q2)

 

In the same way as above we can take a Paul-Villars regularization with 
(mν ,cν)ν=1 ,3  ,  mν

2≫μ2=−q2  , mν≫m  , m→0  , ∑
ν

cν=1  , ∑
ν

cνmν
2=m2  , 

∑
ν

cνmν
2 logmν

2=m2 logm2  , cν  remaining bounded while mν→∞  so that 

iΠG F
ρσ (q)=−g2 f ab c f abc

2(2π)4
iη ρσ (I (q ,m)−∑

ν
cν I (q ,mν))=

= 19

96 π2 i g2η ρσ f ab c f abc q2 log
M2

μ2       (10) 

 

Where M > 0 is a parameter satisfying 

 

                                       /   /                   /                      
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log M2=∑
ν

cν logmν
2−∫

0

1 6
19

(9α(1−α)+(11α(1−α)−5) log (α(1−α)))d α  .  

 Also we have iΠG G
ρσ (q)=−g2 f abc f a bc

(2π)4
∫ kσ (k−q)ρ

k2(k−q)2
d4 k=

= i g2 f abc f abc

(2π)4
∫
0

1

d α∫
dE

4 k

(k2−α(1−α)q2)2 (η ρσ k 2

4
+  'qρqσ  term' )  . 

 

In the same way as above we know that we can drop any  qρ qσ  term and that we   
 can take the Paul-Villars regularization with (mν , cν)ν=1,3  , mν

2≫μ2=−q2  , 

mν≫m  , m→0  , ∑
ν

cν=1  , ∑
ν

cνmν
2=m2  , ∑

ν
cνmν

2 log mν
2=m2 log m2  , 

cν  remaining bounde while mν→∞            (11) , 

iΠG G
ρσ (q)= i

(2π)4
f ab c f a bcηρσ(I (q ,m)−∑

ν
cν I (q ,mν))

 where I (q ,m)=∫
0

1

∫
dE

4 k

(k 2−α(1−α)q2+m2)2
k 2

4
≈

≈π2

4
∫
0

1

dα (Λ2−2(m2−α(1−α)q2) log Λ2

m2−α(1−α)q2+m2−α(1−α)q2)   

 and so iΠG G
ρσ= 1

192π2 i g2η ρσ f abc f abc log
M2

μ2      with M>0  a parameter satisfying 

log M2=∑
ν

cν logmν
2−3∫

0

1

2α(1−α)(log (α(1−α))−1)dα  . 

 

We can slghtly continuously variate (mν , cν)ν=1 ,3  (for mν  sufficienly large) in each 
 case of ΠF  , ΠGT  , ΠGG  calculation such that the (11) relations remain valid for 
 all F ,G T ,G G  situations and also the parameter M  becomes the same for all 
F ,G T ,G G  cases. 

 

 Thus we have a parameter M>0  , M 2≫μ2=−q2  such that for any momentum 
 transfer squared μ2=−q2  we have 
Πρσ (q)=−η ρσq2 g j

2Π(q2)  with 

Π(q2)= 1
64π2 (16

3
~T R

a F−13 CG
a ) log M2

μ2   ,  ~T R
a=tr(T a Ta)+T R

a   ,  

CG
a=f ab c f ab c  (with summation over b , c  ) CG

a=2  if j=2  , CG
a=3  if j=3  , 

CG
a=0  if j=1  . 

 

From (8) follows now 

M=i g2u(s)γμu(s+q)u(s′) γμu(s′−q) 1
1+g2Π(q2)

1
q2 tr(Ta T a)  and hence the 

 effective couplings at momentum transfer μ2=−q2  are g j (μ)  , j=1 ,2 ,3  with 
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g2 ,3
2 (μ)=

g2 ,3
2

1+g2 ,3
2 Π2,3(μ)

  , 5
3

g1
2(μ)=

5
3

g1
2

1+5
3

g1
2Π1(μ)

   where  

Π j(μ)=
1

32π2 (16
3
~T R

a F−13CG
a )log M

μ  .  

 Taking the maximum value for ~T R
a  , since tr(T aT a)=1

2
 for any a  we can write 

3
5

1

g1
2(μ)

=3
5

1

g1
2+

1

32π2 8 F log
M

μ            (12) 

1

g2
2(μ)

= 1

g2
2+

1

32π2 (8 F−26) log
M

μ         (13) 

1

g3
2(μ)

= 1

g3
2 +

1

32π2 (8 F−39) log
M

μ          (14) 

 

 With t=logμ  the renormalization group flow equations are 
d g j

d t
=a j g j

3(t)  with 

  a1=
5
3

1

8π2 F   ,  a2=
4 F−13

32π2   ,  a3=
8 F−39

64 π2  and since F≤3  we have a1>0  , 

a2,3<0  so as we announced , for the g2 , g3  couplings we have asymptotic freedom 
 behaviour at high momentum transfer (the couplings decrease to the attractive 
 fix point zero as the energy increases ). 

 

The two asymptotically free couplings g3(μ) , g2(μ) decrease while √ 5
3

g1  increases  

as we move up in the energy scale μ . At some mass scale MGUT they will meet and 
that is where SU(3)xSU(2)xU(1) is unified into SU(5) . 

 ( we have a normalization factor of √5
3

 since for √ 5
3

T (1)=
Y
2

 we will 

 have tr(T (1)T (1))=
1
2

 ) 

 

At the unification mas scale we have √ 5
3

g1(MGUT)=g2(MGUT )=g3(MGUT)=gGUT .  

 The strong coupling analog of the fine structure constant is αS(μ)=
g3

2(μ)
4π  . 

 The weak coupling analog of the fine structure constant is αW (μ)=
g2

2(μ)
4π  . 

The fine structure constant is α(μ)=e2(μ)
4 π

=
g2

2(μ)sin2θ(μ)
4π

 with tanθ(μ)=
g1(μ)
g2(μ)

.
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 Taking αGUT=
gGUT

2

4 π  from (12) , (13) , (14) we obtain:  

1
αS(μ)

= 1

αGUT
 + 1

8π (8 F−39) log
MGUT

μ        (15) 

1
αW (μ)

=
sin2θ(μ)
α(μ)

= 1
αGUT

+ 1
8π (8 F−26) log

MGUT

μ        (16) 

3
5

cos2θ(μ)
α(μ)

= 1

αGUT
 + 1

8π 8 F log
M GUT

μ              (17) 

 

The number of fermion families F contributes equally to (15) , (16) , (17) . This is as 
it should be since the fermions are effectively massless for the purpose of this 
calculation and do not ‘know’ that the unifying group has been broken into 
SU(3)xSU(2)xU(1). These equations are derived assuming that all fermion masses are 
small compared to μ , plugging in measured values of αS and α  . With three equations 
we are able to determine the unification mass scale MGUT and coupling αGUT and we 
can predict θ . In other words, unless the ratio g1 to g2 is precisely right, the three 

 lines of g2=g2(μ)  , g3=g3(μ)  , √ 5
3

g1=√ 5
3

g1(μ)  graphics will not meet at one 

 point. 

 Let 
1

αGUT
 =X  , log

M GUT

μ  =Y  , 
1

8π (8 F−39)=A  , 
1

8π (8 F−26)=B  , 
8 F
8π =C  

 and we have 1
αS

 =X+A Y  , sin2θ
α  =X+BY  , 3

5
cos2θ
α  =X+C Y

1

αS
 −

sin2θ
α 

A−B
=

sin2θ
α  

−3
5

cos2θ
α  

B−C
  ,  

sin2θ(μ)  =1
6
+5

9
α(μ)
αS(μ)

     (18) 

sin2θ(μ)
α(μ)

= 1
αS(μ)

+ 1
8π

log
M GUT

μ         (19) 

1
α(μ)

=8
3

1
αGUT

+ 1
8π (64

3
F−26)log

MGUT

μ          (20) 

 

 From (19) we obtain 
1

α(μ)
≥ 1

8π 13 log
MGUT

μ   .  

Therefore a lower bound on the proton life time (and hence on MGUT) translates into 
an upper bound on the fine structure constant: The stability of the world implies the 
weakness of electromagnetism.
In a grand unified theory , Aμ couples to a generator of the grand unifying gauge 
group and we know that the generators of any group such as SU(N)  (that is not given 
by the direct product of U (1) with other groups) are forced by the non-trivial 
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 commutation relations [T b ,T c ]=i f a bc T a  to assume quantized eigenvalues. For 
 example the eigenvalues of T3  in S U (2)  which depend on the representation of  
 course, must be multiples of 1 /2.  Within S U (3)×S U (2)×U (1)  we cannot  
  understand charge quantization since the generator of  U (1)  is not quantized. But  
 upon grand unification into SU (5)  ( or more generally any group without U (1)
 factors) electric charge is quantized. 

 

 Considering the SU (3)×S U (2)×U (1)  theory with the couplings g1 , g2 , g3  as 
 the  5∗⊕10⊕1  gauge group representation with (1) Lagrangian density theory as  

 

presented above we computed the (8) amplitude expression to derive renormalization 
formulas, taking the Feynman diagram according to fig.5 where the fluctuation of the 
scattering intermediating q four-momentum boson occurs as a succesion of fermion 
loops F , three gluon interaction loops GT , four gluon interaction loops GF and 
gluon-ghost interaction loops GG . We must show that this renormalization removes  
all possible divergences that may occur by boson fluctuations and so the theory is in 
fact renormalizable. To do this we write an effective Lagrangian density which 
includes ghost fields in the form 
ℒ=ℒ0+∑

k
ℒ k  where ℒ0  is the quadratic part and ℒk  are interaction  

 terms and we normalize the ghost fields so that no coupling constants appear in   
the ℒ 0  expression (considering √g ca  instead of the ghost field ca -see Chap. 
 Non-abelian gauge theory). The interaction terms involve a coupling constant ck  , 
 fermion fields ψ  , boson (gluon) fields φ  , ghost fields κ  and one degree  
 differential operators ∂   : ℒ k=ck (∂)

δk (φ)b k (ψ)f k (κ)hk  . 

 

 Counting inverse mass dimensions we have 0=4+dim [ck ]−δk−bk−
3
2

f k−hk  and  

 from the (1) Lagrangian density we have dim [ck ]=0 .  The gluon fields are all 
 bosons and the quarks and leptons are all fermions. 

 

For a Feynman diagram G we define : 
nk  -the number of vertices corresponding to ℒ k   
NB -the number of boson external lines 
NF -the number of fermion external lines 
NG -the number of ghost external lines 
l -the number of loops (number of independent integrals in the amplitude 
computation for G) 
nB -the number of boson internal lines 
nF -the number of fermion internal lines 
nG -the number of ghost internal lines 
The superficial degree of divergence for the corresponding to G Feynman integral 
 is dG=4 l−2 nB−nF−2nG+∑

k
nk δk  .  
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 We have: 
2nB+N B=∑

k
nk bk  ; 2 nF+N F=∑

k
nk f k  ; 2nG+NG=∑

k
nk hk  ; 

l=nB+nF+nG−∑
k

nk+1  and so 

dG=4+2(nB+nG)+3nF+∑
k

nk (δk−4)=4+(∑
k

nk f k−N F)+∑
k

nk (bk+ f k+hk)− 

−NB−N F−NG−∑
k

nk (bk+
3
2

f k+hk)=4−N B−N G−
3
2

N F

 

dG=4−NB−NG−
3
2

N F  .  

Considering the nature of interaction terms in the efective Lagrangian density we 
 have that if N F≠0  then N F≥2  and if N F=0  then N B+NG≥2  .  
 Thus dG≤2  and the number of external lines for Feynman amplitudes with overall  
divergences is bounded from above . Hence there is a posibility that the divergences 
may be removed by a finite number of renormalization constants and interaction 
parameters, the theory being renormalizable. For renormalization of the coupling 
constants we have to consider only Feynman diagrams with NB = 2 and dG = 2 that is 
precisely a succesion of fermion loops F , three gluon interaction loops GT , four 
gluon interaction loops GF and ghost-gluon interaction loops GG as we exposed in 
fig.5 , fig .6 , fig. 7 (a) , (b) , (c) . 
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                               Electron-positron anihilation 

An electron and a positron can meet and anihilate each other giving rise to two 
 photons: e− (p1)+e+ (p2)→γ(ε1 , k1)+γ(ε2 , k 2)  , 
p1 , p2  -electron and respective positron four-momenta; 

 ε1 ,ε2  -polarization versors of the two outgoing photons; 
 k1 , k2  -four momenta of the two outgoing photons. 

 

(Anihilating into one photon that is physical and on mass shell is kinematically 
impossible)
The process is described to order O (e2) by Feynman diagrams fig.1 and fig.2 

                                                                              ε1 , k1             ε2 , k2  
                  ε2 , k2                         ε1 , k1     

                          p1 – k1   
                p2                                p1                        p2           p1 – k2            p1        

                          fig.1                                                           fig.2  

The amplitude is (Bose statistics for the two photons):
A=A (k 1 ,ε1 , k2 ,ε2)+ A (k 2 ,ε2 , k1 ,ε1)       with 

A(k1 ,ε1 , k 2 ,ε2)=(2π)4(i e)(i e) v(p2)ε2
i

p1−k1−m
ε1u(p1)δ

4(p1+ p2−k 1−k 2)  
 

A=(2π)4M δ4(p1+ p2−k1−k2)  .  
Averaging over initial spin polarizations through a similar calculus as in Chap. 
Scattering in Quantum electrodynamics . Electron-photon scattering , choosing the 
transverse gauge in the rest frame of the electron and so having 

ε1 p1=ε2 p1=ε1 k1=ε2k 2=0  , ε1
2=ε2

2=−1  we derive 

|M|2= e 4

8 m2 ( p1k 2

p1k 1

+
p1 k 1

p1 k 2

−4(ε1ε2)
2+2)= e4

8 m2 (ω1
ω2

+
ω2
ω1

−4 (ε1ε2)
2+2)    

 where ω1 ,2  are the pulsations of the photons in the electron rest frame and m  is the  
 mass of the electron and positron. 

 

and we will have a differential cross section describing the distribution of the 
outgoing photons momenta in the electron rest frame (see Chap. Feynman amplitudes 
and lattice gauge theory) given by 

 

                                               /  /   /     /   

Page 1 of 8 495 of total 515  Gh.V.B. Introd. to...QFT 



dσ  = 1
(2π)2

m
‖p⃗2‖

d3 k⃗ 1

2ω1

d3 k⃗ 2

2ω2

|M|2δ4(p2+ p1−k2−k1)  .  

 We can take independent polarization directions ε1
1=ε2

1=(0 , vers( k⃗ 1×k⃗ 2))  , 

ε1
2=(0 , vers( k⃗1×ε⃗1

1))   ,  ε2
2=(0 ,vers (k⃗ 2×ε⃗ 2

1))  and with φ  being the angle between 

p⃗2  and k⃗1  summing over final polarizations of the photons in the electron rest 

 rest frame , we have |M|2= e4

2m2 (ω1
ω2

+
ω2
ω1

+sin2 φ)
 

 If in the electron rest frame we have p1+ p2=k1+k2  and θ  is the angle between 

k⃗ 1  and p⃗2  then sin φ=‖p⃗2‖
sinθ
ω2

  ,  ω2=E−ω1   with  E=m+p2
0  

k 2
2=2m E−2ω1(E−‖p⃗2 cosθ‖)

 

 Also (see Chap. Canonical quantization of a scalar field) we have 

f (ω2)
d3 k⃗ 2

2ω2

=θ(k 2
0)δ(k 2

2)d4 k2    (where θ  is the Heaviside function and ω2=‖⃗k 2‖ ) 
 

 Thus with dΩ  the infinitesimal solid angle of the outgoing k1  photon directions 
 with respect to incoming positron direction and 

p2
0=√ p⃗2

2+m2  , ω2=E−ω1  , E=m+ p2
0  , ω1=

m E
E−‖p⃗2‖cosθ  we obtain 

dσ  = α2

2 m
ω1

E−‖p⃗2‖cosθ ( ω1

ω2  
+

ω2

ω1  
+

p⃗2
2

ω2
2 sin2 θ)dΩ

 with α= e2

4 π
 the fine structure constant. 

 

For the further considerations we can verify that for θ = θ (t) the Heaviside function

θ(t )={1 for t>0
0 for t<0

   we have 

θ(t)=−i∫ d ω
2π

exp(i ω t)
ω−iε     ,   θ(−t)=i∫ dω

2π
exp(i ω t)

ω+i ε   ,  

ℑ( 1

p0−q0−iε )=πδ(p0−q0)    where ε>0  , ε→0   . 

 

 Let O=O(x)  , x=(t , x⃗)∈ℝ4  some field operator function acting on states of a  
 quantum field theory with an unique vacuum state |0 ⟩  and the unitary  
 representation of the inhomogeneous Lorentz group U=U (a ,Λ)  such that for  
 any field operator function we have O(Λ x+a)=U (a ,Λ)O(x)U + (a ,Λ)  where 

 x→Λ x+a  is a Poincare transformation ,a∈ℝ4  , Λ∈S O+ (3,1)  is a restricted 
 Lorentz transformation. We have U (a , I )=exp (i p̂ a)  , U|0 ⟩=|0 ⟩
 with p̂  -the four momentum operator acting on states .  

 

(see Chap. Spin statistics theorem)
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Consider the two point amplitude 
i D (x− y)=⟨0|T (O( x)O( y))|0⟩=

=θ( x0− y0)⟨0|O(x)O( y)|0⟩+θ( y 0−x0)⟨0|O( y)O(x)|0⟩  . 
 

 We have ⟨0|O(x)O ( y)|0⟩=
=∑

ψ
⟨0|exp (i p̂ x)O(0)exp (−i p̂ x)|ψ⟩⟨ψ|exp(i p̂ y)O( y)exp(−i p̂ y)|0⟩  

 where (|ψ ⟩)ψ  is a complete orthonormal set of four-momentum eigenstates 

p̂|ψ ⟩= pψ|ψ ⟩    ,  pψ
0 ≥0   ,  pψ

2 ≥0  . 

 Therefore ⟨0|O(x)O( y)|0⟩=∑
ψ

exp (i pψ( y−x))|O0 ψ|
2  where O0 ψ=⟨0|O(0)|ψ⟩  . 

 

Thus 
i D (x− y)=∑

ψ
(θ( x0− y0)exp(i pψ( y−x))+θ( y 0−x0)exp (i pψ(x− y)))  , 

i D (q)=∫d4 x exp(i q x) i D (x)=−i(2π)3∑
ψ

|O0 ψ|
2( δ3( q⃗− p⃗ψ)

pψ
0 −q0−i ε

+
δ3(q⃗+ p⃗ψ)
pψ

0 +q0−iε )   , 

ℑ(2 i∫d4 x exp (iq x)⟨0|T (O(x)O ( y))|0⟩)=
=(2π)4∑

ψ
|O0ψ|

2(δ4 (q−pψ)+δ4(q+ pψ))  . 

 

 For the anticommutator {O(x) ,O( y)}=O(x)O( y)+O( y)O(x)  we will have 

∫d4 x exp(i q x)⟨0|{O(x) ,O( y)}|0⟩=(2π)4∑
ψ

|O0 ψ|
2(δ4(q−pψ)+δ4(q+ pψ))  and so 

 ∫d4 x exp (iq x)⟨0|{O(x), O( y)}|0⟩=ℑ(2 i∫d4 x exp (i q x)⟨0|T (O(x)O ( y))|0⟩) .

 

Experimentally we can measure the cross section  σ(e + e−→  hadrons )  of  
positron-electron anihilation into hadrons (hadrons are made of confined quarks and 
antiquarks) in the mass center frame of the incoming particles according to fig.3 
diagram as a function of the total mass center frame energy E . 

                                               hadrons 

                                                                                     μ+       μ-     

                                   γ                                                    γ

                   e+                                 e-                                                                   e+                            e-    

                                           fig.3                                                           fig.4 
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The half of the diagram, involving the electron and positron lines and the photon 
propagator appears also in the Feynman diagram fig.4 of positron-electron anihilation 
in a muon-antimuon pair  e+ e−→μ + μ−  and so we can determine experimentally  

 the ratio R(E)=
σ(e+ e −→ hadrons)
σ(e+ e −→μ +μ− )

 .  

We perform the experiment at high energies E in a way that a beam of positrons 
 of momentum k⃗  meets at the interaction point a similar beam of electrons of 
 momentum −k⃗  and thus for each singular electron positron interaction the  
 virtual photon (not on mass shell) has four-momentum q=(E ,0 ,0 ,0)  giving a  

 photon propagator −
ημν

E2  and according to Feynman rules the amplitude of the 

 process in which the virtual photon decays into a muon-antimuon pair or a  
 quark-antiquark pair is defined by 

A=(2π)4M δ4(q−p1−p2)  , M=i e2Q u(p1)γ
μ v (p2)ve (k 2) γμ ue(k1)

1
E2  

 where Q  is the muon that is -1 respective the quark charge factor , 
k 1=(E /2 ,−k⃗)  , k2=(E /2 , k⃗)  and u, v  are from the muon/quark 
 Dirac spinor quantization and ue , ve  are from the electron Dirac spinor  
 quantization (see Chap.Quantization of a Dirac field , 
 Chap. Electroweak unification and Chap. Feynman amplitudes and lattice ... ) 

 

We notice that the energy being high we have asymptotic freedom of Quantum 
chromodynamics and Electroweak theory and the resulting quarks can be considered 
free and on mass shell.  
Since the energy E is high , that is quark and muon masses are negligible compared to 
the total energy E, these masses can be all considered equal to a value m which is 
taken zero in the limit, the u and v functions can be considered to be the same for all 
sorts of fermions that appear and also the muon and quark propagators will be the 
same. Thus we have a, generical for all lepton sorts, field operator function 

ψ̂=ψ̂(x)=∫ d3 p⃗

(2π)3/2(E p/m)1/2 (b(p)u(p)exp(−i p x)+d + (p) v(p)exp (i p x))   

 where we suppressed spin index and b ,d  respective b + , d +  are anihilation 

 and creation operators for a particle respective antiparticle , Ep=√ p⃗2+m2  , 

 so that for Jμ(x)=ψ̂( x) γμ ψ̂(x)  , |h ⟩=b+ (p1)d + (p2)|0 ⟩   we have 
[ p̂μ , ψ̂( x)]=−i∂μ ψ̂(x)  (see Chap. Symmetry breaking) and so 
[ p̂ ,b + (k)]=k b+ (k )  , [ p̂ , d + (k )]=k d + (k)  , p̂|h ⟩=(p1+ p2)|h ⟩= ph|h ⟩
u(p1)γ

μ v (p2)=(2π)3(Ep1/m)1/2(E p 2/m)1 /2⟨h|Jμ(0)|0⟩ ,

 

|M|2=(2π)6 (Ep 1 E p 2)
1 /2

16 m3 E4 e4 Q2 tr((k2−m)γν(k1+m) γμ)⟨0|Jμ(0)|h⟩⟨h|J ν(0)|0⟩  .  

Therefore we it will be real kinetical factors Kμν such that

 

                                          /            /                  
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σ(e+ e −→ hadrons)=(3∑
a

Qa
2)Kμ ν∑

h
(2π)4 δ4(q−ph)⟨0|J

μ(0)|h⟩⟨h|Jν(0)|0⟩  .  (1) 

where the sum over a index counts the squares of charges of the various quarks that 
contribute to the outcoming hadrons energy E with a factor of 3 accounting for color. 
The sum over h index considers the complete orthonormal system of 
(2π)3

V
b+ ( p1)d

+ (p2)|0 ⟩  quark-antiquark pairs four-momentum eigenstates as 

normalized |h ⟩  states that can appear out of the electron-positron anihilation 

 

process.
 Similar, with the same kinetical factors Kμν  we derive 

σ(e+ e−→μ +μ− )=Kμ ν∑
h

(2π)4 δ4(q−ph)⟨0|Jμ(0)|h⟩⟨h|Jν(0)|0⟩  (2) 

 where in this case the |h ⟩  states are now muon-antimuon pairs four-momentum  
 eigenstates. 

 

 We have Rμν=∑
h

(2π)4 δ4 (q−ph)⟨0|Jμ(0)|h⟩ ⟨h|J ν (0)|0⟩=

=∑
h
∫d4 x exp(i q x)⟨0|exp(i p̂ x)Jμ(0)exp(−i p̂ x)|h⟩⟨h|J ν(0)|0⟩=

=∫d4 x exp (i q x)⟨0|Jμ(x) J ν(0)|0⟩     , because the  (|h ⟩)h  being orthononormal  
 and complete it follows ∑

h
|h ⟩ ⟨h|=I  . 

 

 Also we have ∫d 4 x exp( iq x)⟨0|Jν (0)Jμ(x)|0⟩=

=∑
h
∫d 4 x exp(i q x)⟨0|Jν(0)|h⟩⟨h|exp (i p̂ x)Jμ(0)exp(−i p̂ x)|0⟩=

=∑
h

(2π)4 δ4(q+ ph)⟨0|J ν(0)|h⟩⟨h|Jμ(0)|0⟩=0  , because ph
0= p1

0+ p2
0>0  and 

q=(E , 0⃗)  with E>0  and so δ4(q+ ph)=0 .

 

 Therefore from what we derived above we obtain 
Rμ ν=∫d4 x exp(i q x)⟨0|{Jμ(x)J ν(0)}|0⟩=

=ℑ(2 i∫d4 x exp(i q x)⟨0|T (Jμ(x)J ν(0))|0⟩)

 

As we know from Chap. Feynman amplitudes and lattice gauge theory we have
⟨0|T (Jμ(x)J ν(0))|0⟩=∫D A D ψ Dψexp (i∫ ℒ(ψ ,∂ψ , A ,∂ A)d4 w)Jμ(x)J ν(0)  

 where ℒ  is the S U (3)×S U (2)×U (1)  theory Lagrangian density . 
 

(see Chap. Electroweak unification… Georgi-Glashow model) 
To determine R μ ν for the purpose of (1) calculation we would have to calculate an 
infinite number of Feynman diagrams involving quarks and gluons like in fig.5 . 
Because the electroweak coupling constants are small compared to the strong 
coupling constant g(E) and the strong coupling constant gets smaller and smaller as E 
increases we will consider only the zero order diagram fig,6 (a) with no internal 
gluon lines and the second order in g(E) diagrams fig.6 (b) , (c) , (d) with only one 
strong interaction gluon internal line.
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The diagram in fig.6 (a) is the same one that we must only consider to determine R μ ν  
for the purpose of (2) calculation since muons do not participate in strong interactions
(we merely replace the quark propagator with the muon propagator which as we 
noticed can be considered the same) . At high energy E , we can neglect (g(E))2  and 
so the leading term in R(E)  is 3∑

a
Qa

2  that is lim
E→∞

R(E)=3∑
a

Qa
2  .  

The fact that the factor 3 comes out by experiment leads to the conclusion that we 
must have the quarks appearing in three colors.

                                                                             γ       
                      γ                                                      

                                               fig.5
                                                

                     γ                               γ                       γ                                γ
             
                                  fig.6 (a)                                                 fig.6 (b)

                                                                                                                         γ
                                                             γ                            γ
                        γ                                  
                                        fig.6 (c)                                                     fig.6 (d) 
We can add to the Lagrangian density an arbitrary constant and the physics not 
changes.
Hence we can consider that the vacuum energy is zero and therefore we have that
the fig.6 (a) diagram contribution to ∫d4 x exp (iq x)⟨0|T (Jμ(x)J ν(0))|0⟩  is  
Iμ ν(q)=
=∫d4 x exp(i q x)∫D A D ψ D ψexp (i∫ℒ0 d4 w)ψ(x)γμ ψ(x)ψ(0)γνψ(0)

 

 where ℒ 0  is the Lagrangian density ℒ  without any interaction term and so  

Iμ ν(q)=Z0∫ d4 x exp (i q x)(−1) tr(i Dfer(−x)γμ i D fer(x) γν)=  
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=Z0∫ d 4 p

(2π)4 ( 1
p−m+iε

γμ 1
p+q−m+i ε

γν)   

With the assumption that m is negligible compared to E we have already computed 
I μ ν (q) in Chap. Electroweak unification ... and (considering that ε > 0) it turns out to 

 be Iμ ν(q)=(−qμqν+ημν q2) i

12π2 (i π+log
M2

q2 )  with M  an energy scale 

 parameter. (where Z0=∫D A D ψ D ψexp (i∫ℒ 0 d4 w)=1  since we have 
 considered the vacuum energy equal to zero ) 

 

 The second order in  g(E)  term of ∫d4 x exp(i q x)⟨0|T (Jμ(x) Jν(0))|0⟩  , 
 given by the contribution of fig.6 (b) , (c) , (d) diagrams is 
Gμ ν(q)=
=(i g(E))2∫d4 x d4 y d4 z exp (iq x)∫ D A D ψ Dψexp (i∫ℒ 0 d4 w)ψ(x)γμ ψ(x)  

ψ( y)γ  ρT c ψ( y)ψ(0) γνψ(0)ψ(z)γσ T c ψ(z)Aρ
c ( y) Aσ

c (z)=
=−(g(E))2∫d4 x d4 y d4 z exp (i q x)(−1) tr(i Dfer (−x)γμ i D fer(x)γν)
 (−1) tr(i D fer(z− y)γ  ρ i D fer( y−z) γσ) tr(T c T c)i Dρσ

bos( y− z)   

 where T c  are the SU (3)  generators with corresponding strong interaction  
 gluon fields (Aλ

c )λ  . 

 

After some calculus we obtain :
Gμν(q)=i(g(E))2 Iμν(q)S tr(T c T c)   

 where S=∫ d4 r d4 s
(2π)4

1

s2+iε
tr( 1

r−m+i ε γ  ρ 1
r +s−m+iε γρ)δ4(0)   .  

    

 Let I (q)= i

12π2 (i π+ log
M2

q2 )  and we have 

R(E)=3∑
a

Qa
2(1−4

(g(E))2

π  
ℑ((π−i log

M 2

q2 )S))  

 

At first approximation we can write 

S=∫ d4 s

(2π4)
∫d4 y d4 z (−1) tr(i Dfer ( y−z)γ  ρ i D fer(z− y)γρ)

exp (i s( y−z))
s2+iε

=

≈∫ d4 s

(2π)4

1

s2+i ε
∫d4 y d4 z exp (i s( y−z))⟨0|T (Jρ( y)Jρ(z))|0⟩=

=∫ d4 s
(2π)4

1

s2+iε
∫d4 y d4 z

∑
h

exp(i s( y− z))(θ( y−z)exp (i ph(z− y))+θ( z− y)exp (i ph( y−z)))O0h O0 h
∗ =

 

 

                   /               /   /             

                                        /              /   /      
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=−2 i(2π)3δ4(0)∫ d4 s

s2+iε
∑

h

δ3( s⃗− p⃗h)

ph
0−s0−i ε

O0h O0 h
∗  

 where O0hO0h
∗ =⟨0|Jρ(0)|h⟩ ⟨h|Jρ(0)|0⟩  

S=−2 i(2π)3 δ4(0)∑
h
∫ d s0

(s0
2− p⃗h

2+i ε)(ph
0−s0−i ε)

O0 hO0h
∗ =

=−(2π)4 δ4(0)∑
h

O0hO0h
∗

(‖p⃗h‖−iε)(ph
0+‖p⃗h‖−iε)

 

(we used residues theorem for integration over s0) 
 We notice that since ph=p1+p2  with p1 , p2  on mass shell we have 

ph
0>0  , ph

2= ph
0 2−‖p⃗h‖

2≥0  and we have also from relations we derived above 

δ4(0) ∑
h , ph= p

O0 hO0 h
∗ =∫ d4 x

(2π)4 exp(i p x)⟨0|Jρ(x)Jρ(0)|0⟩=

=∫ d4 x
(2π)4 2ℑ(iexp (i p x)⟨0|T (Jρ(x)Jρ(0))|0⟩)= 1

(2π)4 ημν 2ℑ(i Iμ ν(p))=

=− 1
(2π)4

1
4π p2  . Considering that the 4 -volume element in momentum space 

 is 
1

δ4(0)
=

(2π)4

V T
  we can turn the sum over h  into an integral over p  having 

S=δ4(0)
4 π ∫

D

d4 p
‖p⃗‖

(p0+‖p⃗‖)(p0
2−‖p⃗‖)=δ4(0)∫

0

M

∫
0

r

p(r− p)d p d r=δ4(0) M 4

24

 

 Where we naturally limited the possible ph  values to 

D={p∈ℝ4|0< p0<M ,‖p⃗‖< p0} since M  is the leading energy scale parameter. 
 

 Therefore R (E)=3∑
a

Qa
2(1+1

6
(g(E))2 δ4(0)M 4 log M 2

E2 )  .  (*)

As we derived in Chap. Electroweak unification … Georgi-Glashow model we have :

(g(E))2=
g2(μ)

1+
g2(μ)
32π2 (8 F−39) log

μ
E

 and as E  increases, the energy scale  

 parameter M  used to estimate the cuttoff integrals in the renormalization will be 
 taken sufficiently large to allow M≫E  , but constant and we can see from (*)  
 how fast Quantum Chromodynamics is turning off at high energies. 
( μ   is a finite energy range at which we have determined the strong coupling 
 constant g=g(μ).
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                                           SO(10) unification 

 For any n∈ℕ∗  we can find 2 n   2n×2n  matrices γ j  , j=1 ,2n  tat satisfy the 
 Clifford algebra relations {γi , γ j}=γi γ j+γ j γi=2δi j  : 

 

 For n=1  we take γ1=τ1=(0 1
1 0)   ,  γ2=τ2=(0 −i

i 0 )  , τ3=(1 0
0 −1)   ; 

 Given the 2 n  γ  matrices (γ j
(n)) j=1 ,2n  we construct the 

2n+2  γ  matrices (γ j
(n+1)) j=1 ,2n+2  as follows: 

γ j
(n+1)=γ j

(n)⊗τ3=(γ j
(n) 0

0 −γ j
(n))  for  j=1 ,2n   

γ2 n+1
(n+1)=I 2n⊗τ1=( 0 I 2n

I 2n 0 )    ,   γ2n+2
(n+1)=I 2n⊗τ2=( 0 −i I 2n

i I 2n 0 )  . 

 

This iterative construction yields for SO(2 n) the gamma matrices : 
 γ2k−1=I⊗I⊗...⊗I⊗τ1⊗τ3⊗...⊗τ3  , 
γ2 k=I⊗ I⊗...⊗ I⊗τ2⊗τ3⊗...⊗τ3  , k=1 , n  
 with I  the 2×2  identity matrix appearing k−1  times 
 and τ3  appearing n−k  times. 

 

In analogy with the Lorentz group we define the n (2 n – 1) independent hermitean 

 matrices σi j=
i
2
[γi ,γ j ]={iγiγ j  for i≠ j

0  for i= j
  

 For Q∈SO (2 n)  we have (see Chap. On the rotations group ...) 
Q=exp(iθi j J

i j)  with θi j=−θ ji∈ℝ  , J i j=−J ji∈M 2n×2n(ℂ)  so that for q< j  : 

J kl
i j=i(δq k δ j l−δq lδ j k)   ,  q , j=1 ,2n  and it follows [J q j , J j k ]=i J q k  for q< j<k  , 

 (with no summation over  j  index) 

[σq j ,σ j k]=2 iσqk  . Hence the 
1
2
σi j  represent the J i j   -s . 

 

Consider now the unitary representation U = U(Q) ,  for Q∈S O(2 n)  defined by  

U=exp(1
2

iωq jσq j)  for Q=exp (iωq j J
q j)  , ωq j=−ω jq∈ℝ  .  

 For ψ  cosidered as a complex 2n  -dimensional column vector, under ψ→U ψ  

 we have ψ+ γk ψ  → ψ+ exp (− 1
2

iωq jσq j) γk exp(1
2

iωq jσq j)=ψ
+ γ kψ+

+ωq jψ
+ (δk jγq−δk q γ j)ψ+O(ω2)and thus with vk=ψ

+ γk ψ  we have 

v k  → v k−ωk j v j+ωqk v q+O(ω2)=Q kl v l+O(ω2) .

 

 In complete analogy to ψγμψ  transforming as a Lorentz vector under ψ   
transforming as Dirac spinor, vk  transforms as a vector under under S O(2 n)  if ψ  
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transforms under the representation U = U(Q) of SO(2 n) . 
 We define γFIVE=(−i)n γ1γ2 ...γ2n  and we have γFIVE=τ3⊗τ3⊗...⊗τ3  with τ3  
 appearing n  times and by analogy with the Lorentz group we define the 

 left handed spinors ψL=
1
2
(I−γFIVE)ψ  and the right handed spinors 

ψR=
1
2
(I+γFIVE)ψ  having γFIVEψL=−ψL  , γFIVEψR=ψR  . 

 

 Since γFIVE  commutes with σq j  under ψ  →U ψ  we have ψL→U ψL  , ψR→U ψR  . 
The projection into left and right handed spinors cut the number of components into 
halves and we have in conclusion two irreducible representations of SO(2 n) with 
dimension 2n-1 : S+ -right handed spinors and S - -left handed spinors. 
 Consider the 2 n  -dimensional real vectors x=(x1 ,... , xn , y 1, ... , yn)  , 
x′=(x1′ , ... , xn′ , y 1′ ,... , yn′)  . By definition SO(2 n)  consists of linear  

 transformations that leave ∑
j=1

n

x j′ x j+ y j′ y j  invariant. U (n)  acting on 

z=(x1+i y1 , ... , x n+i y n)  consists of the subset of linear transformations that leave  

 invariant ∑
j=1

n

x j′ x j+ y j′ y j  and also ∑
j=1

n

x j′ y j− y j′ x j  . 

 

So we have a natural embedding of SU(n) in SO(2 n) and since 
(x1 , … , xn , y1 , … , yn) can be rewritten as 
 (x1+i y1 , ... , x n+i yn , x1−i y1 , ... , x n−i yn)   we have 2n=n⊕n∗  where 
2n  is the 2n  -dimensional real vector representation of S O(2n)   defined as 
v k→Qk j v j   for Q=(Q k j)k , j=1,2n∈S O(2 n)  and n   denotes the n  -dimensional 

representation of S U (n)  defined as wk→U j
k w j  for U=(U j

k )k , j=1 ,n∈S U (n)  and n∗

 is the n  -dimensional representation of SU (n)  defined as wk→U k
+ j w j  for 

U=(U j
k)k , j=1 ,n∈S U (n)  . 

 

 For ⊗A  the antisymmetric tensorial product we consider the 2 n⊗A 2n  the  
 antisymmetric real tensor representation of S O(2 n)  denoted n(2n−1)  defined as 

ψ i j→Qik Q jl ψ
 k l  for Q=(Qi j)i , j=1 ,2n∈S O(2 n)  , ψ=(ψ i j)i , j=1,2n∈M2 n×2n(ℝ)  , 

ψ i j=−ψ ji  and we can verify 
2n⊗A 2 n  →(n⊕n∗ )⊗A (n⊕n∗ )=(n∗⊗A n)⊕(n⊗A n∗)⊕(n⊗A n)⊕(n∗⊗A n∗)
(n⊗A n∗)⊕(n∗⊗A n)  →1⊕(n2−1)   ,  
n⊗A n  →n(n−1)/2   ,  n∗⊗A n∗  →(n(n−1)/2)∗

 

 where 1  denotes the singlet representation of S U (n)  : 
v→v  for U∈S U (n)  . 

n2−1  denotes the adjoint representation of S U (n)  : 
Φ→U ΦU +   for Φ=(Φ j

i )i , j∈M n×n(ℂ)  , trΦ=0  , U∈SU (n)  .       (1) 
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 n(n−1)/2  denotes the antisymmetric tensor representation of S U (n) :
ψ→U ψU T  for ψ=(ψ  i j)i , j∈Mn×n(ℂ)  , ψ=−ψ

T  , U∈SU (n) .        (2) 
(n(n−1)/2)∗  denotes the antisymmetric covariant tensor representation of S U (n):

ψ→U ∗ψU +  for ψ=(ψi j)i , j∈M n×n(ℂ)  , ψ=−ψ
T  , U∈S U (n) .           (3) 

 Hence n(2n−1)=1⊕(n2−1)⊕(n(n−1)/2)⊕(n(n−1)/2)∗

 

 Any basis of 2n⊗A 2 n  is a generator system for the canonical S O(10)  ( n=5  ) 

 representation and so we have generators 1 ,(Φi
j)i , j=1 ,5  , (ψ ji)i , j=1 ,5  , (ψ ji)i , j=1,5

 satisfying (1) , (2) , (3) as 5×5  matrices defining respective the 1 ,24 , 10 ,10∗

 invariant subspaces of the 45=2n⊗A 2 n  representation of S O(10) :
45=1⊕24⊕10⊕10∗ .

 

Suppose the S +=16 +  (for n=5  ) breaks into a bunch of representations of S U (5) .
 Let 1̂ , Φ̂i

j  , ψ̂  j i  , ψ̂ ji  representing the corresponding generators of S O(10)  in 
 the 16 +  representation of S O(10).  Suppose the bunch of representations that S +

 breaks up into contains the singlet 1  of S U (5)  . Then (ψ̂ j i)i, j  acting on 1  gives  
 the 10  representation of S U (5)  ( an antisymmetric tensor of two indices 

 

with a tensor with no indices is an antisymmetric tensor with two indices). 
 (ψ̂ j i)i , j  acting on 10  is a tensor with four upper indices which certainly contains 

 the [4 ]  representation of S U (5)  given by ψ i j k l→U m
i U p

j U q
k U r

l ψ m pqr  with 

ψ i j kl  antisymmetric in all indices , which is  equivalent to 
ϵw i j k lψ

 i j k l=Uw
+s ϵs m pqrψ

 m p qr  so that we have [4 ]=[1 ]∗→5∗  . 
 Thus to be an invariant subspace 16 +  must contain 1 ,10  and 5∗  but 1+10+5   
already add up to 16 and we conclude 16 +=1⊕10⊕5∗    (4) :
The 10  and 5∗  of S U (5)   fit inside the 16 +  of S O(10).

 

 The two spinor representations S +  and S−  are conjugated each to other. 

 For C  defined as C(1)=τ2  , C(n+1)={C(n)⊗τ1  for n≡1 (mod 2)
C(n)⊗τ2  for n≡0 (mod 2)

 we will have C σi j C
−1=−σi j

∗  , C γ j C
−1=(−1)nγ j

∗  , C S + C−1=S−  , C2=I  . 
 The conjugate spinor S−  breaks into 16−=1⊕10∗⊕5         (5) . 

 

If we introduce one more field transforming as 1 under SU(5) , that is a singlet under 
SU(5) and so under SU(3)xSU(2)xU(1) , this field describes a lepton with no electric 
charge and is not involved in the known weak interaction and can be identified as the 
antineutrino field νR

c which is equivalent by conjugation to the right handed neutrino 
field νR . 
 For n=2   we have the (σq j)q , j=1,4  , σq j=iγqγ j  matrices and we define 

σ1=−
1
2
(σ1 2−σ 34)  , σ2=−

1
2
(σ31−σ 24)  , σ3=−

1
2
(σ23−σ 14)

 having σqσ j=i ϵq jkσk  , γFIVE=−γ1γ2 γ3 γ4  , σ1
2=σ 2

2=σ3
2=1

2
(I−γFIVE)  , 
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 σq
1
2
( I+γFIVE)=0  and for θ∈ℝ  , n=(ni)i=1 ,3  , n2=1  we have 

exp(1
2

iθn jσ j)
1
2
(I−γFIVE)ψ  =1

2
(I−γFIVE)(cos θ

2
+in jσ j sin θ

2
)ψ  and so 

  exp (1
2
θn jσ j)  leaves invariant S−=2−  which has complex dimension 2  . 

 Therefore (σ j)j  represent the Pauli matrices of S U (2)  representation. 

 

 Given the product form of the gamma matrices γ j  and hence of σi j  for n∈ℕ∗  , 
we can write the states of the spinor epresentations as |ε1,ε2 ,... ,εn ⟩  with εi∈{±1} , 

  |+  ⟩=(10)   ,  |−  ⟩=(01)    and we will have 

S +=Sp{|ε1 , ... ,εn ⟩|∏
i=1

n

εi=1}   ,   S−=Sp {|ε1 ,... ,εn ⟩|∏
i=1

n

εi=−1}

 

 For n=2  we have σ12=i(τ1⊗τ3)( τ2⊗τ3)=−τ3⊗I  , σ34=− I⊗τ3  , 

σ3=
1
2
( τ3⊗ I−I⊗τ3)  , σ3|+  + ⟩=σ3|−  − ⟩=0  and thus under S U (2)  the 

|+   + ⟩  and the |−  − ⟩  make two singlets and in a similar way, identifying 

σi→τi   ,  |+  − ⟩→(10)   ,  |−  + ⟩→(01)  we have that |+   − ⟩   and  |−   + ⟩  make 

 up a S U (2)  doublet. 

 

 Since ∏
i=1

5

εi=1  implies ε1ε2=ε3ε4ε5  we have 16 +→(2+ , 4+ )⊕(2− ,4− )  . 

 In the same way as we derived (4) ,(5)  we obtain 
4 +→1⊕3∗   ,  4−→1⊕3   ,  2+→1⊕1   ,  2−→2  . 

 

We identify the natural SU(2) subgroup of SO(4) as the SU(2) of the electroweak 
interaction and the natural SU(3) subgroup of SO(6) as the color SU(3) of the strong 
interaction. Thus (2 + , 4 +) are the SU(2) singlets while (2 - , 4 -) are  the SU(2)  
doublets of the standard SU(3)xSU(2)xU(1) model. 
 Since 4−=3⊕1  upon restriction to color, uL  and dL  must fit in the 3  and so of  
 the four states |−  −  − ⟩  , |+   +  − ⟩  , |+   −  + ⟩  , |−  +  + ⟩  we take the 
S U (2)  doublets 

|uL
α ⟩=|−  +  +  +  − ⟩=|3 ⟩  , |−  +  +  −  + ⟩=|4 ⟩  , |−   +  − +  + ⟩=|5 ⟩  

|dL
α ⟩=|+ −  +  + − ⟩=|6 ⟩  , |+  − +  − + ⟩=|7 ⟩  , |+  − − +  + ⟩=|8 ⟩

|νL  ⟩=|− +  − − − ⟩=|1⟩  , |eL  ⟩=|+  − − − − ⟩=|2 ⟩
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By the same heuristic argument we take the SU(2) singlets 

|νR
c ⟩=|+ +  +  + + ⟩=|9 ⟩  , |eR

c ⟩=|− − +  +  + ⟩=|10 ⟩  
|uR
α c⟩=|+ +  − − + ⟩=|11⟩  , |+ +  − +  − ⟩=|12 ⟩  , |+  + +  − − ⟩=|13 ⟩  

|dR
α c⟩=|− − −  − + ⟩=|14 ⟩  , |− − −  +  − ⟩=|15 ⟩  , |− − + − − ⟩=|16 ⟩   . 

 

The SO(10) unified Lagrangian density (see Chap. Non-abelian gauge theory) is 

ℒ= 1
4

Fμ ν
a Faμν+Φ(iγμ∂μ−mΦ)Φ+

1
2
(μ2)ab Aaμ Aμ

a+gψγμ Aμ
a Taψ     where 

Φ=(ν , e ,(uα)α ,(dα)α)   ,  ψ=∑
j=1

16

ψ j| j ⟩  , (a)a=(i j)i , j=1 10, j>i

  mΦ  is a quark and lepton mass diagonal matrix mΦ=diag(mν ,me ,(mu)α ,(md)α)   
((μ2)a b)a ,b  is the boson squared mass matrix. 

 

 Under Q∈S O(10)  , Q=exp(iωi j J
i j)  we have the S+=16 +  

 representation of S O(10)  such that U=U (Q)=exp(1
2

iωi jσi j)∈S U (32)  , 

U|i ⟩=U i
j| j ⟩  , (ψ  j) j=(νL , eL ,(uL

α)α ,(dL
α)α , νR

c ,eR
c ,(uR

αc)α ,(dR
α c)α)

ψ j  are left handed Dirac spinor fields transforming as ψ j→U i
j ψ i  , 

Ta=1
8
σi j  such that tr(T a Ta)=1

2
.

 

The electric charge operator Q̂  ,when acting on a state |ε1 ,... ,ε5 ⟩  transforms as a 

 singlet under S U (3)  so must have the value Q=aε1+b ε2+c(ε3+ε4+ε5)  .  
 We must have Q(νL)=Q(νR

 c)=0  , Q(eL)=−1  and so 

Q̂|ε1 , ... ,ε5 ⟩=(− 1
2
ε1+

1
6
(ε3+ε4+ε5))|ε1, ... ,ε5 ⟩

 We can verify Q(uL)=
2
3

 , Q(dL)=−
1
3

 , Q(uR
c )=− 2

3
 , Q(dR

c )=1
3

 ) 

Q̂=1
2
σ12−

1
6
(σ56+σ 7 8+σ 910)

 

The SU(3)xSU(2)xU(1) theory Lagrangian density correspondent in a SO(10) with 
the SO(6)xSO(4) subgroup is therefore 

ℒ=1
4

Fμν
a Faμν+Φ(iγμ∂μ−mΦ)Φ+g1

1
2
∑

i , j≤4
ψγμ Aμ

i j T i jψ+g2
1
2
∑

i , j>4
ψγμ A i j T i jψ+

+1
2
(μ2)ab Aμ

a Abμ     where Ai j=−A ji   ,  T i j=−T j i=1
8
σi j

 for i j=a  , i< j  , i , j≤4  or i , j>4 .

 

 The required mass term is 

(ΦL mΦΦR+ΦR mΦΦL)=ℜ∑
i=1

8

mi(ψ
 i+8T γ0 γ2ψ i−ψ i T γ0 γ2ψ i+8)  

 

 which can be generate by a Higgs field H=(H i j)i , j=1 ,16  , H i j=−H ji  transforming 
 as the 128∗  of S U (16) :
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 Under U=(U j
i )i , j=1 ,16∈S U (16)  we have H i j→U i

+k U j
+l H k l  , H→U ∗H U +  .  

We allow to H having a vacuum expectation value 
⟨H i j⟩=vi δ ji+8  for i< j  , vi∈ℝ  for i=1,8  , vi=v  for i=1,2  , vi=w  for i=3 ,8  . 
 Then following Chap. Anderson Higgs mechanism we have 
(μ2)ab=(T

a[ ⟨H ⟩])i j(T
b[⟨H ⟩])i j

∗   where T a[⟨H ⟩ ]=−T a∗ ⟨H ⟩−⟨H ⟩T a   

 

The symmetry is spontaneosly broken to SO(6)xSO(4).

 It follows that the Aa  boson remains massless if for 1
8
σ  =Ta  we have 

⟨i|σ∗ ⟨H ⟩ σ| j⟩=−⟨H i j ⟩  for any i , j=1,16
 Considering the SO (6)×S O(4)  theory we will have the cases 
a)σ  =i γkγ l  with k≠l  , k ,l∈{1 ,2 ,3 ,4}
b)σ  =iγ kγl  with k≠l  , k ,l∈{5 ,6 ,7 ,8 ,9 ,10}

 

 Then exists ε∈{±1 ,±i} such that if k∈{1,2}∪{9 ,10}=A  we have 
εσ|k ⟩=|l ⟩  , ε∗σ∗|k ⟩=|l ⟩  with l∈A   
 and exists ε∈{±1 ,±i} such that if k∈{3 ,4 ,5 ,6 ,7 ,8}∪({3 ,4 ,5 ,6 ,7 ,8}+8)=B   
 we have εσ|k ⟩=|l ⟩  , ε∗σ∗|k ⟩=|l ⟩  with l∈B  . 

 

 We have |i±8 ⟩=K|i ⟩  where K=τ1⊗I⊗τ1⊗τ1⊗τ1  . 
 If |i ⟩≠αK| j ⟩  for any α∈ℂ  we have ⟨H i j⟩=0  , σ∗|i ⟩≠σ∗αK| j ⟩  for any α∈ℂ  . 
 Since σ∗K=±K σ  it follows σ∗|i ⟩≠αK σ| j ⟩  for any α∈ℂ , we derive 
⟨i|σ∗ ⟨H ⟩ σ| j⟩=0=−⟨H ⟩

 

 We have σ∗=σT  since σ  =σ +  . 
 Let m  be the number of occurences of τ2  in the tensorial product that defines σ  . 

 Then σT=(−1)mσ  . Also we have K σ  =κσ K  with κ∈{±1} . 
 If | j ⟩=K|i ⟩  we obtain ⟨i|σ∗ ⟨H ⟩ σ| j⟩=κ(−1)m ⟨ i|σ ⟨H ⟩ K σ|i⟩=
=κ(−1)m+ρ⟨ i|⟨H ⟩| j⟩=κ(−1)m+ρ H i j

 where ρ={1  if σ  =χ τq⊗a⊗b⊗b⊗d  , q∈{1,2} , χ∈ℂ
0  else 

 . 

 

 Therefore the generator 1
8
σ  boson will be massless if κ(−1)m+ρ=−1  . 

 We have ρ=0  in the b) case, ρ=0  for σ  ∈{σ12 ,σ3 4}  , 
ρ=1  for σ  ∈{σ13 ,σ14 ,σ2 3,σ24}

 

K  commutes with γ j  for j∈{2 ,5 ,8}=M  and anticommutes with γ j  for j∈N  , 
N={1,3 ,4 ,6 ,7 ,9 ,10}
m≡1   (mod 2)  for σ  =σi j  , i j∈{24 ,13} in the a) case 
 and i j∈{6 8 ,6 10 ,8 10 ,7 9 ,5 7 ,5 9} in the b) case. 
 Hence massless bosons correspond to σi j  with i j∈{12 , 24} in the a) case and 
i j∈{56 , 59 ,5 10 ,69 ,610 ,7 8 , 9 10}  . 
 Considering the expression we derived for Q̂  we can confirm that the photon is  
 massless in the S O(6)×S O(4)  theory. 
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 As we mentioned before we introduced the S U (5)  singlet field νR
c=γ2 1+γ5

2
ν∗   

which is a left handed field and is assimilable by conjugation with the right handed 
neutrino while the left handed neutrino is a SU(2) doublet. Since the right handed 
neutrino is a SU(5) singlet we can give it a Majorana mass M (see Chap. Fermion 
charge… Majorana neutrino) without breaking SU(5). Hence we expect M to be 
larger than or of the same order of magnitude as the the mass scale MGUT ~ MX at 
which SU(5) is broken to SU(3)xSU(2)xU(1) (or equivalently SO(10) is broken to 
SO(6)xSO(4)) which as we saw in Chap. … Georgi-Glashow model is of the same 
order as MX -the mass of gluons that transform quarks in leptons and viceversa and 
much larger than the mass scales that we have been explored experimentally.
 The Majorana mass term will be M ℜ(νR

T γ2γ0νR)  with the specification that 
the Dirac spinor components (νR α)α=0 ,3  must be treated as anticommuting 

 

Grassmann variables.
With the presence of right handed and left handed neutrinos we can also have a Dirac 
 mass term m(νR νL+νLνR)=m νν  . Since his term breaks S U (2)×U (1)  just like  
the mass terms for quarks and leptons , we expect m to be of the same order of 
magnitude as the known quark and lepton masses and therefore m << M . 
 We have −νR

c νc=ννR=(νR νL)
∗=νLνR   and  −νR

c νR=−νR
c ν  =νR

T γ2 γ0 νR  . 
 Thus the entire mass term can be written as 

ℜ(m(νR νL+νLνR)+M νR
T γ2 γ0 νR)=ℜ((νR ,−νR

c )(0 m
m M )(ν

c

ν  ))
 

 We can diagonalize the mass matrix M=(0 m
m M )  having 

R(θ)M RT (θ)=(λ− 0
0 λ +)  with R (θ)=(cosθ −sin θ

sin θ cosθ )  , tan θ=− λ−
m

 , cotθ=λ +
m

 ,

λ −=
M−√M2+4 m2

2
≈− m2

M
 , 0<−λ−≪m   ,  λ+=

M+√M2+4 m2

2
≈M  , 

ℜ(m(νR νL+νLνR)+M νR
T γ2 γ0 νR)=ℜ (λ − (νR cosθ+νR

c sin θ)(νc cosθ−ν sinθ)+
+λ+ (νR sin θ−νR

c cosθ)(νc sinθ+ν cosθ))

 

 From the first term, corresponding to the small eigenvalue λ−≈−
m2

M
 

 and the mass state νc cosθ−ν sin θ  we have ℜ(λ− νR ν
c)  which is a (negative) 

 Majorana mass term for the right handed neutrino and the remaining term is  
λ − sinθcosθ(νLνR+νR νL)  giving to the (observed) left handed neutrino a 

 positive Dirac mass msin2θ .

 

Therefore a tiny Dirac mass is naturally generated for the observed neutrino , fact 
known as the seesaw mechanism in diagonalizing the  (large Majorana mass) mass 
matrix to a very small eigenvalue and a large eigenvalue. The generated mass is 
suppressed relative to known quark and lepton masses m by a small factor of m / M . 
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We have in the SU(5) and SO(10) theories a Lagrangian density of the form 
ℒ=ℒ0+gψγμ Aμ

a T aψ  with ψ=(ψi)i  , ψi  -Dirac spinor fields , 

Ta=(T i j
a )i , j  gauge group representation generator matrices, 

ℒ 0=ψ(iγ
 μ∂μ−m)ψ−1

4
Fμν

a Faμ ν+ 1
2

Ma
2 Aμ

a Aaμ  . 

 

 By variation upon δψ  and δ ψ  we obtain from the Lagrangian density the 
 Euler-Lagrange motion equations for quarks and leptons: 
iγ  μ∂μψi+g γ  μ Aμ

a T i j
a ψ j=miψi       (6) 

i∂μψkγ
 μ−gψ jγ

 μ Aμ
a T jk

a =−mkψk          (7) 

 Multiplying (6) left with ψk T k i
b  and (7) right with T k i

b ψi  if we set all quark 
 and lepton masses equal to the same  m→0  summing the multipied (6) and (7) 
 we obtain ∂μ(ψiγ

 μT i j
b ψ j)=0          (8) 

 

 Consider the operator functions Ĵ aμ=ψ̂i(x)γ
 μT i j

a ψ̂ j(x)   ,  x∈ℝ4   .
From the path integration :
Fμλ ν (x , y , z)=⟨0|T ( Ĵ aμ( x) Ĵ bλ( y) Ĵ c ν( z) Âμ

a (x) Âλ
b ( y) Âν

c ( z))|0⟩=
=∫DψDψD A exp(i∫ℒ d4 w)Aμ

a(x) Aλ
b ( y) Aν

c (z)J aμ( x)J bλ( y)J c ν( z)  , 
 

we expect F μ λ ν (x , y , z) to be gauge invariant since it is a coefficient in the expansion 
 after g  powers of ∫DψDψD A exp(iℒ d4 w)  which is gauge invariant. 

Under a gauge transformation U=exp(iθa T a)  we will have (see Chap. Non-abelian 

gauge theory) : J aμ(x)Aμ
a(x)→J aμ(x)Aμ

a(x)+iψ(x)[T c , Tb] γμ Aμ
c (x)θ b(x)ψ(x)−

−ψ(x) γμ f a bc Aμ
c (x)θ b(x)Taψ(x)+ 1

g
ψγμTaψ(x)∂μθ

 a(x)+O (‖θ‖2+‖∂θ‖2)=

=J aμ(x)Aμ
a(x)+ 1

g
ψ(x)γμT aψ(x)∂μθ

 a(x)     since [T c , Tb]=i f ab Ta  , f a c b=−f a bc .

 

Therefore gauge invariance leads to 
∫ ⟨0|T ( Ĵ aμ(x)∂μθ

 a(x) Ĵ bλ( y) Ĵ c ν (z) Âλ
b ( y) Âν

c (z))|0⟩d4 x=0    (9) , 
θ=θ(x)  being an an arbitrary infinitesimal function. 

 

Integratin in (9) by parts with θ arbitrary infinitesimal function it follows 
⟨0|T (∂μ Ĵ aμ(x) Ĵ bλ( y) Ĵ c ν(z) Âλ

b ( y) Âν
c (z))|0⟩=0       (10)  

This is consistent with the (8) relation and says that a current conservation law 
like (8) , if gauge invariance works, must hold even under quantum fluctuations as 
they are described for example, by the diagrams of a possible violating gauge 
invariance relation (11) anomaly below (see fig.) .
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                              q = k1 + k2                                                           q = k1 + k2

                              μ                                                                         μ  
                                                                                       p – q                   p
         p – q                    p
                      p – k1                                                              ν                        λ
               λ                          ν                                                       p – k2                                      
k2                                                                         k1                                                              k1                                                                     k2      

                                                          fig. 

In the same way as above, gauge invariance invariance implies 
0=∫d4 x exp(−iq x)⟨0|ab(k 2)a

c(k1)T (∂μ Ĵ aμ(x) Ĵ bλ( y) Ĵ c ν (z) Âλ
b ( y) Âν

c (z))|0⟩=

=∫ d4 x iexp (−iq x)

(2π)3√2ωk1
 2ωk 2

 exp (i k 2 y)exp (ik 1 z)qμ⟨0|T (Ĵ
aμ(x) Ĵ bλ( y) Ĵ c ν(z))|0⟩ε2λ ε1ν

ε2λ=ελ(k2)   ,  ε1ν=εν (k1)  polarization versor components of the outgoing bosons. 

 

(even if we have two bosons coming out from the y , z vertices)
 ( ab+ (k 2) , ac+ (k 1)  creation operators for the Ab  respective Ac  bosons which are 

 on mass shell , with ωk 1=k1
0  , ωk 2=k2

0  ) 
 

According to Feynman rules the anomaly amplitude 
A=(2π)4M δ4(q−k 1−k 2)=
=∫ exp(−i q x)⟨0|ab(k 2)a

c (k 1)T ( Ĵ
aμ(x) Ĵ bλ( y) Ĵ c ν (z) Âλ

b ( y) Âν
c (z))|0⟩d4 x d4 y d4 z

 

considering that all fermion and quark masses have the same (small) value, so that the 
propagators are identical, is determined in first approximation by 

M= i

(2π)7√2ωk1ωk 2

 ∑
R

Aa b c (R)∫d 4 p tr (γ  μ D fer(p) γνD fer(p−k1) γ
 λ Dfer(p−q)+

+γ  μ D fer(p) γ  λD fer(p−k2)γ
 νD fer(p−q))

 

 where Dfer (p)= 1
p−m+iε

      with m  quark and fermion masses, p=γ α pα  ,  

Aab c (R)=tr(T aT b T c+Ta T c Tb)  with the trace evaluated in the R  representation 
 of the gauge group and the sum is taken over all representations that occur in the  

 

considered theory. 
 The anomaly is proportional to ∑

R
Aa bc(R).    

For the SU(5) theory, calculating A a b c for all possible a,b,c we see that it suffices to 
 set Ta , Tb , T c  all equal to diag(2,2 ,2 ,−3 ,−3)  if we want to check ∑

R
Aab c(R)=0 .  

We calculate T3  
 |5∗=3(−2)3+2(+3)3=30  , T3  

 |10

=3(+4)3+6(−1)3+(−6)3=−30 .  

                                                                                       
                    /                                                      /                
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∑
R

Aa b c (R)=0  and the anomaly vanishes in the S U (5)  theory.    

 For S O(10)  we have the generators J s j=i(δsk δ j l−δs lδ jk )   
 and for Q=exp (iωs j J

s j)  , ωs j=−ω j s  , s , j=1,10  we have the representation 

U=U (Q)=exp(1
2

iωs jσ s j)  and Q J s j QT=Qps Qk j J
pk   

exp(1
2

iωs jU σ s j U
+ )=U (Q exp (iωs j J

s j)QT)=

=U (exp (iωs jQ psQ k j J
pk ))=exp (1

2
iωs jQp sQk jσ pk)  , 

U σ s jU
+=Q psQ k jσ pk

 

 The anomaly is proportional to A s j k lm n=tr(σ s jσk lσmn)  . 
We have As j kl mn=tr (U σ s j U

+ U σ kl U
+ U σmn U +)=Qps Qr j Qqk Qh l Qw m Qv n As jk l mn  

 

 Thus A s j k lm n  is an invariant tensor antisymmetric in s - j  , k - l  , m -n  .  
 We have A s j k lm n=−i tr (γs γ j γk γlγmγn)  . 
 If j=k  it follows As jk l mn=−i tr(γ sγl γmγn)  and if s ,l ,m ,n  are all distinct the 
 trace vanishes since the gamma matrices anticommute. If s=l  it also vanishes 
 since trσmn=0.Therefore we have to consider (s=m  and l=n)or(s=n  and l=m)

 

 Thus to determine Aab c  if j=k  we have to sum tr (σs jσ j kσk s)+ tr(σ s jσk sσ jk )=
i tr(σ s kσk s+σs jσ j s)=0 .

 

 Hence if Aab c≠0  we can consider all s , j , k ,l ,m , n  distinct and so since the 

 gamma matrices anticommute, we have A s j k lm n=−Ans j k lm  .
 Because tr(A B)=tr(B A)  for any matrices, it follows A s j k lm n=Ans j k lm  and so 
As j kl mn=0  and so Aa bc∝A s jk l mn+As jm nk l=0  . 

 

We can conclude therefore that the SU(5) and SO(10) unified theories are free from 
anomaly. 
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